rcar-dmac.c 46.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Renesas R-Car Gen2 DMA Controller Driver
 *
 * Copyright (C) 2014 Renesas Electronics Inc.
 *
 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
 *
 * This is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 */

13
#include <linux/dma-mapping.h>
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
#include <linux/dmaengine.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_dma.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include "../dmaengine.h"

/*
 * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
 * @node: entry in the parent's chunks list
 * @src_addr: device source address
 * @dst_addr: device destination address
 * @size: transfer size in bytes
 */
struct rcar_dmac_xfer_chunk {
	struct list_head node;

	dma_addr_t src_addr;
	dma_addr_t dst_addr;
	u32 size;
};

44 45 46 47 48 49 50 51 52 53 54 55 56
/*
 * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
 * @sar: value of the SAR register (source address)
 * @dar: value of the DAR register (destination address)
 * @tcr: value of the TCR register (transfer count)
 */
struct rcar_dmac_hw_desc {
	u32 sar;
	u32 dar;
	u32 tcr;
	u32 reserved;
} __attribute__((__packed__));

57 58 59 60 61 62 63 64 65
/*
 * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
 * @async_tx: base DMA asynchronous transaction descriptor
 * @direction: direction of the DMA transfer
 * @xfer_shift: log2 of the transfer size
 * @chcr: value of the channel configuration register for this transfer
 * @node: entry in the channel's descriptors lists
 * @chunks: list of transfer chunks for this transfer
 * @running: the transfer chunk being currently processed
66
 * @nchunks: number of transfer chunks for this transfer
67
 * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
68 69 70
 * @hwdescs.mem: hardware descriptors memory for the transfer
 * @hwdescs.dma: device address of the hardware descriptors memory
 * @hwdescs.size: size of the hardware descriptors in bytes
71 72 73 74 75 76 77 78 79 80 81 82
 * @size: transfer size in bytes
 * @cyclic: when set indicates that the DMA transfer is cyclic
 */
struct rcar_dmac_desc {
	struct dma_async_tx_descriptor async_tx;
	enum dma_transfer_direction direction;
	unsigned int xfer_shift;
	u32 chcr;

	struct list_head node;
	struct list_head chunks;
	struct rcar_dmac_xfer_chunk *running;
83 84 85
	unsigned int nchunks;

	struct {
86
		bool use;
87 88 89 90
		struct rcar_dmac_hw_desc *mem;
		dma_addr_t dma;
		size_t size;
	} hwdescs;
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

	unsigned int size;
	bool cyclic;
};

#define to_rcar_dmac_desc(d)	container_of(d, struct rcar_dmac_desc, async_tx)

/*
 * struct rcar_dmac_desc_page - One page worth of descriptors
 * @node: entry in the channel's pages list
 * @descs: array of DMA descriptors
 * @chunks: array of transfer chunk descriptors
 */
struct rcar_dmac_desc_page {
	struct list_head node;

	union {
		struct rcar_dmac_desc descs[0];
		struct rcar_dmac_xfer_chunk chunks[0];
	};
};

#define RCAR_DMAC_DESCS_PER_PAGE					\
	((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) /	\
	sizeof(struct rcar_dmac_desc))
#define RCAR_DMAC_XFER_CHUNKS_PER_PAGE					\
	((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) /	\
	sizeof(struct rcar_dmac_xfer_chunk))

/*
 * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
 * @chan: base DMA channel object
 * @iomem: channel I/O memory base
 * @index: index of this channel in the controller
 * @src_xfer_size: size (in bytes) of hardware transfers on the source side
 * @dst_xfer_size: size (in bytes) of hardware transfers on the destination side
 * @src_slave_addr: slave source memory address
 * @dst_slave_addr: slave destination memory address
 * @mid_rid: hardware MID/RID for the DMA client using this channel
 * @lock: protects the channel CHCR register and the desc members
 * @desc.free: list of free descriptors
 * @desc.pending: list of pending descriptors (submitted with tx_submit)
 * @desc.active: list of active descriptors (activated with issue_pending)
 * @desc.done: list of completed descriptors
 * @desc.wait: list of descriptors waiting for an ack
 * @desc.running: the descriptor being processed (a member of the active list)
 * @desc.chunks_free: list of free transfer chunk descriptors
 * @desc.pages: list of pages used by allocated descriptors
 */
struct rcar_dmac_chan {
	struct dma_chan chan;
	void __iomem *iomem;
	unsigned int index;

	unsigned int src_xfer_size;
	unsigned int dst_xfer_size;
	dma_addr_t src_slave_addr;
	dma_addr_t dst_slave_addr;
	int mid_rid;

	spinlock_t lock;

	struct {
		struct list_head free;
		struct list_head pending;
		struct list_head active;
		struct list_head done;
		struct list_head wait;
		struct rcar_dmac_desc *running;

		struct list_head chunks_free;

		struct list_head pages;
	} desc;
};

#define to_rcar_dmac_chan(c)	container_of(c, struct rcar_dmac_chan, chan)

/*
 * struct rcar_dmac - R-Car Gen2 DMA Controller
 * @engine: base DMA engine object
 * @dev: the hardware device
 * @iomem: remapped I/O memory base
 * @n_channels: number of available channels
 * @channels: array of DMAC channels
 * @modules: bitmask of client modules in use
 */
struct rcar_dmac {
	struct dma_device engine;
	struct device *dev;
	void __iomem *iomem;

	unsigned int n_channels;
	struct rcar_dmac_chan *channels;

	unsigned long modules[256 / BITS_PER_LONG];
};

#define to_rcar_dmac(d)		container_of(d, struct rcar_dmac, engine)

/* -----------------------------------------------------------------------------
 * Registers
 */

#define RCAR_DMAC_CHAN_OFFSET(i)	(0x8000 + 0x80 * (i))

#define RCAR_DMAISTA			0x0020
#define RCAR_DMASEC			0x0030
#define RCAR_DMAOR			0x0060
#define RCAR_DMAOR_PRI_FIXED		(0 << 8)
#define RCAR_DMAOR_PRI_ROUND_ROBIN	(3 << 8)
#define RCAR_DMAOR_AE			(1 << 2)
#define RCAR_DMAOR_DME			(1 << 0)
#define RCAR_DMACHCLR			0x0080
#define RCAR_DMADPSEC			0x00a0

