book3s_64_mmu_hv.c 51.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 */

#include <linux/types.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <linux/gfp.h>
#include <linux/slab.h>
#include <linux/hugetlb.h>
26
#include <linux/vmalloc.h>
27
#include <linux/srcu.h>
28 29
#include <linux/anon_inodes.h>
#include <linux/file.h>
30
#include <linux/debugfs.h>
31 32 33 34

#include <asm/tlbflush.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
35
#include <asm/book3s/64/mmu-hash.h>
36 37 38 39 40
#include <asm/hvcall.h>
#include <asm/synch.h>
#include <asm/ppc-opcode.h>
#include <asm/cputable.h>

41 42
#include "trace_hv.h"

43 44 45 46 47 48 49 50 51 52 53 54 55
//#define DEBUG_RESIZE_HPT	1

#ifdef DEBUG_RESIZE_HPT
#define resize_hpt_debug(resize, ...)				\
	do {							\
		printk(KERN_DEBUG "RESIZE HPT %p: ", resize);	\
		printk(__VA_ARGS__);				\
	} while (0)
#else
#define resize_hpt_debug(resize, ...)				\
	do { } while (0)
#endif

56 57 58
static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
				long pte_index, unsigned long pteh,
				unsigned long ptel, unsigned long *pte_idx_ret);
59 60 61 62 63 64 65 66 67 68

struct kvm_resize_hpt {
	/* These fields read-only after init */
	struct kvm *kvm;
	struct work_struct work;
	u32 order;

	/* These fields protected by kvm->lock */
	int error;
	bool prepare_done;
69 70 71 72

	/* Private to the work thread, until prepare_done is true,
	 * then protected by kvm->resize_hpt_sem */
	struct kvm_hpt_info hpt;
73 74
};

75
static void kvmppc_rmap_reset(struct kvm *kvm);
76

77
int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
78
{
79
	unsigned long hpt = 0;
80
	int cma = 0;
81
	struct page *page = NULL;
82 83
	struct revmap_entry *rev;
	unsigned long npte;
84

85 86
	if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
		return -EINVAL;
87

88
	page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
89 90
	if (page) {
		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
91
		memset((void *)hpt, 0, (1ul << order));
92
		cma = 1;
93
	}
94

95 96 97
	if (!hpt)
		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT
				       |__GFP_NOWARN, order - PAGE_SHIFT);
98 99 100 101

	if (!hpt)
		return -ENOMEM;

102 103
	/* HPTEs are 2**4 bytes long */
	npte = 1ul << (order - 4);
104

105
	/* Allocate reverse map array */
106
	rev = vmalloc(sizeof(struct revmap_entry) * npte);
107
	if (!rev) {
108 109 110 111 112 113
		pr_err("kvmppc_allocate_hpt: Couldn't alloc reverse map array\n");
		if (cma)
			kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
		else
			free_pages(hpt, order - PAGE_SHIFT);
		return -ENOMEM;
114 115
	}

116 117 118 119
	info->order = order;
	info->virt = hpt;
	info->cma = cma;
	info->rev = rev;
120 121

	return 0;
122
}
123

124 125 126 127 128 129 130 131
void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
{
	atomic64_set(&kvm->arch.mmio_update, 0);
	kvm->arch.hpt = *info;
	kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);

	pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
		info->virt, (long)info->order, kvm->arch.lpid);
132 133
}

134
long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
135 136
{
	long err = -EBUSY;
137
	struct kvm_hpt_info info;
138

139 140 141
	if (kvm_is_radix(kvm))
		return -EINVAL;

142
	mutex_lock(&kvm->lock);
143 144 145
	if (kvm->arch.hpte_setup_done) {
		kvm->arch.hpte_setup_done = 0;
		/* order hpte_setup_done vs. vcpus_running */
146 147
		smp_mb();
		if (atomic_read(&kvm->arch.vcpus_running)) {
148
			kvm->arch.hpte_setup_done = 1;
149 150 151
			goto out;
		}
	}
152 153 154
	if (kvm->arch.hpt.order == order) {
		/* We already have a suitable HPT */

155
		/* Set the entire HPT to 0, i.e. invalid HPTEs */
156
		memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
157 158 159 160
		/*
		 * Reset all the reverse-mapping chains for all memslots
		 */
		kvmppc_rmap_reset(kvm);
161 162
		/* Ensure that each vcpu will flush its TLB on next entry. */
		cpumask_setall(&kvm->arch.need_tlb_flush);
163
		err = 0;
164
		goto out;
165
	}
166 167 168 169 170 171 172 173 174 175

	if (kvm->arch.hpt.virt)
		kvmppc_free_hpt(&kvm->arch.hpt);

	err = kvmppc_allocate_hpt(&info, order);
	if (err < 0)
		goto out;
	kvmppc_set_hpt(kvm, &info);

out:
176 177 178 179
	mutex_unlock(&kvm->lock);
	return err;
}

180
void kvmppc_free_hpt(struct kvm_hpt_info *info)
181
{
182 183 184 185 186 187 188 189
	vfree(info->rev);
	if (info->cma)
		kvm_free_hpt_cma(virt_to_page(info->virt),
				 1 << (info->order - PAGE_SHIFT));
	else if (info->virt)
		free_pages(info->virt, info->order - PAGE_SHIFT);
	info->virt = 0;
	info->order = 0;
190 191
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205
/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
{
	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
}

/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
{
	return (pgsize == 0x10000) ? 0x1000 : 0;
}

void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
		     unsigned long porder)
206 207
{
	unsigned long i;
208
	unsigned long npages;
209 210
	unsigned long hp_v, hp_r;
	unsigned long addr, hash;
211 212
	unsigned long psize;
	unsigned long hp0, hp1;
213
	unsigned long idx_ret;
214
	long ret;
215
	struct kvm *kvm = vcpu->kvm;
216

