inline.c 12.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * fs/f2fs/inline.c
 * Copyright (c) 2013, Intel Corporation
 * Authors: Huajun Li <huajun.li@intel.com>
 *          Haicheng Li <haicheng.li@intel.com>
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/fs.h>
#include <linux/f2fs_fs.h>

#include "f2fs.h"

bool f2fs_may_inline(struct inode *inode)
{
18
	if (!test_opt(F2FS_I_SB(inode), INLINE_DATA))
19 20
		return false;

J
Jaegeuk Kim 已提交
21 22 23
	if (f2fs_is_atomic_file(inode))
		return false;

24
	if (!S_ISREG(inode->i_mode))
25 26 27 28 29
		return false;

	return true;
}

30
void read_inline_data(struct page *page, struct page *ipage)
31 32 33
{
	void *src_addr, *dst_addr;

34 35
	if (PageUptodate(page))
		return;
36

37
	f2fs_bug_on(F2FS_P_SB(page), page->index);
38

39
	zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
40 41 42

	/* Copy the whole inline data block */
	src_addr = inline_data_addr(ipage);
43
	dst_addr = kmap_atomic(page);
44
	memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
45
	flush_dcache_page(page);
46
	kunmap_atomic(dst_addr);
47
	SetPageUptodate(page);
48 49 50 51 52 53 54 55 56 57 58
}

int f2fs_read_inline_data(struct inode *inode, struct page *page)
{
	struct page *ipage;

	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
	if (IS_ERR(ipage)) {
		unlock_page(page);
		return PTR_ERR(ipage);
	}
59

60 61 62 63 64 65 66 67 68 69 70 71 72
	if (!f2fs_has_inline_data(inode)) {
		f2fs_put_page(ipage, 1);
		return -EAGAIN;
	}

	if (page->index)
		zero_user_segment(page, 0, PAGE_CACHE_SIZE);
	else
		read_inline_data(page, ipage);

	SetPageUptodate(page);
	f2fs_put_page(ipage, 1);
	unlock_page(page);
73 74 75
	return 0;
}

76
int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
77 78 79 80 81 82 83
{
	void *src_addr, *dst_addr;
	block_t new_blk_addr;
	struct f2fs_io_info fio = {
		.type = DATA,
		.rw = WRITE_SYNC | REQ_PRIO,
	};
84
	int err;
85

86
	f2fs_bug_on(F2FS_I_SB(dn->inode), page->index);
87

88 89
	if (!f2fs_exist_data(dn->inode))
		goto clear_out;
90

91
	err = f2fs_reserve_block(dn, 0);
92
	if (err)
93
		return err;
94

95
	f2fs_wait_on_page_writeback(page, DATA);
96 97 98 99

	if (PageUptodate(page))
		goto no_update;

100
	zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
101 102

	/* Copy the whole inline data block */
103
	src_addr = inline_data_addr(dn->inode_page);
104
	dst_addr = kmap_atomic(page);
105
	memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
106
	kunmap_atomic(dst_addr);
107
	SetPageUptodate(page);
108
no_update:
109 110
	/* write data page to try to make data consistent */
	set_page_writeback(page);
111 112 113

	write_data_page(page, dn, &new_blk_addr, &fio);
	update_extent_cache(new_blk_addr, dn);
114
	f2fs_wait_on_page_writeback(page, DATA);
115 116

	/* clear inline data and flag after data writeback */
117 118 119 120 121 122 123
	truncate_inline_data(dn->inode_page, 0);
clear_out:
	f2fs_clear_inline_inode(dn->inode);
	stat_dec_inline_inode(dn->inode);
	sync_inode_page(dn);
	f2fs_put_dnode(dn);
	return 0;
124 125
}

126
int f2fs_convert_inline_inode(struct inode *inode)
127
{
128 129 130 131
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	struct dnode_of_data dn;
	struct page *ipage, *page;
	int err = 0;
132

133 134 135
	page = grab_cache_page(inode->i_mapping, 0);
	if (!page)
		return -ENOMEM;
136