#define RCAR_DMASAR			0x0000
#define RCAR_DMADAR			0x0004
#define RCAR_DMATCR			0x0008
#define RCAR_DMATCR_MASK		0x00ffffff
#define RCAR_DMATSR			0x0028
#define RCAR_DMACHCR			0x000c
#define RCAR_DMACHCR_CAE		(1 << 31)
#define RCAR_DMACHCR_CAIE		(1 << 30)
#define RCAR_DMACHCR_DPM_DISABLED	(0 << 28)
#define RCAR_DMACHCR_DPM_ENABLED	(1 << 28)
#define RCAR_DMACHCR_DPM_REPEAT		(2 << 28)
#define RCAR_DMACHCR_DPM_INFINITE	(3 << 28)
#define RCAR_DMACHCR_RPT_SAR		(1 << 27)
#define RCAR_DMACHCR_RPT_DAR		(1 << 26)
#define RCAR_DMACHCR_RPT_TCR		(1 << 25)
#define RCAR_DMACHCR_DPB		(1 << 22)
#define RCAR_DMACHCR_DSE		(1 << 19)
#define RCAR_DMACHCR_DSIE		(1 << 18)
#define RCAR_DMACHCR_TS_1B		((0 << 20) | (0 << 3))
#define RCAR_DMACHCR_TS_2B		((0 << 20) | (1 << 3))
#define RCAR_DMACHCR_TS_4B		((0 << 20) | (2 << 3))
#define RCAR_DMACHCR_TS_16B		((0 << 20) | (3 << 3))
#define RCAR_DMACHCR_TS_32B		((1 << 20) | (0 << 3))
#define RCAR_DMACHCR_TS_64B		((1 << 20) | (1 << 3))
#define RCAR_DMACHCR_TS_8B		((1 << 20) | (3 << 3))
#define RCAR_DMACHCR_DM_FIXED		(0 << 14)
#define RCAR_DMACHCR_DM_INC		(1 << 14)
#define RCAR_DMACHCR_DM_DEC		(2 << 14)
#define RCAR_DMACHCR_SM_FIXED		(0 << 12)
#define RCAR_DMACHCR_SM_INC		(1 << 12)
#define RCAR_DMACHCR_SM_DEC		(2 << 12)
#define RCAR_DMACHCR_RS_AUTO		(4 << 8)
#define RCAR_DMACHCR_RS_DMARS		(8 << 8)
#define RCAR_DMACHCR_IE			(1 << 2)
#define RCAR_DMACHCR_TE			(1 << 1)
#define RCAR_DMACHCR_DE			(1 << 0)
#define RCAR_DMATCRB			0x0018
#define RCAR_DMATSRB			0x0038
#define RCAR_DMACHCRB			0x001c
#define RCAR_DMACHCRB_DCNT(n)		((n) << 24)
247 248
#define RCAR_DMACHCRB_DPTR_MASK		(0xff << 16)
#define RCAR_DMACHCRB_DPTR_SHIFT	16
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
#define RCAR_DMACHCRB_DRST		(1 << 15)
#define RCAR_DMACHCRB_DTS		(1 << 8)
#define RCAR_DMACHCRB_SLM_NORMAL	(0 << 4)
#define RCAR_DMACHCRB_SLM_CLK(n)	((8 | (n)) << 4)
#define RCAR_DMACHCRB_PRI(n)		((n) << 0)
#define RCAR_DMARS			0x0040
#define RCAR_DMABUFCR			0x0048
#define RCAR_DMABUFCR_MBU(n)		((n) << 16)
#define RCAR_DMABUFCR_ULB(n)		((n) << 0)
#define RCAR_DMADPBASE			0x0050
#define RCAR_DMADPBASE_MASK		0xfffffff0
#define RCAR_DMADPBASE_SEL		(1 << 0)
#define RCAR_DMADPCR			0x0054
#define RCAR_DMADPCR_DIPT(n)		((n) << 24)
#define RCAR_DMAFIXSAR			0x0010
#define RCAR_DMAFIXDAR			0x0014
#define RCAR_DMAFIXDPBASE		0x0060

/* Hardcode the MEMCPY transfer size to 4 bytes. */
#define RCAR_DMAC_MEMCPY_XFER_SIZE	4

/* -----------------------------------------------------------------------------
 * Device access
 */

static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
{
	if (reg == RCAR_DMAOR)
		writew(data, dmac->iomem + reg);
	else
		writel(data, dmac->iomem + reg);
}

static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
{
	if (reg == RCAR_DMAOR)
		return readw(dmac->iomem + reg);
	else
		return readl(dmac->iomem + reg);
}

static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
{
	if (reg == RCAR_DMARS)
		return readw(chan->iomem + reg);
	else
		return readl(chan->iomem + reg);
}

static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
{
	if (reg == RCAR_DMARS)
		writew(data, chan->iomem + reg);
	else
		writel(data, chan->iomem + reg);
}

/* -----------------------------------------------------------------------------
 * Initialization and configuration
 */

static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
{
	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);

	return (chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE)) == RCAR_DMACHCR_DE;
}

static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
{
	struct rcar_dmac_desc *desc = chan->desc.running;
320
	u32 chcr = desc->chcr;
321 322 323

	WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));

324 325 326
	if (chan->mid_rid >= 0)
		rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);

327
	if (desc->hwdescs.use) {
328 329 330 331
		dev_dbg(chan->chan.device->dev,
			"chan%u: queue desc %p: %u@%pad\n",
			chan->index, desc, desc->nchunks, &desc->hwdescs.dma);

332
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
333 334
		rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
				     desc->hwdescs.dma >> 32);
335
#endif
336 337 338 339 340 341
		rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
				     (desc->hwdescs.dma & 0xfffffff0) |
				     RCAR_DMADPBASE_SEL);
		rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
				     RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
				     RCAR_DMACHCRB_DRST);
342

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
		/*
		 * Program the descriptor stage interrupt to occur after the end
		 * of the first stage.
		 */
		rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));

		chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
		     |  RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;

		/*
		 * If the descriptor isn't cyclic enable normal descriptor mode
		 * and the transfer completion interrupt.
		 */
		if (!desc->cyclic)
			chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
		/*
		 * If the descriptor is cyclic and has a callback enable the
		 * descriptor stage interrupt in infinite repeat mode.
		 */
		else if (desc->async_tx.callback)
			chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
		/*
		 * Otherwise just select infinite repeat mode without any
		 * interrupt.
		 */
		else
			chcr |= RCAR_DMACHCR_DPM_INFINITE;
	} else {
		struct rcar_dmac_xfer_chunk *chunk = desc->running;
372