217 218
	psize = 1ul << porder;
	npages = memslot->npages >> (porder - PAGE_SHIFT);
219 220

	/* VRMA can't be > 1TB */
221 222
	if (npages > 1ul << (40 - porder))
		npages = 1ul << (40 - porder);
223
	/* Can't use more than 1 HPTE per HPTEG */
224 225
	if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
		npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
226

227 228 229 230 231
	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
	hp1 = hpte1_pgsize_encoding(psize) |
		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;

232
	for (i = 0; i < npages; ++i) {
233
		addr = i << porder;
234
		/* can't use hpt_hash since va > 64 bits */
235 236
		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
			& kvmppc_hpt_mask(&kvm->arch.hpt);
237 238 239 240 241 242
		/*
		 * We assume that the hash table is empty and no
		 * vcpus are using it at this stage.  Since we create
		 * at most one HPTE per HPTEG, we just assume entry 7
		 * is available and use it.
		 */
243
		hash = (hash << 3) + 7;
244 245
		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
		hp_r = hp1 | addr;
246 247
		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
						 &idx_ret);
248 249 250 251 252
		if (ret != H_SUCCESS) {
			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
			       addr, ret);
			break;
		}
253 254 255 256 257
	}
}

int kvmppc_mmu_hv_init(void)
{
258 259 260
	unsigned long host_lpid, rsvd_lpid;

	if (!cpu_has_feature(CPU_FTR_HVMODE))
261
		return -EINVAL;
262

263 264 265
	/* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
	host_lpid = mfspr(SPRN_LPID);
	rsvd_lpid = LPID_RSVD;
266

267 268 269
	kvmppc_init_lpid(rsvd_lpid + 1);

	kvmppc_claim_lpid(host_lpid);
270
	/* rsvd_lpid is reserved for use in partition switching */
271
	kvmppc_claim_lpid(rsvd_lpid);
272 273 274 275 276 277

	return 0;
}

static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
{
278 279 280 281 282 283 284 285
	unsigned long msr = vcpu->arch.intr_msr;

	/* If transactional, change to suspend mode on IRQ delivery */
	if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
		msr |= MSR_TS_S;
	else
		msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
	kvmppc_set_msr(vcpu, msr);
286 287
}

288
static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
289 290
				long pte_index, unsigned long pteh,
				unsigned long ptel, unsigned long *pte_idx_ret)
291 292 293
{
	long ret;

294 295
	/* Protect linux PTE lookup from page table destruction */
	rcu_read_lock_sched();	/* this disables preemption too */
296 297
	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
				current->mm->pgd, false, pte_idx_ret);
298
	rcu_read_unlock_sched();
299 300 301 302 303 304 305 306 307
	if (ret == H_TOO_HARD) {
		/* this can't happen */
		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
		ret = H_RESOURCE;	/* or something */
	}
	return ret;

}

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
							 gva_t eaddr)
{
	u64 mask;
	int i;

	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
			continue;

		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
			mask = ESID_MASK_1T;
		else
			mask = ESID_MASK;

		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
			return &vcpu->arch.slb[i];
	}
	return NULL;
}

static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
			unsigned long ea)
{
	unsigned long ra_mask;

	ra_mask = hpte_page_size(v, r) - 1;
	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
}

338
static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
339
			struct kvmppc_pte *gpte, bool data, bool iswrite)
340
{
341 342 343 344
	struct kvm *kvm = vcpu->kvm;
	struct kvmppc_slb *slbe;
	unsigned long slb_v;
	unsigned long pp, key;
345
	unsigned long v, orig_v, gr;
346
	__be64 *hptep;
347 348 349 350 351 352 353 354 355 356 357 358 359 360
	int index;
	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);

	/* Get SLB entry */
	if (virtmode) {
		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
		if (!slbe)
			return -EINVAL;
		slb_v = slbe->origv;
	} else {
		/* real mode access */
		slb_v = vcpu->kvm->arch.vrma_slb_v;
	}

361
	preempt_disable();
362 363 364
	/* Find the HPTE in the hash table */
	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
					 HPTE_V_VALID | HPTE_V_ABSENT);
365 366
	if (index < 0) {
		preempt_enable();
367
		return -ENOENT;
368
	}
369
	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
370 371 372
	v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
373
	gr = kvm->arch.hpt.rev[index].guest_rpte;
374

375
	unlock_hpte(hptep, orig_v);
376
	preempt_enable();
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391

	gpte->eaddr = eaddr;
	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);

	/* Get PP bits and key for permission check */
	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
	key &= slb_v;

	/* Calculate permissions */
	gpte->may_read = hpte_read_permission(pp, key);
	gpte->may_write = hpte_write_permission(pp, key);
	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));

	/* Storage key permission check for POWER7 */
392
	if (data && virtmode) {
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
		if (amrfield & 1)
			gpte->may_read = 0;
		if (amrfield & 2)
			gpte->may_write = 0;
	}

	/* Get the guest physical address */
	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
	return 0;
}

/*
 * Quick test for whether an instruction is a load or a store.
 * If the instruction is a load or a store, then this will indicate
 * which it is, at least on server processors.  (Embedded processors
 * have some external PID instructions that don't follow the rule
 * embodied here.)  If the instruction isn't a load or store, then
 * this doesn't return anything useful.
 */
static int instruction_is_store(unsigned int instr)
{
	unsigned int mask;

	mask = 0x10000000;
	if ((instr & 0xfc000000) == 0x7c000000)
		mask = 0x100;		/* major opcode 31 */
	return (instr & mask) != 0;
}

423 424
int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
			   unsigned long gpa, gva_t ea, int is_store)
425 426 427
{
	u32 last_inst;

428
	/*
429 430
	 * If we fail, we just return to the guest and try executing it again.
	 */
431 432 433
	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
		EMULATE_DONE)
		return RESUME_GUEST;
434 435 436 437 438 439 440 441 442 443 444 445 446