137 138 139 140 141 142
	f2fs_lock_op(sbi);

	ipage = get_node_page(sbi, inode->i_ino);
	if (IS_ERR(ipage)) {
		f2fs_unlock_op(sbi);
		return PTR_ERR(ipage);
143
	}
144

145 146 147 148 149 150 151 152 153 154
	set_new_dnode(&dn, inode, ipage, ipage, 0);

	if (f2fs_has_inline_data(inode))
		err = f2fs_convert_inline_page(&dn, page);

	f2fs_put_dnode(&dn);

	f2fs_unlock_op(sbi);

	f2fs_put_page(page, 1);
155 156 157
	return err;
}

158
int f2fs_write_inline_data(struct inode *inode, struct page *page)
159 160 161 162 163 164 165 166 167 168
{
	void *src_addr, *dst_addr;
	struct dnode_of_data dn;
	int err;

	set_new_dnode(&dn, inode, NULL, NULL, 0);
	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
	if (err)
		return err;

169
	if (!f2fs_has_inline_data(inode)) {
170 171
		f2fs_put_dnode(&dn);
		return -EAGAIN;
172 173
	}

174 175 176
	f2fs_bug_on(F2FS_I_SB(inode), page->index);

	f2fs_wait_on_page_writeback(dn.inode_page, NODE);
177
	src_addr = kmap_atomic(page);
178 179
	dst_addr = inline_data_addr(dn.inode_page);
	memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
180
	kunmap_atomic(src_addr);
181

182
	set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
183 184
	set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);

185 186 187 188
	sync_inode_page(&dn);
	f2fs_put_dnode(&dn);
	return 0;
}
189

190
void truncate_inline_data(struct page *ipage, u64 from)
191
{
192
	void *addr;
193 194 195 196

	if (from >= MAX_INLINE_DATA)
		return;

197 198
	f2fs_wait_on_page_writeback(ipage, NODE);

199 200
	addr = inline_data_addr(ipage);
	memset(addr + from, 0, MAX_INLINE_DATA - from);
201 202
}

203
bool recover_inline_data(struct inode *inode, struct page *npage)
204
{
205
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
	struct f2fs_inode *ri = NULL;
	void *src_addr, *dst_addr;
	struct page *ipage;

	/*
	 * The inline_data recovery policy is as follows.
	 * [prev.] [next] of inline_data flag
	 *    o       o  -> recover inline_data
	 *    o       x  -> remove inline_data, and then recover data blocks
	 *    x       o  -> remove inline_data, and then recover inline_data
	 *    x       x  -> recover data blocks
	 */
	if (IS_INODE(npage))
		ri = F2FS_INODE(npage);

	if (f2fs_has_inline_data(inode) &&
222
			ri && (ri->i_inline & F2FS_INLINE_DATA)) {
223 224
process_inline:
		ipage = get_node_page(sbi, inode->i_ino);
225
		f2fs_bug_on(sbi, IS_ERR(ipage));
226

227 228
		f2fs_wait_on_page_writeback(ipage, NODE);

229 230 231
		src_addr = inline_data_addr(npage);
		dst_addr = inline_data_addr(ipage);
		memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
232 233 234 235

		set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
		set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);

236 237
		update_inode(inode, ipage);
		f2fs_put_page(ipage, 1);
238
		return true;
239 240 241 242
	}

	if (f2fs_has_inline_data(inode)) {
		ipage = get_node_page(sbi, inode->i_ino);
243
		f2fs_bug_on(sbi, IS_ERR(ipage));
244 245
		truncate_inline_data(ipage, 0);
		f2fs_clear_inline_inode(inode);
246 247
		update_inode(inode, ipage);
		f2fs_put_page(ipage, 1);
248
	} else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
249
		truncate_blocks(inode, 0, false);
250 251
		goto process_inline;
	}
252
	return false;
253
}
254 255 256 257 258

struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
				struct qstr *name, struct page **res_page)
{
	struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
259
	struct f2fs_inline_dentry *inline_dentry;
260
	struct f2fs_dir_entry *de;
261
	struct f2fs_dentry_ptr d;
262
	struct page *ipage;
263 264 265 266 267

	ipage = get_node_page(sbi, dir->i_ino);
	if (IS_ERR(ipage))
		return NULL;