373 374 375 376
		dev_dbg(chan->chan.device->dev,
			"chan%u: queue chunk %p: %u@%pad -> %pad\n",
			chan->index, chunk, chunk->size, &chunk->src_addr,
			&chunk->dst_addr);
377

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
		rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
				     chunk->src_addr >> 32);
		rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
				     chunk->dst_addr >> 32);
#endif
		rcar_dmac_chan_write(chan, RCAR_DMASAR,
				     chunk->src_addr & 0xffffffff);
		rcar_dmac_chan_write(chan, RCAR_DMADAR,
				     chunk->dst_addr & 0xffffffff);
		rcar_dmac_chan_write(chan, RCAR_DMATCR,
				     chunk->size >> desc->xfer_shift);

		chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
	}

	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr | RCAR_DMACHCR_DE);
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
}

static int rcar_dmac_init(struct rcar_dmac *dmac)
{
	u16 dmaor;

	/* Clear all channels and enable the DMAC globally. */
	rcar_dmac_write(dmac, RCAR_DMACHCLR, 0x7fff);
	rcar_dmac_write(dmac, RCAR_DMAOR,
			RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);

	dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
	if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
		dev_warn(dmac->dev, "DMAOR initialization failed.\n");
		return -EIO;
	}

	return 0;
}

/* -----------------------------------------------------------------------------
 * Descriptors submission
 */

static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
	struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
	unsigned long flags;
	dma_cookie_t cookie;

	spin_lock_irqsave(&chan->lock, flags);

	cookie = dma_cookie_assign(tx);

	dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
		chan->index, tx->cookie, desc);

	list_add_tail(&desc->node, &chan->desc.pending);
	desc->running = list_first_entry(&desc->chunks,
					 struct rcar_dmac_xfer_chunk, node);

	spin_unlock_irqrestore(&chan->lock, flags);

	return cookie;
}

/* -----------------------------------------------------------------------------
 * Descriptors allocation and free
 */

/*
 * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
 * @chan: the DMA channel
 * @gfp: allocation flags
 */
static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
{
	struct rcar_dmac_desc_page *page;
	LIST_HEAD(list);
	unsigned int i;

	page = (void *)get_zeroed_page(gfp);
	if (!page)
		return -ENOMEM;

	for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
		struct rcar_dmac_desc *desc = &page->descs[i];

		dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
		desc->async_tx.tx_submit = rcar_dmac_tx_submit;
		INIT_LIST_HEAD(&desc->chunks);

		list_add_tail(&desc->node, &list);
	}

	spin_lock_irq(&chan->lock);
	list_splice_tail(&list, &chan->desc.free);
	list_add_tail(&page->node, &chan->desc.pages);
	spin_unlock_irq(&chan->lock);

	return 0;
}

/*
 * rcar_dmac_desc_put - Release a DMA transfer descriptor
 * @chan: the DMA channel
 * @desc: the descriptor
 *
 * Put the descriptor and its transfer chunk descriptors back in the channel's
485 486
 * free descriptors lists. The descriptor's chunks list will be reinitialized to
 * an empty list as a result.
487
 *
488 489
 * The descriptor must have been removed from the channel's lists before calling
 * this function.
490
 *
491
 * Locking: Must be called in non-atomic context.
492 493 494 495
 */
static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
			       struct rcar_dmac_desc *desc)
{
496
	spin_lock_irq(&chan->lock);
497 498
	list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
	list_add_tail(&desc->node, &chan->desc.free);
499
	spin_unlock_irq(&chan->lock);
500 501 502 503 504
}

static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
{
	struct rcar_dmac_desc *desc, *_desc;
505
	LIST_HEAD(list);
506

507 508 509 510 511 512 513 514 515 516 517
	/*
	 * We have to temporarily move all descriptors from the wait list to a
	 * local list as iterating over the wait list, even with
	 * list_for_each_entry_safe, isn't safe if we release the channel lock
	 * around the rcar_dmac_desc_put() call.
	 */
	spin_lock_irq(&chan->lock);
	list_splice_init(&chan->desc.wait, &list);
	spin_unlock_irq(&chan->lock);

	list_for_each_entry_safe(desc, _desc, &list, node) {
518 519 520 521 522
		if (async_tx_test_ack(&desc->async_tx)) {
			list_del(&desc->node);
			rcar_dmac_desc_put(chan, desc);
		}
	}
523 524 525 526 527 528 529 530

	if (list_empty(&list))
		return;

	/* Put the remaining descriptors back in the wait list. */
	spin_lock_irq(&chan->lock);
	list_splice(&list, &chan->desc.wait);
	spin_unlock_irq(&chan->lock);
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
}

/*
 * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
 * @chan: the DMA channel
 *
 * Locking: This function must be called in a non-atomic context.
 *
 * Return: A pointer to the allocated descriptor or NULL if no descriptor can
 * be allocated.
 */
static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
{
	struct rcar_dmac_desc *desc;
	int ret;

	/* Recycle acked descriptors before attempting allocation. */
	rcar_dmac_desc_recycle_acked(chan);

550 551
	spin_lock_irq(&chan->lock);

552 553 554 555 556 557 558 559 560 561 562 563 564
	while (list_empty(&chan->desc.free)) {
		/*
		 * No free descriptors, allocate a page worth of them and try
		 * again, as someone else could race us to get the newly
		 * allocated descriptors. If the allocation fails return an
		 * error.
		 */
		spin_unlock_irq(&chan->lock);
		ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
		if (ret < 0)
			return NULL;
		spin_lock_irq(&chan->lock);
	}
565

566 567
	desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
	list_del(&desc->node);
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619

	spin_unlock_irq(&chan->lock);

	return desc;
}

/*
 * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
 * @chan: the DMA channel
 * @gfp: allocation flags
 */
static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
{
	struct rcar_dmac_desc_page *page;
	LIST_HEAD(list);
	unsigned int i;

	page = (void *)get_zeroed_page(gfp);
	if (!page)
		return -ENOMEM;

	for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
		struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];

		list_add_tail(&chunk->node, &list);
	}

	spin_lock_irq(&chan->lock);
	list_splice_tail(&list, &chan->desc.chunks_free);
	list_add_tail(&page->node, &chan->desc.pages);
	spin_unlock_irq(&chan->lock);

	return 0;
}

/*
 * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
 * @chan: the DMA channel
 *
 * Locking: This function must be called in a non-atomic context.
 *
 * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
 * descriptor can be allocated.
 */
static struct rcar_dmac_xfer_chunk *
rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
{
	struct rcar_dmac_xfer_chunk *chunk;
	int ret;

	spin_lock_irq(&chan->lock);