	/*
	 * WARNING: We do not know for sure whether the instruction we just
	 * read from memory is the same that caused the fault in the first
	 * place.  If the instruction we read is neither an load or a store,
	 * then it can't access memory, so we don't need to worry about
	 * enforcing access permissions.  So, assuming it is a load or
	 * store, we just check that its direction (load or store) is
	 * consistent with the original fault, since that's what we
	 * checked the access permissions against.  If there is a mismatch
	 * we just return and retry the instruction.
	 */

447
	if (instruction_is_store(last_inst) != !!is_store)
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
		return RESUME_GUEST;

	/*
	 * Emulated accesses are emulated by looking at the hash for
	 * translation once, then performing the access later. The
	 * translation could be invalidated in the meantime in which
	 * point performing the subsequent memory access on the old
	 * physical address could possibly be a security hole for the
	 * guest (but not the host).
	 *
	 * This is less of an issue for MMIO stores since they aren't
	 * globally visible. It could be an issue for MMIO loads to
	 * a certain extent but we'll ignore it for now.
	 */

	vcpu->arch.paddr_accessed = gpa;
464
	vcpu->arch.vaddr_accessed = ea;
465 466 467 468 469 470 471
	return kvmppc_emulate_mmio(run, vcpu);
}

int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
				unsigned long ea, unsigned long dsisr)
{
	struct kvm *kvm = vcpu->kvm;
472
	unsigned long hpte[3], r;
473
	unsigned long hnow_v, hnow_r;
474
	__be64 *hptep;
475
	unsigned long mmu_seq, psize, pte_size;
476
	unsigned long gpa_base, gfn_base;
477
	unsigned long gpa, gfn, hva, pfn;
478
	struct kvm_memory_slot *memslot;
479
	unsigned long *rmap;
480
	struct revmap_entry *rev;
481 482
	struct page *page, *pages[1];
	long index, ret, npages;
483
	bool is_ci;
484
	unsigned int writing, write_ok;
485
	struct vm_area_struct *vma;
486
	unsigned long rcbits;
487
	long mmio_update;
488

489 490 491
	if (kvm_is_radix(kvm))
		return kvmppc_book3s_radix_page_fault(run, vcpu, ea, dsisr);

492 493 494 495 496 497 498 499
	/*
	 * Real-mode code has already searched the HPT and found the
	 * entry we're interested in.  Lock the entry and check that
	 * it hasn't changed.  If it has, just return and re-execute the
	 * instruction.
	 */
	if (ea != vcpu->arch.pgfault_addr)
		return RESUME_GUEST;
500 501 502 503 504 505 506 507 508 509 510 511 512

	if (vcpu->arch.pgfault_cache) {
		mmio_update = atomic64_read(&kvm->arch.mmio_update);
		if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
			r = vcpu->arch.pgfault_cache->rpte;
			psize = hpte_page_size(vcpu->arch.pgfault_hpte[0], r);
			gpa_base = r & HPTE_R_RPN & ~(psize - 1);
			gfn_base = gpa_base >> PAGE_SHIFT;
			gpa = gpa_base | (ea & (psize - 1));
			return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
						dsisr & DSISR_ISSTORE);
		}
	}
513
	index = vcpu->arch.pgfault_index;
514 515
	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
	rev = &kvm->arch.hpt.rev[index];
516 517 518
	preempt_disable();
	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
		cpu_relax();
519 520
	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
	hpte[1] = be64_to_cpu(hptep[1]);
521
	hpte[2] = r = rev->guest_rpte;
522
	unlock_hpte(hptep, hpte[0]);
523 524
	preempt_enable();

525 526 527 528
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
		hpte[1] = hpte_new_to_old_r(hpte[1]);
	}
529 530 531 532 533
	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
	    hpte[1] != vcpu->arch.pgfault_hpte[1])
		return RESUME_GUEST;

	/* Translate the logical address and get the page */
534
	psize = hpte_page_size(hpte[0], r);
535 536 537
	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
	gfn_base = gpa_base >> PAGE_SHIFT;
	gpa = gpa_base | (ea & (psize - 1));
538
	gfn = gpa >> PAGE_SHIFT;
539 540
	memslot = gfn_to_memslot(kvm, gfn);

541 542
	trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);

543
	/* No memslot means it's an emulated MMIO region */
544
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
545
		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
546 547
					      dsisr & DSISR_ISSTORE);

548 549 550 551 552 553 554
	/*
	 * This should never happen, because of the slot_is_aligned()
	 * check in kvmppc_do_h_enter().
	 */
	if (gfn_base < memslot->base_gfn)
		return -EFAULT;

555 556 557 558
	/* used to check for invalidations in progress */
	mmu_seq = kvm->mmu_notifier_seq;
	smp_rmb();

559
	ret = -EFAULT;
560
	is_ci = false;
561 562 563
	pfn = 0;
	page = NULL;
	pte_size = PAGE_SIZE;
564 565 566
	writing = (dsisr & DSISR_ISSTORE) != 0;
	/* If writing != 0, then the HPTE must allow writing, if we get here */
	write_ok = writing;
567
	hva = gfn_to_hva_memslot(memslot, gfn);
568
	npages = get_user_pages_fast(hva, 1, writing, pages);
569 570 571 572 573 574 575 576 577
	if (npages < 1) {
		/* Check if it's an I/O mapping */
		down_read(&current->mm->mmap_sem);
		vma = find_vma(current->mm, hva);
		if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
		    (vma->vm_flags & VM_PFNMAP)) {
			pfn = vma->vm_pgoff +
				((hva - vma->vm_start) >> PAGE_SHIFT);
			pte_size = psize;
578
			is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot))));
579
			write_ok = vma->vm_flags & VM_WRITE;
580 581 582
		}
		up_read(&current->mm->mmap_sem);
		if (!pfn)
583
			goto out_put;
584 585
	} else {
		page = pages[0];
586
		pfn = page_to_pfn(page);
587 588 589 590
		if (PageHuge(page)) {
			page = compound_head(page);
			pte_size <<= compound_order(page);
		}
591 592 593
		/* if the guest wants write access, see if that is OK */
		if (!writing && hpte_is_writable(r)) {
			pte_t *ptep, pte;
594
			unsigned long flags;
595 596
			/*
			 * We need to protect against page table destruction
597
			 * hugepage split and collapse.
598
			 */
599
			local_irq_save(flags);
600
			ptep = find_linux_pte_or_hugepte(current->mm->pgd,
601
							 hva, NULL, NULL);
602
			if (ptep) {
603
				pte = kvmppc_read_update_linux_pte(ptep, 1);
604 605 606
				if (pte_write(pte))
					write_ok = 1;
			}
607
			local_irq_restore(flags);
608
		}
609 610 611 612 613 614
	}