268
	inline_dentry = inline_data_addr(ipage);
269

270 271 272
	make_dentry_ptr(&d, (void *)inline_dentry, 2);
	de = find_target_dentry(name, NULL, &d);

273
	unlock_page(ipage);
274 275 276 277 278 279 280 281 282
	if (de)
		*res_page = ipage;
	else
		f2fs_put_page(ipage, 0);

	/*
	 * For the most part, it should be a bug when name_len is zero.
	 * We stop here for figuring out where the bugs has occurred.
	 */
283
	f2fs_bug_on(sbi, d.max < 0);
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
	return de;
}

struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *dir,
							struct page **p)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	struct page *ipage;
	struct f2fs_dir_entry *de;
	struct f2fs_inline_dentry *dentry_blk;

	ipage = get_node_page(sbi, dir->i_ino);
	if (IS_ERR(ipage))
		return NULL;

	dentry_blk = inline_data_addr(ipage);
	de = &dentry_blk->dentry[1];
	*p = ipage;
	unlock_page(ipage);
	return de;
}

int make_empty_inline_dir(struct inode *inode, struct inode *parent,
							struct page *ipage)
{
	struct f2fs_inline_dentry *dentry_blk;
310
	struct f2fs_dentry_ptr d;
311 312 313

	dentry_blk = inline_data_addr(ipage);

314 315
	make_dentry_ptr(&d, (void *)dentry_blk, 2);
	do_make_empty_dir(inode, parent, &d);
316 317 318 319 320 321 322 323 324 325 326

	set_page_dirty(ipage);

	/* update i_size to MAX_INLINE_DATA */
	if (i_size_read(inode) < MAX_INLINE_DATA) {
		i_size_write(inode, MAX_INLINE_DATA);
		set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
	}
	return 0;
}

327
static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
				struct f2fs_inline_dentry *inline_dentry)
{
	struct page *page;
	struct dnode_of_data dn;
	struct f2fs_dentry_block *dentry_blk;
	int err;

	page = grab_cache_page(dir->i_mapping, 0);
	if (!page)
		return -ENOMEM;

	set_new_dnode(&dn, dir, ipage, NULL, 0);
	err = f2fs_reserve_block(&dn, 0);
	if (err)
		goto out;

	f2fs_wait_on_page_writeback(page, DATA);
	zero_user_segment(page, 0, PAGE_CACHE_SIZE);

347
	dentry_blk = kmap_atomic(page);
348 349 350 351 352 353 354 355 356

	/* copy data from inline dentry block to new dentry block */
	memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
					INLINE_DENTRY_BITMAP_SIZE);
	memcpy(dentry_blk->dentry, inline_dentry->dentry,
			sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
	memcpy(dentry_blk->filename, inline_dentry->filename,
					NR_INLINE_DENTRY * F2FS_SLOT_LEN);

357
	kunmap_atomic(dentry_blk);
358 359 360 361
	SetPageUptodate(page);
	set_page_dirty(page);

	/* clear inline dir and flag after data writeback */
362 363
	truncate_inline_data(ipage, 0);

364
	stat_dec_inline_dir(dir);
C
Chao Yu 已提交
365
	clear_inode_flag(F2FS_I(dir), FI_INLINE_DENTRY);
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

	if (i_size_read(dir) < PAGE_CACHE_SIZE) {
		i_size_write(dir, PAGE_CACHE_SIZE);
		set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
	}

	sync_inode_page(&dn);
out:
	f2fs_put_page(page, 1);
	return err;
}

int f2fs_add_inline_entry(struct inode *dir, const struct qstr *name,
						struct inode *inode)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	struct page *ipage;
	unsigned int bit_pos;
	f2fs_hash_t name_hash;
	struct f2fs_dir_entry *de;
	size_t namelen = name->len;
	struct f2fs_inline_dentry *dentry_blk = NULL;
	int slots = GET_DENTRY_SLOTS(namelen);
	struct page *page;
	int err = 0;
	int i;