620 621 622 623 624 625 626 627 628 629 630 631 632
	while (list_empty(&chan->desc.chunks_free)) {
		/*
		 * No free descriptors, allocate a page worth of them and try
		 * again, as someone else could race us to get the newly
		 * allocated descriptors. If the allocation fails return an
		 * error.
		 */
		spin_unlock_irq(&chan->lock);
		ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
		if (ret < 0)
			return NULL;
		spin_lock_irq(&chan->lock);
	}
633

634 635 636
	chunk = list_first_entry(&chan->desc.chunks_free,
				 struct rcar_dmac_xfer_chunk, node);
	list_del(&chunk->node);
637 638 639 640 641 642

	spin_unlock_irq(&chan->lock);

	return chunk;
}

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
				     struct rcar_dmac_desc *desc, size_t size)
{
	/*
	 * dma_alloc_coherent() allocates memory in page size increments. To
	 * avoid reallocating the hardware descriptors when the allocated size
	 * wouldn't change align the requested size to a multiple of the page
	 * size.
	 */
	size = PAGE_ALIGN(size);

	if (desc->hwdescs.size == size)
		return;

	if (desc->hwdescs.mem) {
		dma_free_coherent(NULL, desc->hwdescs.size, desc->hwdescs.mem,
				   desc->hwdescs.dma);
		desc->hwdescs.mem = NULL;
		desc->hwdescs.size = 0;
	}

	if (!size)
		return;

	desc->hwdescs.mem = dma_alloc_coherent(NULL, size, &desc->hwdescs.dma,
					       GFP_NOWAIT);
	if (!desc->hwdescs.mem)
		return;

	desc->hwdescs.size = size;
}

675 676
static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
				 struct rcar_dmac_desc *desc)
677 678 679 680
{
	struct rcar_dmac_xfer_chunk *chunk;
	struct rcar_dmac_hw_desc *hwdesc;

681 682 683
	rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));

	hwdesc = desc->hwdescs.mem;
684
	if (!hwdesc)
685
		return -ENOMEM;
686 687 688 689 690 691 692

	list_for_each_entry(chunk, &desc->chunks, node) {
		hwdesc->sar = chunk->src_addr;
		hwdesc->dar = chunk->dst_addr;
		hwdesc->tcr = chunk->size >> desc->xfer_shift;
		hwdesc++;
	}
693 694

	return 0;
695 696
}

697 698 699 700 701 702 703 704
/* -----------------------------------------------------------------------------
 * Stop and reset
 */

static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
{
	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);

705 706
	chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
		  RCAR_DMACHCR_TE | RCAR_DMACHCR_DE);
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
}

static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
{
	struct rcar_dmac_desc *desc, *_desc;
	unsigned long flags;
	LIST_HEAD(descs);

	spin_lock_irqsave(&chan->lock, flags);

	/* Move all non-free descriptors to the local lists. */
	list_splice_init(&chan->desc.pending, &descs);
	list_splice_init(&chan->desc.active, &descs);
	list_splice_init(&chan->desc.done, &descs);
	list_splice_init(&chan->desc.wait, &descs);

	chan->desc.running = NULL;

	spin_unlock_irqrestore(&chan->lock, flags);

	list_for_each_entry_safe(desc, _desc, &descs, node) {
		list_del(&desc->node);
		rcar_dmac_desc_put(chan, desc);
	}
}

static void rcar_dmac_stop(struct rcar_dmac *dmac)
{
	rcar_dmac_write(dmac, RCAR_DMAOR, 0);
}

static void rcar_dmac_abort(struct rcar_dmac *dmac)
{
	unsigned int i;

	/* Stop all channels. */
	for (i = 0; i < dmac->n_channels; ++i) {
		struct rcar_dmac_chan *chan = &dmac->channels[i];

		/* Stop and reinitialize the channel. */
		spin_lock(&chan->lock);
		rcar_dmac_chan_halt(chan);
		spin_unlock(&chan->lock);

		rcar_dmac_chan_reinit(chan);
	}
}

/* -----------------------------------------------------------------------------
 * Descriptors preparation
 */

static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
					  struct rcar_dmac_desc *desc)
{
	static const u32 chcr_ts[] = {
		RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
		RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
		RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
		RCAR_DMACHCR_TS_64B,
	};

	unsigned int xfer_size;
	u32 chcr;

	switch (desc->direction) {
	case DMA_DEV_TO_MEM:
		chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
		     | RCAR_DMACHCR_RS_DMARS;
		xfer_size = chan->src_xfer_size;
		break;

	case DMA_MEM_TO_DEV:
		chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
		     | RCAR_DMACHCR_RS_DMARS;
		xfer_size = chan->dst_xfer_size;
		break;

	case DMA_MEM_TO_MEM:
	default:
		chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
		     | RCAR_DMACHCR_RS_AUTO;
		xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
		break;
	}

	desc->xfer_shift = ilog2(xfer_size);
	desc->chcr = chcr | chcr_ts[desc->xfer_shift];
}

/*
 * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
 *
 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
 * converted to scatter-gather to guarantee consistent locking and a correct
 * list manipulation. For slave DMA direction carries the usual meaning, and,
 * logically, the SG list is RAM and the addr variable contains slave address,
 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
 * and the SG list contains only one element and points at the source buffer.
 */
static struct dma_async_tx_descriptor *
rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
		       unsigned int sg_len, dma_addr_t dev_addr,
		       enum dma_transfer_direction dir, unsigned long dma_flags,
		       bool cyclic)
{
	struct rcar_dmac_xfer_chunk *chunk;
	struct rcar_dmac_desc *desc;
	struct scatterlist *sg;
817
	unsigned int nchunks = 0;
818 819
	unsigned int max_chunk_size;
	unsigned int full_size = 0;
820
	bool highmem = false;
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
	unsigned int i;

	desc = rcar_dmac_desc_get(chan);
	if (!desc)
		return NULL;

	desc->async_tx.flags = dma_flags;
	desc->async_tx.cookie = -EBUSY;

	desc->cyclic = cyclic;
	desc->direction = dir;

	rcar_dmac_chan_configure_desc(chan, desc);

	max_chunk_size = (RCAR_DMATCR_MASK + 1) << desc->xfer_shift;