	if (psize > pte_size)
		goto out_put;

	/* Check WIMG vs. the actual page we're accessing */
615 616
	if (!hpte_cache_flags_ok(r, is_ci)) {
		if (is_ci)
617
			goto out_put;
618 619 620 621 622 623 624
		/*
		 * Allow guest to map emulated device memory as
		 * uncacheable, but actually make it cacheable.
		 */
		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
	}

625 626 627 628 629 630 631
	/*
	 * Set the HPTE to point to pfn.
	 * Since the pfn is at PAGE_SIZE granularity, make sure we
	 * don't mask out lower-order bits if psize < PAGE_SIZE.
	 */
	if (psize < PAGE_SIZE)
		psize = PAGE_SIZE;
632 633
	r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) |
					((pfn << PAGE_SHIFT) & ~(psize - 1));
634 635
	if (hpte_is_writable(r) && !write_ok)
		r = hpte_make_readonly(r);
636 637 638 639
	ret = RESUME_GUEST;
	preempt_disable();
	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
		cpu_relax();
640 641 642 643 644 645 646 647
	hnow_v = be64_to_cpu(hptep[0]);
	hnow_r = be64_to_cpu(hptep[1]);
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
		hnow_r = hpte_new_to_old_r(hnow_r);
	}
	if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
	    rev->guest_rpte != hpte[2])
648 649 650 651
		/* HPTE has been changed under us; let the guest retry */
		goto out_unlock;
	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;

652 653
	/* Always put the HPTE in the rmap chain for the page base address */
	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
654 655 656 657
	lock_rmap(rmap);

	/* Check if we might have been invalidated; let the guest retry if so */
	ret = RESUME_GUEST;
658
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
659 660 661
		unlock_rmap(rmap);
		goto out_unlock;
	}
662

663 664 665 666
	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);

667
	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
668 669
		/* HPTE was previously valid, so we need to invalidate it */
		unlock_rmap(rmap);
670
		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
671
		kvmppc_invalidate_hpte(kvm, hptep, index);
672
		/* don't lose previous R and C bits */
673
		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
674 675 676
	} else {
		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
	}
677

678 679 680 681
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		r = hpte_old_to_new_r(hpte[0], r);
		hpte[0] = hpte_old_to_new_v(hpte[0]);
	}
682
	hptep[1] = cpu_to_be64(r);
683
	eieio();
684
	__unlock_hpte(hptep, hpte[0]);
685 686
	asm volatile("ptesync" : : : "memory");
	preempt_enable();
687
	if (page && hpte_is_writable(r))
688 689 690
		SetPageDirty(page);

 out_put:
691 692
	trace_kvm_page_fault_exit(vcpu, hpte, ret);

693 694 695 696 697 698 699 700 701
	if (page) {
		/*
		 * We drop pages[0] here, not page because page might
		 * have been set to the head page of a compound, but
		 * we have to drop the reference on the correct tail
		 * page to match the get inside gup()
		 */
		put_page(pages[0]);
	}
702 703 704
	return ret;

 out_unlock:
705
	__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
706 707 708 709
	preempt_enable();
	goto out_put;
}

710 711 712 713 714 715 716
static void kvmppc_rmap_reset(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int srcu_idx;

	srcu_idx = srcu_read_lock(&kvm->srcu);
717
	slots = kvm_memslots(kvm);
718 719 720 721 722 723 724 725 726 727 728
	kvm_for_each_memslot(memslot, slots) {
		/*
		 * This assumes it is acceptable to lose reference and
		 * change bits across a reset.
		 */
		memset(memslot->arch.rmap, 0,
		       memslot->npages * sizeof(*memslot->arch.rmap));
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);
}

729 730 731
typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot,
			      unsigned long gfn);

732 733 734
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
735
				hva_handler_fn handler)
736 737 738 739 740 741 742 743
{
	int ret;
	int retval = 0;
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots) {
744 745 746 747 748 749 750 751 752 753 754 755 756 757
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn, gfn+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
758

759
		for (; gfn < gfn_end; ++gfn) {
760
			ret = handler(kvm, memslot, gfn);
761 762 763 764 765 766 767
			retval |= ret;
		}
	}

	return retval;
}

768
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
769
			  hva_handler_fn handler)
770 771 772 773
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
}

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
/* Must be called with both HPTE and rmap locked */
static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
			      unsigned long *rmapp, unsigned long gfn)
{
	__be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
	struct revmap_entry *rev = kvm->arch.hpt.rev;
	unsigned long j, h;
	unsigned long ptel, psize, rcbits;

	j = rev[i].forw;
	if (j == i) {
		/* chain is now empty */
		*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
	} else {
		/* remove i from chain */
		h = rev[i].back;
		rev[h].forw = j;
		rev[j].back = h;
		rev[i].forw = rev[i].back = i;
		*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
	}