	name_hash = f2fs_dentry_hash(name);

	ipage = get_node_page(sbi, dir->i_ino);
	if (IS_ERR(ipage))
		return PTR_ERR(ipage);

	dentry_blk = inline_data_addr(ipage);
400 401
	bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
						slots, NR_INLINE_DENTRY);
402 403 404 405 406 407 408 409
	if (bit_pos >= NR_INLINE_DENTRY) {
		err = f2fs_convert_inline_dir(dir, ipage, dentry_blk);
		if (!err)
			err = -EAGAIN;
		goto out;
	}

	down_write(&F2FS_I(inode)->i_sem);
410
	page = init_inode_metadata(inode, dir, name, ipage);
411 412 413 414
	if (IS_ERR(page)) {
		err = PTR_ERR(page);
		goto fail;
	}
415 416

	f2fs_wait_on_page_writeback(ipage, NODE);
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
	de = &dentry_blk->dentry[bit_pos];
	de->hash_code = name_hash;
	de->name_len = cpu_to_le16(namelen);
	memcpy(dentry_blk->filename[bit_pos], name->name, name->len);
	de->ino = cpu_to_le32(inode->i_ino);
	set_de_type(de, inode);
	for (i = 0; i < slots; i++)
		test_and_set_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
	set_page_dirty(ipage);

	/* we don't need to mark_inode_dirty now */
	F2FS_I(inode)->i_pino = dir->i_ino;
	update_inode(inode, page);
	f2fs_put_page(page, 1);

	update_parent_metadata(dir, inode, 0);
fail:
	up_write(&F2FS_I(inode)->i_sem);

	if (is_inode_flag_set(F2FS_I(dir), FI_UPDATE_DIR)) {
		update_inode(dir, ipage);
		clear_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
	}
out:
	f2fs_put_page(ipage, 1);
	return err;
}

void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
					struct inode *dir, struct inode *inode)
{
	struct f2fs_inline_dentry *inline_dentry;
	int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
	unsigned int bit_pos;
	int i;

	lock_page(page);
J
Jaegeuk Kim 已提交
454
	f2fs_wait_on_page_writeback(page, NODE);
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500

	inline_dentry = inline_data_addr(page);
	bit_pos = dentry - inline_dentry->dentry;
	for (i = 0; i < slots; i++)
		test_and_clear_bit_le(bit_pos + i,
				&inline_dentry->dentry_bitmap);

	set_page_dirty(page);

	dir->i_ctime = dir->i_mtime = CURRENT_TIME;

	if (inode)
		f2fs_drop_nlink(dir, inode, page);

	f2fs_put_page(page, 1);
}

bool f2fs_empty_inline_dir(struct inode *dir)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	struct page *ipage;
	unsigned int bit_pos = 2;
	struct f2fs_inline_dentry *dentry_blk;

	ipage = get_node_page(sbi, dir->i_ino);
	if (IS_ERR(ipage))
		return false;

	dentry_blk = inline_data_addr(ipage);
	bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
					NR_INLINE_DENTRY,
					bit_pos);

	f2fs_put_page(ipage, 1);

	if (bit_pos < NR_INLINE_DENTRY)
		return false;

	return true;
}

int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx)
{
	struct inode *inode = file_inode(file);
	struct f2fs_inline_dentry *inline_dentry = NULL;
	struct page *ipage = NULL;
501
	struct f2fs_dentry_ptr d;
502 503 504 505

	if (ctx->pos == NR_INLINE_DENTRY)
		return 0;

506
	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
507 508 509 510 511
	if (IS_ERR(ipage))
		return PTR_ERR(ipage);

	inline_dentry = inline_data_addr(ipage);

512 513 514
	make_dentry_ptr(&d, (void *)inline_dentry, 2);

	if (!f2fs_fill_dentries(ctx, &d, 0))
515
		ctx->pos = NR_INLINE_DENTRY;
516

517
	f2fs_put_page(ipage, 1);
518 519
	return 0;
}