	/*
	 * Allocate and fill the transfer chunk descriptors. We own the only
	 * reference to the DMA descriptor, there's no need for locking.
	 */
	for_each_sg(sgl, sg, sg_len, i) {
		dma_addr_t mem_addr = sg_dma_address(sg);
		unsigned int len = sg_dma_len(sg);

		full_size += len;

		while (len) {
			unsigned int size = min(len, max_chunk_size);

#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
			/*
			 * Prevent individual transfers from crossing 4GB
			 * boundaries.
			 */
			if (dev_addr >> 32 != (dev_addr + size - 1) >> 32)
				size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
			if (mem_addr >> 32 != (mem_addr + size - 1) >> 32)
				size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
859 860 861 862 863 864 865 866

			/*
			 * Check if either of the source or destination address
			 * can't be expressed in 32 bits. If so we can't use
			 * hardware descriptor lists.
			 */
			if (dev_addr >> 32 || mem_addr >> 32)
				highmem = true;
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
#endif

			chunk = rcar_dmac_xfer_chunk_get(chan);
			if (!chunk) {
				rcar_dmac_desc_put(chan, desc);
				return NULL;
			}

			if (dir == DMA_DEV_TO_MEM) {
				chunk->src_addr = dev_addr;
				chunk->dst_addr = mem_addr;
			} else {
				chunk->src_addr = mem_addr;
				chunk->dst_addr = dev_addr;
			}

			chunk->size = size;

			dev_dbg(chan->chan.device->dev,
				"chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
				chan->index, chunk, desc, i, sg, size, len,
				&chunk->src_addr, &chunk->dst_addr);

			mem_addr += size;
			if (dir == DMA_MEM_TO_MEM)
				dev_addr += size;

			len -= size;

			list_add_tail(&chunk->node, &desc->chunks);
897
			nchunks++;
898 899 900
		}
	}

901
	desc->nchunks = nchunks;
902 903
	desc->size = full_size;

904 905 906 907 908 909 910 911 912 913
	/*
	 * Use hardware descriptor lists if possible when more than one chunk
	 * needs to be transferred (otherwise they don't make much sense).
	 *
	 * The highmem check currently covers the whole transfer. As an
	 * optimization we could use descriptor lists for consecutive lowmem
	 * chunks and direct manual mode for highmem chunks. Whether the
	 * performance improvement would be significant enough compared to the
	 * additional complexity remains to be investigated.
	 */
914
	desc->hwdescs.use = !highmem && nchunks > 1;
915 916 917 918
	if (desc->hwdescs.use) {
		if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
			desc->hwdescs.use = false;
	}
919

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	return &desc->async_tx;
}

/* -----------------------------------------------------------------------------
 * DMA engine operations
 */

static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
{
	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
	int ret;

	INIT_LIST_HEAD(&rchan->desc.free);
	INIT_LIST_HEAD(&rchan->desc.pending);
	INIT_LIST_HEAD(&rchan->desc.active);
	INIT_LIST_HEAD(&rchan->desc.done);
	INIT_LIST_HEAD(&rchan->desc.wait);
	INIT_LIST_HEAD(&rchan->desc.chunks_free);
	INIT_LIST_HEAD(&rchan->desc.pages);

	/* Preallocate descriptors. */
	ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
	if (ret < 0)
		return -ENOMEM;

	ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
	if (ret < 0)
		return -ENOMEM;

	return pm_runtime_get_sync(chan->device->dev);
}

static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
{
	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
	struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
	struct rcar_dmac_desc_page *page, *_page;
957 958
	struct rcar_dmac_desc *desc;
	LIST_HEAD(list);
959 960 961 962 963 964 965 966 967 968 969 970 971 972

	/* Protect against ISR */
	spin_lock_irq(&rchan->lock);
	rcar_dmac_chan_halt(rchan);
	spin_unlock_irq(&rchan->lock);

	/* Now no new interrupts will occur */

	if (rchan->mid_rid >= 0) {
		/* The caller is holding dma_list_mutex */
		clear_bit(rchan->mid_rid, dmac->modules);
		rchan->mid_rid = -EINVAL;
	}

973 974 975 976 977 978 979 980 981
	list_splice(&rchan->desc.free, &list);
	list_splice(&rchan->desc.pending, &list);
	list_splice(&rchan->desc.active, &list);
	list_splice(&rchan->desc.done, &list);
	list_splice(&rchan->desc.wait, &list);

	list_for_each_entry(desc, &list, node)
		rcar_dmac_realloc_hwdesc(rchan, desc, 0);

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
		list_del(&page->node);
		free_page((unsigned long)page);
	}

	pm_runtime_put(chan->device->dev);
}

static struct dma_async_tx_descriptor *
rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
			  dma_addr_t dma_src, size_t len, unsigned long flags)
{
	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
	struct scatterlist sgl;

	if (!len)
		return NULL;

	sg_init_table(&sgl, 1);
	sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
		    offset_in_page(dma_src));
	sg_dma_address(&sgl) = dma_src;
	sg_dma_len(&sgl) = len;

	return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
				      DMA_MEM_TO_MEM, flags, false);
}

static struct dma_async_tx_descriptor *
rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
			unsigned int sg_len, enum dma_transfer_direction dir,
			unsigned long flags, void *context)
{
	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
	dma_addr_t dev_addr;

	/* Someone calling slave DMA on a generic channel? */
	if (rchan->mid_rid < 0 || !sg_len) {
		dev_warn(chan->device->dev,
			 "%s: bad parameter: len=%d, id=%d\n",
			 __func__, sg_len, rchan->mid_rid);
		return NULL;
	}

	dev_addr = dir == DMA_DEV_TO_MEM
		 ? rchan->src_slave_addr : rchan->dst_slave_addr;
	return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, dev_addr,
				      dir, flags, false);
}

#define RCAR_DMAC_MAX_SG_LEN	32

static struct dma_async_tx_descriptor *
rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
			  size_t buf_len, size_t period_len,
			  enum dma_transfer_direction dir, unsigned long flags)
{
	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
	struct dma_async_tx_descriptor *desc;
	struct scatterlist *sgl;
	dma_addr_t dev_addr;
	unsigned int sg_len;
	unsigned int i;