	/* Now check and modify the HPTE */
	ptel = rev[i].guest_rpte;
	psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
	if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
	    hpte_rpn(ptel, psize) == gfn) {
		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
		kvmppc_invalidate_hpte(kvm, hptep, i);
		hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
		/* Harvest R and C */
		rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
		*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
		if (rcbits & HPTE_R_C)
			kvmppc_update_rmap_change(rmapp, psize);
		if (rcbits & ~rev[i].guest_rpte) {
			rev[i].guest_rpte = ptel | rcbits;
			note_hpte_modification(kvm, &rev[i]);
		}
	}
}

816
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
817 818
			   unsigned long gfn)
{
819
	unsigned long i;
820
	__be64 *hptep;
821
	unsigned long *rmapp;
822

823
	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
824
	for (;;) {
825
		lock_rmap(rmapp);
826
		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
827
			unlock_rmap(rmapp);
828 829 830 831 832
			break;
		}

		/*
		 * To avoid an ABBA deadlock with the HPTE lock bit,
833 834
		 * we can't spin on the HPTE lock while holding the
		 * rmap chain lock.
835 836
		 */
		i = *rmapp & KVMPPC_RMAP_INDEX;
837
		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
838 839 840
		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
841
			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
842 843 844
				cpu_relax();
			continue;
		}
845

846
		kvmppc_unmap_hpte(kvm, i, rmapp, gfn);
847
		unlock_rmap(rmapp);
848
		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
849 850 851 852
	}
	return 0;
}

853
int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
854
{
855 856 857 858
	hva_handler_fn handler;

	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
	kvm_handle_hva(kvm, hva, handler);
859 860 861
	return 0;
}

862
int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
863
{
864 865 866 867
	hva_handler_fn handler;

	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
	kvm_handle_hva_range(kvm, start, end, handler);
868 869 870
	return 0;
}

871 872
void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
				  struct kvm_memory_slot *memslot)
873 874 875
{
	unsigned long gfn;
	unsigned long n;
876
	unsigned long *rmapp;
877 878

	gfn = memslot->base_gfn;
879 880 881 882 883 884
	rmapp = memslot->arch.rmap;
	for (n = memslot->npages; n; --n, ++gfn) {
		if (kvm_is_radix(kvm)) {
			kvm_unmap_radix(kvm, memslot, gfn);
			continue;
		}
885 886 887 888 889 890 891
		/*
		 * Testing the present bit without locking is OK because
		 * the memslot has been marked invalid already, and hence
		 * no new HPTEs referencing this page can be created,
		 * thus the present bit can't go from 0 to 1.
		 */
		if (*rmapp & KVMPPC_RMAP_PRESENT)
892
			kvm_unmap_rmapp(kvm, memslot, gfn);
893 894 895 896
		++rmapp;
	}
}

897
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
898 899
			 unsigned long gfn)
{
900
	struct revmap_entry *rev = kvm->arch.hpt.rev;
901
	unsigned long head, i, j;
902
	__be64 *hptep;
903
	int ret = 0;
904
	unsigned long *rmapp;
905

906
	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
907 908 909 910 911 912 913 914 915 916 917 918 919
 retry:
	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
		ret = 1;
	}
	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
		unlock_rmap(rmapp);
		return ret;
	}

	i = head = *rmapp & KVMPPC_RMAP_INDEX;
	do {
920
		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
921 922 923
		j = rev[i].forw;

		/* If this HPTE isn't referenced, ignore it */
924
		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
925 926 927 928 929
			continue;

		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
930
			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
931 932 933 934 935
				cpu_relax();
			goto retry;
		}

		/* Now check and modify the HPTE */
936 937
		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
938
			kvmppc_clear_ref_hpte(kvm, hptep, i);
939 940 941 942
			if (!(rev[i].guest_rpte & HPTE_R_R)) {
				rev[i].guest_rpte |= HPTE_R_R;
				note_hpte_modification(kvm, &rev[i]);
			}
943 944
			ret = 1;
		}
945
		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
946 947 948 949
	} while ((i = j) != head);

	unlock_rmap(rmapp);
	return ret;
950 951
}

A
Andres Lagar-Cavilla 已提交
952
int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
953
{
954 955 956 957
	hva_handler_fn handler;

	handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp;
	return kvm_handle_hva_range(kvm, start, end, handler);
958 959
}

960
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
961 962
			      unsigned long gfn)
{
963
	struct revmap_entry *rev = kvm->arch.hpt.rev;
964 965 966
	unsigned long head, i, j;
	unsigned long *hp;
	int ret = 1;
967
	unsigned long *rmapp;
968

969
	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
970 971 972 973 974 975 976 977 978 979
	if (*rmapp & KVMPPC_RMAP_REFERENCED)
		return 1;

	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_REFERENCED)
		goto out;

	if (*rmapp & KVMPPC_RMAP_PRESENT) {
		i = head = *rmapp & KVMPPC_RMAP_INDEX;
		do {
980
			hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
981
			j = rev[i].forw;
982
			if (be64_to_cpu(hp[1]) & HPTE_R_R)
983 984 985 986 987 988 989 990
				goto out;
		} while ((i = j) != head);
	}
	ret = 0;

 out:
	unlock_rmap(rmapp);
	return ret;
991 992
}

993
int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
994
{
995 996 997 998
	hva_handler_fn handler;

	handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp;
	return kvm_handle_hva(kvm, hva, handler);
999 1000
}

1001
void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
1002
{
1003 1004 1005 1006
	hva_handler_fn handler;

	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
	kvm_handle_hva(kvm, hva, handler);
1007 1008
}

1009 1010 1011 1012 1013
static int vcpus_running(struct kvm *kvm)
{
	return atomic_read(&kvm->arch.vcpus_running) != 0;
}

