mt2060.c 9.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 *  Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
 *
 *  Copyright (c) 2006 Olivier DANET <odanet@caramail.com>
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
 */

/* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/delay.h>
#include <linux/dvb/frontend.h>
28 29 30 31
#include <linux/i2c.h>

#include "dvb_frontend.h"

32 33 34
#include "mt2060.h"
#include "mt2060_priv.h"

35
static int debug;
36 37 38
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");

39
#define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2060: " args); printk("\n"); }} while (0)
40 41

// Reads a single register
42
static int mt2060_readreg(struct mt2060_priv *priv, u8 reg, u8 *val)
43 44
{
	struct i2c_msg msg[2] = {
45 46
		{ .addr = priv->cfg->i2c_address, .flags = 0,        .buf = &reg, .len = 1 },
		{ .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .buf = val,  .len = 1 },
47 48
	};

49
	if (i2c_transfer(priv->i2c, msg, 2) != 2) {
50 51 52 53 54 55 56
		printk(KERN_WARNING "mt2060 I2C read failed\n");
		return -EREMOTEIO;
	}
	return 0;
}

// Writes a single register
57
static int mt2060_writereg(struct mt2060_priv *priv, u8 reg, u8 val)
58
{
59
	u8 buf[2] = { reg, val };
60
	struct i2c_msg msg = {
61
		.addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = 2
62 63
	};

64
	if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
65 66 67 68 69 70 71
		printk(KERN_WARNING "mt2060 I2C write failed\n");
		return -EREMOTEIO;
	}
	return 0;
}

// Writes a set of consecutive registers
72
static int mt2060_writeregs(struct mt2060_priv *priv,u8 *buf, u8 len)
73 74
{
	struct i2c_msg msg = {
75
		.addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, .len = len
76
	};
77
	if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
		printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n",(int)len);
		return -EREMOTEIO;
	}
	return 0;
}

// Initialisation sequences
// LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49
static u8 mt2060_config1[] = {
	REG_LO1C1,
	0x3F,	0x74,	0x00,	0x08,	0x93
};

// FMCG=2, GP2=0, GP1=0
static u8 mt2060_config2[] = {
	REG_MISC_CTRL,
	0x20,	0x1E,	0x30,	0xff,	0x80,	0xff,	0x00,	0x2c,	0x42
};

//  VGAG=3, V1CSE=1

#ifdef  MT2060_SPURCHECK
/* The function below calculates the frequency offset between the output frequency if2
 and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */
static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)
{
	int I,J;
	int dia,diamin,diff;
	diamin=1000000;
	for (I = 1; I < 10; I++) {
		J = ((2*I*lo1)/lo2+1)/2;
		diff = I*(int)lo1-J*(int)lo2;
		if (diff < 0) diff=-diff;
		dia = (diff-(int)if2);
		if (dia < 0) dia=-dia;
		if (diamin > dia) diamin=dia;
	}
	return diamin;
}

#define BANDWIDTH 4000 // kHz

/* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */
static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
{
	u32 Spur,Sp1,Sp2;
	int I,J;
	I=0;
	J=1000;

	Spur=mt2060_spurcalc(lo1,lo2,if2);
	if (Spur < BANDWIDTH) {
		/* Potential spurs detected */
		dprintk("Spurs before : f_lo1: %d  f_lo2: %d  (kHz)",
			(int)lo1,(int)lo2);
		I=1000;
		Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);
		Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);

		if (Sp1 < Sp2) {
			J=-J; I=-I; Spur=Sp2;
		} else
			Spur=Sp1;

		while (Spur < BANDWIDTH) {
			I += J;
			Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);
		}
		dprintk("Spurs after  : f_lo1: %d  f_lo2: %d  (kHz)",
			(int)(lo1+I),(int)(lo2+I));
	}
	return I;
}
#endif

#define IF2  36150       // IF2 frequency = 36.150 MHz
#define FREF 16000       // Quartz oscillator 16 MHz

156
static int mt2060_set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *params)
157
{
158
	struct mt2060_priv *priv;
159 160 161 162 163 164 165 166 167
	int ret=0;
	int i=0;
	u32 freq;
	u8  lnaband;
	u32 f_lo1,f_lo2;
	u32 div1,num1,div2,num2;
	u8  b[8];
	u32 if1;

168 169 170
	priv = fe->tuner_priv;

	if1 = priv->if1_freq;
171 172 173
	b[0] = REG_LO1B1;
	b[1] = 0xFF;

174
	mt2060_writeregs(priv,b,2);
175

176 177 178 179 180 181 182 183 184
	freq = params->frequency / 1000; // Hz -> kHz
	priv->bandwidth = (fe->ops.info.type == FE_OFDM) ? params->u.ofdm.bandwidth : 0;

	f_lo1 = freq + if1 * 1000;
	f_lo1 = (f_lo1 / 250) * 250;
	f_lo2 = f_lo1 - freq - IF2;
	// From the Comtech datasheet, the step used is 50kHz. The tuner chip could be more precise
	f_lo2 = ((f_lo2 + 25) / 50) * 50;
	priv->frequency =  (f_lo1 - f_lo2 - IF2) * 1000,
185 186 187 188 189 190 191 192

#ifdef MT2060_SPURCHECK
	// LO-related spurs detection and correction
	num1   = mt2060_spurcheck(f_lo1,f_lo2,IF2);
	f_lo1 += num1;
	f_lo2 += num1;
#endif
	//Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
193 194 195
	num1 = f_lo1 / (FREF / 64);
	div1 = num1 / 64;
	num1 &= 0x3f;
196 197

	// Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
198 199 200
	num2 = f_lo2 * 64 / (FREF / 128);
	div2 = num2 / 8192;
	num2 &= 0x1fff;
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

	if (freq <=  95000) lnaband = 0xB0; else
	if (freq <= 180000) lnaband = 0xA0; else
	if (freq <= 260000) lnaband = 0x90; else
	if (freq <= 335000) lnaband = 0x80; else
	if (freq <= 425000) lnaband = 0x70; else
	if (freq <= 480000) lnaband = 0x60; else
	if (freq <= 570000) lnaband = 0x50; else
	if (freq <= 645000) lnaband = 0x40; else
	if (freq <= 730000) lnaband = 0x30; else
	if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;

	b[0] = REG_LO1C1;
	b[1] = lnaband | ((num1 >>2) & 0x0F);
	b[2] = div1;
	b[3] = (num2 & 0x0F)  | ((num1 & 3) << 4);
	b[4] = num2 >> 4;
	b[5] = ((num2 >>12) & 1) | (div2 << 1);

	dprintk("IF1: %dMHz",(int)if1);
221 222
	dprintk("PLL freq=%dkHz  f_lo1=%dkHz  f_lo2=%dkHz",(int)freq,(int)f_lo1,(int)f_lo2);
	dprintk("PLL div1=%d  num1=%d  div2=%d  num2=%d",(int)div1,(int)num1,(int)div2,(int)num2);
223 224
	dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);

225
	mt2060_writeregs(priv,b,6);
226 227

	//Waits for pll lock or timeout
228
	i = 0;
229
	do {
230 231 232
		mt2060_readreg(priv,REG_LO_STATUS,b);
		if ((b[0] & 0x88)==0x88)
			break;
233 234 235 236 237 238 239
		msleep(4);
		i++;
	} while (i<10);

	return ret;
}

240
static void mt2060_calibrate(struct mt2060_priv *priv)
241 242 243 244
{
	u8 b = 0;
	int i = 0;

245
	if (mt2060_writeregs(priv,mt2060_config1,sizeof(mt2060_config1)))
246
		return;
247
	if (mt2060_writeregs(priv,mt2060_config2,sizeof(mt2060_config2)))
248 249 250 251
		return;

	do {
		b |= (1 << 6); // FM1SS;
252
		mt2060_writereg(priv, REG_LO2C1,b);
253 254 255 256
		msleep(20);

		if (i == 0) {
			b |= (1 << 7); // FM1CA;
257
			mt2060_writereg(priv, REG_LO2C1,b);
258 259 260 261 262
			b &= ~(1 << 7); // FM1CA;
			msleep(20);
		}

		b &= ~(1 << 6); // FM1SS
263
		mt2060_writereg(priv, REG_LO2C1,b);
264 265 266 267 268 269

		msleep(20);
		i++;
	} while (i < 9);

	i = 0;
270
	while (i++ < 10 && mt2060_readreg(priv, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
271 272 273
		msleep(20);

	if (i < 10) {
274 275
		mt2060_readreg(priv, REG_FM_FREQ, &priv->fmfreq); // now find out, what is fmreq used for :)
		dprintk("calibration was successful: %d", (int)priv->fmfreq);
276 277 278 279
	} else
		dprintk("FMCAL timed out");
}

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
static int mt2060_calc_regs(struct dvb_frontend *fe, struct dvb_frontend_parameters *params, u8 *buf, int buf_len)
{
	return -ENODEV;
}

static int mt2060_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
	struct mt2060_priv *priv = fe->tuner_priv;
	*frequency = priv->frequency;
	return 0;
}

static int mt2060_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
{
	struct mt2060_priv *priv = fe->tuner_priv;
	*bandwidth = priv->bandwidth;
	return 0;
}

static int mt2060_sleep(struct dvb_frontend *fe)
{
	struct mt2060_priv *priv = fe->tuner_priv;
	return mt2060_writereg(priv, REG_VGAG,0x30);
}

static int mt2060_release(struct dvb_frontend *fe)
{
	kfree(fe->tuner_priv);
	fe->tuner_priv = NULL;
	return 0;
}

static const struct dvb_tuner_ops mt2060_tuner_ops = {
	.info = {
		.name           = "Microtune MT2060",
		.frequency_min  =  48000000,
		.frequency_max  = 860000000,
		.frequency_step =     50000,
	},

	.release       = mt2060_release,

	.sleep         = mt2060_sleep,

	.set_params    = mt2060_set_params,
	.calc_regs     = mt2060_calc_regs,
	.get_frequency = mt2060_get_frequency,
	.get_bandwidth = mt2060_get_bandwidth
};

330
/* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
331
int mt2060_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2060_config *cfg, u16 if1)
332
{
333
	struct mt2060_priv *priv = NULL;
334 335
	u8 id = 0;

336 337 338
	priv = kzalloc(sizeof(struct mt2060_priv), GFP_KERNEL);
	if (priv == NULL)
		return -ENOMEM;
339

340 341 342
	priv->cfg      = cfg;
	priv->i2c      = i2c;
	priv->if1_freq = if1;
343

344 345
	if (mt2060_readreg(priv,REG_PART_REV,&id) != 0) {
		kfree(priv);
346
		return -ENODEV;
347
	}
348

349 350 351 352
	if (id != PART_REV) {
		kfree(priv);
		return -ENODEV;
	}
353
	printk(KERN_INFO "MT2060: successfully identified (IF1 = %d)\n", if1);
354 355 356
	memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(struct dvb_tuner_ops));

	fe->tuner_priv = priv;
357

358
	mt2060_calibrate(priv);
359 360 361 362 363 364 365 366

	return 0;
}
EXPORT_SYMBOL(mt2060_attach);

MODULE_AUTHOR("Olivier DANET");
MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");
MODULE_LICENSE("GPL");