	/* Someone calling slave DMA on a generic channel? */
	if (rchan->mid_rid < 0 || buf_len < period_len) {
		dev_warn(chan->device->dev,
			"%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
			__func__, buf_len, period_len, rchan->mid_rid);
		return NULL;
	}

	sg_len = buf_len / period_len;
	if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
		dev_err(chan->device->dev,
			"chan%u: sg length %d exceds limit %d",
			rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
		return NULL;
	}

	/*
	 * Allocate the sg list dynamically as it would consume too much stack
	 * space.
	 */
	sgl = kcalloc(sg_len, sizeof(*sgl), GFP_NOWAIT);
	if (!sgl)
		return NULL;

	sg_init_table(sgl, sg_len);

	for (i = 0; i < sg_len; ++i) {
		dma_addr_t src = buf_addr + (period_len * i);

		sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
			    offset_in_page(src));
		sg_dma_address(&sgl[i]) = src;
		sg_dma_len(&sgl[i]) = period_len;
	}

	dev_addr = dir == DMA_DEV_TO_MEM
		 ? rchan->src_slave_addr : rchan->dst_slave_addr;
	desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, dev_addr,
				      dir, flags, true);

	kfree(sgl);
	return desc;
}

static int rcar_dmac_device_config(struct dma_chan *chan,
				   struct dma_slave_config *cfg)
{
	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);

	/*
	 * We could lock this, but you shouldn't be configuring the
	 * channel, while using it...
	 */
	rchan->src_slave_addr = cfg->src_addr;
	rchan->dst_slave_addr = cfg->dst_addr;
	rchan->src_xfer_size = cfg->src_addr_width;
	rchan->dst_xfer_size = cfg->dst_addr_width;

	return 0;
}

static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
{
	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&rchan->lock, flags);
	rcar_dmac_chan_halt(rchan);
	spin_unlock_irqrestore(&rchan->lock, flags);

	/*
	 * FIXME: No new interrupt can occur now, but the IRQ thread might still
	 * be running.
	 */

	rcar_dmac_chan_reinit(rchan);

	return 0;
}

static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
					       dma_cookie_t cookie)
{
	struct rcar_dmac_desc *desc = chan->desc.running;
1130
	struct rcar_dmac_xfer_chunk *running = NULL;
1131 1132
	struct rcar_dmac_xfer_chunk *chunk;
	unsigned int residue = 0;
1133
	unsigned int dptr = 0;
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

	if (!desc)
		return 0;

	/*
	 * If the cookie doesn't correspond to the currently running transfer
	 * then the descriptor hasn't been processed yet, and the residue is
	 * equal to the full descriptor size.
	 */
	if (cookie != desc->async_tx.cookie)
		return desc->size;

1146 1147 1148 1149 1150 1151
	/*
	 * In descriptor mode the descriptor running pointer is not maintained
	 * by the interrupt handler, find the running descriptor from the
	 * descriptor pointer field in the CHCRB register. In non-descriptor
	 * mode just use the running descriptor pointer.
	 */
1152
	if (desc->hwdescs.use) {
1153 1154 1155 1156 1157 1158 1159
		dptr = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
			RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
		WARN_ON(dptr >= desc->nchunks);
	} else {
		running = desc->running;
	}

1160 1161
	/* Compute the size of all chunks still to be transferred. */
	list_for_each_entry_reverse(chunk, &desc->chunks, node) {
1162
		if (chunk == running || ++dptr == desc->nchunks)
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
			break;

		residue += chunk->size;
	}

	/* Add the residue for the current chunk. */
	residue += rcar_dmac_chan_read(chan, RCAR_DMATCR) << desc->xfer_shift;

	return residue;
}

static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
					   dma_cookie_t cookie,
					   struct dma_tx_state *txstate)
{
	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
	enum dma_status status;
	unsigned long flags;
	unsigned int residue;

	status = dma_cookie_status(chan, cookie, txstate);
	if (status == DMA_COMPLETE || !txstate)
		return status;

	spin_lock_irqsave(&rchan->lock, flags);
	residue = rcar_dmac_chan_get_residue(rchan, cookie);
	spin_unlock_irqrestore(&rchan->lock, flags);

	dma_set_residue(txstate, residue);

	return status;
}

static void rcar_dmac_issue_pending(struct dma_chan *chan)
{
	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&rchan->lock, flags);

	if (list_empty(&rchan->desc.pending))
		goto done;

	/* Append the pending list to the active list. */
	list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);

	/*
	 * If no transfer is running pick the first descriptor from the active
	 * list and start the transfer.
	 */
	if (!rchan->desc.running) {
		struct rcar_dmac_desc *desc;

		desc = list_first_entry(&rchan->desc.active,
					struct rcar_dmac_desc, node);
		rchan->desc.running = desc;

		rcar_dmac_chan_start_xfer(rchan);
	}

done:
	spin_unlock_irqrestore(&rchan->lock, flags);
}

/* -----------------------------------------------------------------------------
 * IRQ handling
 */

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
{
	struct rcar_dmac_desc *desc = chan->desc.running;
	unsigned int stage;

	if (WARN_ON(!desc || !desc->cyclic)) {
		/*
		 * This should never happen, there should always be a running
		 * cyclic descriptor when a descriptor stage end interrupt is
		 * triggered. Warn and return.
		 */
		return IRQ_NONE;
	}

	/* Program the interrupt pointer to the next stage. */
	stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
		 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
	rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));

	return IRQ_WAKE_THREAD;
}

1253 1254 1255 1256 1257 1258 1259
static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
{
	struct rcar_dmac_desc *desc = chan->desc.running;
	irqreturn_t ret = IRQ_WAKE_THREAD;

	if (WARN_ON_ONCE(!desc)) {
		/*
1260 1261 1262
		 * This should never happen, there should always be a running
		 * descriptor when a transfer end interrupt is triggered. Warn
		 * and return.
1263 1264 1265 1266 1267
		 */
		return IRQ_NONE;
	}

	/*
1268 1269 1270
	 * The transfer end interrupt isn't generated for each chunk when using
	 * descriptor mode. Only update the running chunk pointer in
	 * non-descriptor mode.
1271
	 */
1272
	if (!desc->hwdescs.use) {
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
		/*
		 * If we haven't completed the last transfer chunk simply move
		 * to the next one. Only wake the IRQ thread if the transfer is
		 * cyclic.
		 */
		if (!list_is_last(&desc->running->node, &desc->chunks)) {
			desc->running = list_next_entry(desc->running, node);
			if (!desc->cyclic)
				ret = IRQ_HANDLED;
			goto done;
		}
1284