1014 1015 1016 1017 1018
/*
 * Returns the number of system pages that are dirty.
 * This can be more than 1 if we find a huge-page HPTE.
 */
static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1019
{
1020
	struct revmap_entry *rev = kvm->arch.hpt.rev;
1021
	unsigned long head, i, j;
1022
	unsigned long n;
1023
	unsigned long v, r;
1024
	__be64 *hptep;
1025
	int npages_dirty = 0;
1026 1027 1028 1029

 retry:
	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_CHANGED) {
1030 1031 1032
		long change_order = (*rmapp & KVMPPC_RMAP_CHG_ORDER)
			>> KVMPPC_RMAP_CHG_SHIFT;
		*rmapp &= ~(KVMPPC_RMAP_CHANGED | KVMPPC_RMAP_CHG_ORDER);
1033
		npages_dirty = 1;
1034 1035
		if (change_order > PAGE_SHIFT)
			npages_dirty = 1ul << (change_order - PAGE_SHIFT);
1036 1037 1038
	}
	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
		unlock_rmap(rmapp);
1039
		return npages_dirty;
1040 1041 1042 1043
	}

	i = head = *rmapp & KVMPPC_RMAP_INDEX;
	do {
1044
		unsigned long hptep1;
1045
		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1046 1047
		j = rev[i].forw;

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
		/*
		 * Checking the C (changed) bit here is racy since there
		 * is no guarantee about when the hardware writes it back.
		 * If the HPTE is not writable then it is stable since the
		 * page can't be written to, and we would have done a tlbie
		 * (which forces the hardware to complete any writeback)
		 * when making the HPTE read-only.
		 * If vcpus are running then this call is racy anyway
		 * since the page could get dirtied subsequently, so we
		 * expect there to be a further call which would pick up
		 * any delayed C bit writeback.
		 * Otherwise we need to do the tlbie even if C==0 in
		 * order to pick up any delayed writeback of C.
		 */
1062 1063 1064
		hptep1 = be64_to_cpu(hptep[1]);
		if (!(hptep1 & HPTE_R_C) &&
		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1065 1066 1067 1068 1069
			continue;

		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
1070
			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1071 1072 1073 1074 1075
				cpu_relax();
			goto retry;
		}

		/* Now check and modify the HPTE */
1076
		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1077
			__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1078
			continue;
1079
		}
1080 1081

		/* need to make it temporarily absent so C is stable */
1082
		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1083
		kvmppc_invalidate_hpte(kvm, hptep, i);
1084 1085
		v = be64_to_cpu(hptep[0]);
		r = be64_to_cpu(hptep[1]);
1086
		if (r & HPTE_R_C) {
1087
			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1088 1089 1090 1091
			if (!(rev[i].guest_rpte & HPTE_R_C)) {
				rev[i].guest_rpte |= HPTE_R_C;
				note_hpte_modification(kvm, &rev[i]);
			}
1092
			n = hpte_page_size(v, r);
1093 1094 1095
			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
			if (n > npages_dirty)
				npages_dirty = n;
1096
			eieio();
1097
		}
1098
		v &= ~HPTE_V_ABSENT;
1099
		v |= HPTE_V_VALID;
1100
		__unlock_hpte(hptep, v);
1101 1102 1103
	} while ((i = j) != head);

	unlock_rmap(rmapp);
1104
	return npages_dirty;
1105 1106
}

1107
void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
			      struct kvm_memory_slot *memslot,
			      unsigned long *map)
{
	unsigned long gfn;

	if (!vpa->dirty || !vpa->pinned_addr)
		return;
	gfn = vpa->gpa >> PAGE_SHIFT;
	if (gfn < memslot->base_gfn ||
	    gfn >= memslot->base_gfn + memslot->npages)
		return;

	vpa->dirty = false;
	if (map)
		__set_bit_le(gfn - memslot->base_gfn, map);
}

1125 1126
long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
			struct kvm_memory_slot *memslot, unsigned long *map)
1127
{
1128
	unsigned long i, j;
1129
	unsigned long *rmapp;
1130 1131

	preempt_disable();
1132
	rmapp = memslot->arch.rmap;
1133
	for (i = 0; i < memslot->npages; ++i) {
1134 1135 1136 1137 1138 1139 1140 1141 1142
		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
		/*
		 * Note that if npages > 0 then i must be a multiple of npages,
		 * since we always put huge-page HPTEs in the rmap chain
		 * corresponding to their page base address.
		 */
		if (npages && map)
			for (j = i; npages; ++j, --npages)
				__set_bit_le(j, map);
1143 1144 1145 1146 1147 1148
		++rmapp;
	}
	preempt_enable();
	return 0;
}

1149 1150 1151 1152 1153
void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
			    unsigned long *nb_ret)
{
	struct kvm_memory_slot *memslot;
	unsigned long gfn = gpa >> PAGE_SHIFT;
1154 1155
	struct page *page, *pages[1];
	int npages;
1156
	unsigned long hva, offset;
1157
	int srcu_idx;
1158

1159
	srcu_idx = srcu_read_lock(&kvm->srcu);
1160 1161
	memslot = gfn_to_memslot(kvm, gfn);
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1162
		goto err;
1163 1164 1165 1166 1167
	hva = gfn_to_hva_memslot(memslot, gfn);
	npages = get_user_pages_fast(hva, 1, 1, pages);
	if (npages < 1)
		goto err;
	page = pages[0];
1168 1169
	srcu_read_unlock(&kvm->srcu, srcu_idx);

1170
	offset = gpa & (PAGE_SIZE - 1);
1171
	if (nb_ret)
1172
		*nb_ret = PAGE_SIZE - offset;
1173
	return page_address(page) + offset;
1174 1175 1176 1177

 err:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
	return NULL;
1178 1179
}

1180 1181
void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
			     bool dirty)
1182 1183
{
	struct page *page = virt_to_page(va);
1184 1185 1186 1187
	struct kvm_memory_slot *memslot;
	unsigned long gfn;
	unsigned long *rmap;
	int srcu_idx;
1188 1189

	put_page(page);
1190

1191
	if (!dirty)
1192 1193 1194 1195 1196 1197 1198
		return;