1285 1286 1287 1288 1289 1290 1291
		/*
		 * We've completed the last transfer chunk. If the transfer is
		 * cyclic, move back to the first one.
		 */
		if (desc->cyclic) {
			desc->running =
				list_first_entry(&desc->chunks,
1292 1293
						 struct rcar_dmac_xfer_chunk,
						 node);
1294 1295
			goto done;
		}
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	}

	/* The descriptor is complete, move it to the done list. */
	list_move_tail(&desc->node, &chan->desc.done);

	/* Queue the next descriptor, if any. */
	if (!list_empty(&chan->desc.active))
		chan->desc.running = list_first_entry(&chan->desc.active,
						      struct rcar_dmac_desc,
						      node);
	else
		chan->desc.running = NULL;

done:
	if (chan->desc.running)
		rcar_dmac_chan_start_xfer(chan);

	return ret;
}

static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
{
1318
	u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
1319 1320 1321 1322 1323 1324 1325
	struct rcar_dmac_chan *chan = dev;
	irqreturn_t ret = IRQ_NONE;
	u32 chcr;

	spin_lock(&chan->lock);

	chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
1326 1327 1328 1329 1330 1331
	if (chcr & RCAR_DMACHCR_TE)
		mask |= RCAR_DMACHCR_DE;
	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);

	if (chcr & RCAR_DMACHCR_DSE)
		ret |= rcar_dmac_isr_desc_stage_end(chan);
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387

	if (chcr & RCAR_DMACHCR_TE)
		ret |= rcar_dmac_isr_transfer_end(chan);

	spin_unlock(&chan->lock);

	return ret;
}

static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
{
	struct rcar_dmac_chan *chan = dev;
	struct rcar_dmac_desc *desc;

	spin_lock_irq(&chan->lock);

	/* For cyclic transfers notify the user after every chunk. */
	if (chan->desc.running && chan->desc.running->cyclic) {
		dma_async_tx_callback callback;
		void *callback_param;

		desc = chan->desc.running;
		callback = desc->async_tx.callback;
		callback_param = desc->async_tx.callback_param;

		if (callback) {
			spin_unlock_irq(&chan->lock);
			callback(callback_param);
			spin_lock_irq(&chan->lock);
		}
	}

	/*
	 * Call the callback function for all descriptors on the done list and
	 * move them to the ack wait list.
	 */
	while (!list_empty(&chan->desc.done)) {
		desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
					node);
		dma_cookie_complete(&desc->async_tx);
		list_del(&desc->node);

		if (desc->async_tx.callback) {
			spin_unlock_irq(&chan->lock);
			/*
			 * We own the only reference to this descriptor, we can
			 * safely dereference it without holding the channel
			 * lock.
			 */
			desc->async_tx.callback(desc->async_tx.callback_param);
			spin_lock_irq(&chan->lock);
		}

		list_add_tail(&desc->node, &chan->desc.wait);
	}

1388 1389
	spin_unlock_irq(&chan->lock);

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
	/* Recycle all acked descriptors. */
	rcar_dmac_desc_recycle_acked(chan);

	return IRQ_HANDLED;
}

static irqreturn_t rcar_dmac_isr_error(int irq, void *data)
{
	struct rcar_dmac *dmac = data;

	if (!(rcar_dmac_read(dmac, RCAR_DMAOR) & RCAR_DMAOR_AE))
		return IRQ_NONE;

	/*
	 * An unrecoverable error occurred on an unknown channel. Halt the DMAC,
	 * abort transfers on all channels, and reinitialize the DMAC.
	 */
	rcar_dmac_stop(dmac);
	rcar_dmac_abort(dmac);
	rcar_dmac_init(dmac);

	return IRQ_HANDLED;
}

/* -----------------------------------------------------------------------------
 * OF xlate and channel filter
 */

static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
{
	struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
	struct of_phandle_args *dma_spec = arg;

	/*
	 * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
	 * function knows from which device it wants to allocate a channel from,
	 * and would be perfectly capable of selecting the channel it wants.
	 * Forcing it to call dma_request_channel() and iterate through all
	 * channels from all controllers is just pointless.
	 */
	if (chan->device->device_config != rcar_dmac_device_config ||
	    dma_spec->np != chan->device->dev->of_node)
		return false;

	return !test_and_set_bit(dma_spec->args[0], dmac->modules);
}

static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
					   struct of_dma *ofdma)
{
	struct rcar_dmac_chan *rchan;
	struct dma_chan *chan;
	dma_cap_mask_t mask;

	if (dma_spec->args_count != 1)
		return NULL;

	/* Only slave DMA channels can be allocated via DT */
	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);

	chan = dma_request_channel(mask, rcar_dmac_chan_filter, dma_spec);
	if (!chan)
		return NULL;

	rchan = to_rcar_dmac_chan(chan);
	rchan->mid_rid = dma_spec->args[0];

	return chan;
}

/* -----------------------------------------------------------------------------
 * Power management
 */

#ifdef CONFIG_PM_SLEEP
static int rcar_dmac_sleep_suspend(struct device *dev)
{
	/*
	 * TODO: Wait for the current transfer to complete and stop the device.
	 */
	return 0;
}

static int rcar_dmac_sleep_resume(struct device *dev)
{
	/* TODO: Resume transfers, if any. */
	return 0;
}
#endif

#ifdef CONFIG_PM
static int rcar_dmac_runtime_suspend(struct device *dev)
{
	return 0;
}

static int rcar_dmac_runtime_resume(struct device *dev)
{
	struct rcar_dmac *dmac = dev_get_drvdata(dev);

	return rcar_dmac_init(dmac);
}
#endif

static const struct dev_pm_ops rcar_dmac_pm = {
	SET_SYSTEM_SLEEP_PM_OPS(rcar_dmac_sleep_suspend, rcar_dmac_sleep_resume)
	SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
			   NULL)
};

/* -----------------------------------------------------------------------------
 * Probe and remove
 */

static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
				struct rcar_dmac_chan *rchan,
				unsigned int index)
{
	struct platform_device *pdev = to_platform_device(dmac->dev);
	struct dma_chan *chan = &rchan->chan;
	char pdev_irqname[5];
	char *irqname;
	int irq;
	int ret;

	rchan->index = index;
	rchan->iomem = dmac->iomem + RCAR_DMAC_CHAN_OFFSET(index);
	rchan->mid_rid = -EINVAL;

	spin_lock_init(&rchan->lock);

	/* Request the channel interrupt. */
	sprintf(pdev_irqname, "ch%u", index);
	irq = platform_get_irq_byname(pdev, pdev_irqname);
	if (irq < 0) {
		dev_err(dmac->dev, "no IRQ specified for channel %u\n", index);
		return -ENODEV;
	}

	irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
				 dev_name(dmac->dev), index);
	if (!irqname)
		return -ENOMEM;

	ret = devm_request_threaded_irq(dmac->dev, irq, rcar_dmac_isr_channel,
					rcar_dmac_isr_channel_thread, 0,
					irqname, rchan);
	if (ret) {
		dev_err(dmac->dev, "failed to request IRQ %u (%d)\n", irq, ret);
		return ret;
	}

	/*
	 * Initialize the DMA engine channel and add it to the DMA engine
	 * channels list.
	 */
	chan->device = &dmac->engine;
	dma_cookie_init(chan);

	list_add_tail(&chan->device_node, &dmac->engine.channels);

	return 0;
}

static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
{
	struct device_node *np = dev->of_node;
	int ret;

	ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
	if (ret < 0) {
		dev_err(dev, "unable to read dma-channels property\n");
		return ret;
	}

	if (dmac->n_channels <= 0 || dmac->n_channels >= 100) {
		dev_err(dev, "invalid number of channels %u\n",
			dmac->n_channels);
		return -EINVAL;
	}

	return 0;
}

static int rcar_dmac_probe(struct platform_device *pdev)
{
	const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
		DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
		DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
		DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
	struct dma_device *engine;
	struct rcar_dmac *dmac;
	struct resource *mem;
	unsigned int i;
	char *irqname;
	int irq;
	int ret;

	dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
	if (!dmac)
		return -ENOMEM;

	dmac->dev = &pdev->dev;
	platform_set_drvdata(pdev, dmac);

	ret = rcar_dmac_parse_of(&pdev->dev, dmac);
	if (ret < 0)
		return ret;

	dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
				      sizeof(*dmac->channels), GFP_KERNEL);
	if (!dmac->channels)
		return -ENOMEM;

	/* Request resources. */
	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	dmac->iomem = devm_ioremap_resource(&pdev->dev, mem);
	if (IS_ERR(dmac->iomem))
		return PTR_ERR(dmac->iomem);

	irq = platform_get_irq_byname(pdev, "error");
	if (irq < 0) {
		dev_err(&pdev->dev, "no error IRQ specified\n");
		return -ENODEV;
	}

	irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:error",
				 dev_name(dmac->dev));
	if (!irqname)
		return -ENOMEM;

	ret = devm_request_irq(&pdev->dev, irq, rcar_dmac_isr_error, 0,
			       irqname, dmac);
	if (ret) {
		dev_err(&pdev->dev, "failed to request IRQ %u (%d)\n",
			irq, ret);
		return ret;
	}

	/* Enable runtime PM and initialize the device. */
	pm_runtime_enable(&pdev->dev);
	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
		return ret;
	}

	ret = rcar_dmac_init(dmac);
	pm_runtime_put(&pdev->dev);

	if (ret) {
		dev_err(&pdev->dev, "failed to reset device\n");
		goto error;
	}

	/* Initialize the channels. */
	INIT_LIST_HEAD(&dmac->engine.channels);

	for (i = 0; i < dmac->n_channels; ++i) {
		ret = rcar_dmac_chan_probe(dmac, &dmac->channels[i], i);
		if (ret < 0)
			goto error;
	}

	/* Register the DMAC as a DMA provider for DT. */
	ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
					 NULL);
	if (ret < 0)
		goto error;

	/*
	 * Register the DMA engine device.
	 *
	 * Default transfer size of 32 bytes requires 32-byte alignment.
	 */
	engine = &dmac->engine;
	dma_cap_set(DMA_MEMCPY, engine->cap_mask);
	dma_cap_set(DMA_SLAVE, engine->cap_mask);

	engine->dev = &pdev->dev;
	engine->copy_align = ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);

	engine->src_addr_widths = widths;
	engine->dst_addr_widths = widths;
	engine->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
	engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;

	engine->device_alloc_chan_resources = rcar_dmac_alloc_chan_resources;
	engine->device_free_chan_resources = rcar_dmac_free_chan_resources;
	engine->device_prep_dma_memcpy = rcar_dmac_prep_dma_memcpy;
	engine->device_prep_slave_sg = rcar_dmac_prep_slave_sg;
	engine->device_prep_dma_cyclic = rcar_dmac_prep_dma_cyclic;
	engine->device_config = rcar_dmac_device_config;
	engine->device_terminate_all = rcar_dmac_chan_terminate_all;
	engine->device_tx_status = rcar_dmac_tx_status;
	engine->device_issue_pending = rcar_dmac_issue_pending;

	ret = dma_async_device_register(engine);
	if (ret < 0)
		goto error;

	return 0;

error:
	of_dma_controller_free(pdev->dev.of_node);
	pm_runtime_disable(&pdev->dev);
	return ret;
}

static int rcar_dmac_remove(struct platform_device *pdev)
{
	struct rcar_dmac *dmac = platform_get_drvdata(pdev);

	of_dma_controller_free(pdev->dev.of_node);
	dma_async_device_unregister(&dmac->engine);

	pm_runtime_disable(&pdev->dev);

	return 0;
}

static void rcar_dmac_shutdown(struct platform_device *pdev)
{
	struct rcar_dmac *dmac = platform_get_drvdata(pdev);

	rcar_dmac_stop(dmac);
}

static const struct of_device_id rcar_dmac_of_ids[] = {
	{ .compatible = "renesas,rcar-dmac", },
	{ /* Sentinel */ }
};
MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);

static struct platform_driver rcar_dmac_driver = {
	.driver		= {
		.pm	= &rcar_dmac_pm,
		.name	= "rcar-dmac",
		.of_match_table = rcar_dmac_of_ids,
	},
	.probe		= rcar_dmac_probe,
	.remove		= rcar_dmac_remove,
	.shutdown	= rcar_dmac_shutdown,
};

module_platform_driver(rcar_dmac_driver);

MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
MODULE_LICENSE("GPL v2");