	/* We need to mark this page dirty in the rmap chain */
	gfn = gpa >> PAGE_SHIFT;
	srcu_idx = srcu_read_lock(&kvm->srcu);
	memslot = gfn_to_memslot(kvm, gfn);
	if (memslot) {
1199 1200 1201 1202 1203 1204 1205 1206
		if (!kvm_is_radix(kvm)) {
			rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
			lock_rmap(rmap);
			*rmap |= KVMPPC_RMAP_CHANGED;
			unlock_rmap(rmap);
		} else if (memslot->dirty_bitmap) {
			mark_page_dirty(kvm, gfn);
		}
1207 1208
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);
1209 1210
}

1211 1212 1213 1214 1215
/*
 * HPT resizing
 */
static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
{
1216 1217 1218 1219 1220 1221 1222 1223 1224
	int rc;

	rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
	if (rc < 0)
		return rc;

	resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n",
			 resize->hpt.virt);

1225 1226 1227
	return 0;
}

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
					    unsigned long idx)
{
	struct kvm *kvm = resize->kvm;
	struct kvm_hpt_info *old = &kvm->arch.hpt;
	struct kvm_hpt_info *new = &resize->hpt;
	unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
	unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
	__be64 *hptep, *new_hptep;
	unsigned long vpte, rpte, guest_rpte;
	int ret;
	struct revmap_entry *rev;
	unsigned long apsize, psize, avpn, pteg, hash;
	unsigned long new_idx, new_pteg, replace_vpte;

	hptep = (__be64 *)(old->virt + (idx << 4));

	/* Guest is stopped, so new HPTEs can't be added or faulted
	 * in, only unmapped or altered by host actions.  So, it's
	 * safe to check this before we take the HPTE lock */
	vpte = be64_to_cpu(hptep[0]);
	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
		return 0; /* nothing to do */

	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
		cpu_relax();

	vpte = be64_to_cpu(hptep[0]);

	ret = 0;
	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
		/* Nothing to do */
		goto out;

	/* Unmap */
	rev = &old->rev[idx];
	guest_rpte = rev->guest_rpte;

	ret = -EIO;
	apsize = hpte_page_size(vpte, guest_rpte);
	if (!apsize)
		goto out;

	if (vpte & HPTE_V_VALID) {
		unsigned long gfn = hpte_rpn(guest_rpte, apsize);
		int srcu_idx = srcu_read_lock(&kvm->srcu);
		struct kvm_memory_slot *memslot =
			__gfn_to_memslot(kvm_memslots(kvm), gfn);

		if (memslot) {
			unsigned long *rmapp;
			rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];

			lock_rmap(rmapp);
			kvmppc_unmap_hpte(kvm, idx, rmapp, gfn);
			unlock_rmap(rmapp);
		}

		srcu_read_unlock(&kvm->srcu, srcu_idx);
	}

	/* Reload PTE after unmap */
	vpte = be64_to_cpu(hptep[0]);

	BUG_ON(vpte & HPTE_V_VALID);
	BUG_ON(!(vpte & HPTE_V_ABSENT));

	ret = 0;
	if (!(vpte & HPTE_V_BOLTED))
		goto out;

	rpte = be64_to_cpu(hptep[1]);
	psize = hpte_base_page_size(vpte, rpte);
	avpn = HPTE_V_AVPN_VAL(vpte) & ~((psize - 1) >> 23);
	pteg = idx / HPTES_PER_GROUP;
	if (vpte & HPTE_V_SECONDARY)
		pteg = ~pteg;

	if (!(vpte & HPTE_V_1TB_SEG)) {
		unsigned long offset, vsid;

		/* We only have 28 - 23 bits of offset in avpn */
		offset = (avpn & 0x1f) << 23;
		vsid = avpn >> 5;
		/* We can find more bits from the pteg value */
		if (psize < (1ULL << 23))
			offset |= ((vsid ^ pteg) & old_hash_mask) * psize;

		hash = vsid ^ (offset / psize);
	} else {
		unsigned long offset, vsid;

		/* We only have 40 - 23 bits of seg_off in avpn */
		offset = (avpn & 0x1ffff) << 23;
		vsid = avpn >> 17;
		if (psize < (1ULL << 23))
			offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) * psize;

		hash = vsid ^ (vsid << 25) ^ (offset / psize);
	}

	new_pteg = hash & new_hash_mask;
	if (vpte & HPTE_V_SECONDARY) {
		BUG_ON(~pteg != (hash & old_hash_mask));
		new_pteg = ~new_pteg;
	} else {
		BUG_ON(pteg != (hash & old_hash_mask));
	}

	new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
	new_hptep = (__be64 *)(new->virt + (new_idx << 4));

	replace_vpte = be64_to_cpu(new_hptep[0]);

	if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
		BUG_ON(new->order >= old->order);

		if (replace_vpte & HPTE_V_BOLTED) {
			if (vpte & HPTE_V_BOLTED)
				/* Bolted collision, nothing we can do */
				ret = -ENOSPC;
			/* Discard the new HPTE */
			goto out;
		}

		/* Discard the previous HPTE */
	}

	new_hptep[1] = cpu_to_be64(rpte);
	new->rev[new_idx].guest_rpte = guest_rpte;
	/* No need for a barrier, since new HPT isn't active */
	new_hptep[0] = cpu_to_be64(vpte);
	unlock_hpte(new_hptep, vpte);

out:
	unlock_hpte(hptep, vpte);
	return ret;
}

1367 1368
static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
{
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
	struct kvm *kvm = resize->kvm;
	unsigned  long i;
	int rc;

	for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
		rc = resize_hpt_rehash_hpte(resize, i);
		if (rc != 0)
			return rc;
	}

	return 0;
1380 1381 1382 1383
}

static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
{
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	struct kvm *kvm = resize->kvm;
	struct kvm_hpt_info hpt_tmp;

	/* Exchange the pending tables in the resize structure with
	 * the active tables */

	resize_hpt_debug(resize, "resize_hpt_pivot()\n");

	spin_lock(&kvm->mmu_lock);
	asm volatile("ptesync" : : : "memory");

	hpt_tmp = kvm->arch.hpt;
	kvmppc_set_hpt(kvm, &resize->hpt);
	resize->hpt = hpt_tmp;

	spin_unlock(&kvm->mmu_lock);

	synchronize_srcu_expedited(&kvm->srcu);

	resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1404 1405 1406 1407 1408
}

static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
{
	BUG_ON(kvm->arch.resize_hpt != resize);
1409 1410 1411 1412

	if (resize->hpt.virt)
		kvmppc_free_hpt(&resize->hpt);

1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
	kvm->arch.resize_hpt = NULL;
	kfree(resize);
}

static void resize_hpt_prepare_work(struct work_struct *work)
{
	struct kvm_resize_hpt *resize = container_of(work,
						     struct kvm_resize_hpt,
						     work);
	struct kvm *kvm = resize->kvm;
	int err;

	resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n",
			 resize->order);

	err = resize_hpt_allocate(resize);

	mutex_lock(&kvm->lock);

	resize->error = err;
	resize->prepare_done = true;

	mutex_unlock(&kvm->lock);
}

long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
				     struct kvm_ppc_resize_hpt *rhpt)
{
	unsigned long flags = rhpt->flags;
	unsigned long shift = rhpt->shift;
	struct kvm_resize_hpt *resize;
	int ret;

	if (flags != 0)
		return -EINVAL;

	if (shift && ((shift < 18) || (shift > 46)))
		return -EINVAL;

	mutex_lock(&kvm->lock);

	resize = kvm->arch.resize_hpt;

	if (resize) {
		if (resize->order == shift) {
			/* Suitable resize in progress */
			if (resize->prepare_done) {
				ret = resize->error;
				if (ret != 0)
					resize_hpt_release(kvm, resize);
			} else {
				ret = 100; /* estimated time in ms */
			}

			goto out;
		}

		/* not suitable, cancel it */
		resize_hpt_release(kvm, resize);
	}

	ret = 0;
	if (!shift)
		goto out; /* nothing to do */

	/* start new resize */

	resize = kzalloc(sizeof(*resize), GFP_KERNEL);
	resize->order = shift;
	resize->kvm = kvm;
	INIT_WORK(&resize->work, resize_hpt_prepare_work);
	kvm->arch.resize_hpt = resize;

	schedule_work(&resize->work);

	ret = 100; /* estimated time in ms */

out:
	mutex_unlock(&kvm->lock);
	return ret;
}

static void resize_hpt_boot_vcpu(void *opaque)
{
	/* Nothing to do, just force a KVM exit */
}

long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
				    struct kvm_ppc_resize_hpt *rhpt)
{
	unsigned long flags = rhpt->flags;
	unsigned long shift = rhpt->shift;
	struct kvm_resize_hpt *resize;
	long ret;

	if (flags != 0)
		return -EINVAL;

	if (shift && ((shift < 18) || (shift > 46)))
		return -EINVAL;

	mutex_lock(&kvm->lock);

	resize = kvm->arch.resize_hpt;

	/* This shouldn't be possible */
	ret = -EIO;
	if (WARN_ON(!kvm->arch.hpte_setup_done))
		goto out_no_hpt;

	/* Stop VCPUs from running while we mess with the HPT */
	kvm->arch.hpte_setup_done = 0;
	smp_mb();

	/* Boot all CPUs out of the guest so they re-read
	 * hpte_setup_done */
	on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);

	ret = -ENXIO;
	if (!resize || (resize->order != shift))
		goto out;

	ret = -EBUSY;
	if (!resize->prepare_done)
		goto out;

	ret = resize->error;
	if (ret != 0)
		goto out;

	ret = resize_hpt_rehash(resize);
	if (ret != 0)
		goto out;

	resize_hpt_pivot(resize);

out:
	/* Let VCPUs run again */
	kvm->arch.hpte_setup_done = 1;
	smp_mb();
out_no_hpt:
	resize_hpt_release(kvm, resize);
	mutex_unlock(&kvm->lock);
	return ret;
}

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
/*
 * Functions for reading and writing the hash table via reads and
 * writes on a file descriptor.
 *
 * Reads return the guest view of the hash table, which has to be
 * pieced together from the real hash table and the guest_rpte
 * values in the revmap array.
 *
 * On writes, each HPTE written is considered in turn, and if it
 * is valid, it is written to the HPT as if an H_ENTER with the
 * exact flag set was done.  When the invalid count is non-zero
 * in the header written to the stream, the kernel will make
 * sure that that many HPTEs are invalid, and invalidate them
 * if not.
 */

struct kvm_htab_ctx {
	unsigned long	index;
	unsigned long	flags;
	struct kvm	*kvm;
	int		first_pass;
};

#define HPTE_SIZE	(2 * sizeof(unsigned long))

1584 1585 1586 1587
/*
 * Returns 1 if this HPT entry has been modified or has pending
 * R/C bit changes.
 */
1588
static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1589 1590 1591 1592 1593 1594 1595 1596
{
	unsigned long rcbits_unset;

	if (revp->guest_rpte & HPTE_GR_MODIFIED)
		return 1;

	/* Also need to consider changes in reference and changed bits */
	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1597 1598
	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1599 1600 1601 1602 1603
		return 1;

	return 0;
}

1604
static long record_hpte(unsigned long flags, __be64 *hptp,
1605 1606 1607
			unsigned long *hpte, struct revmap_entry *revp,
			int want_valid, int first_pass)
{
1608
	unsigned long v, r, hr;
1609
	unsigned long rcbits_unset;
1610 1611 1612 1613
	int ok = 1;
	int valid, dirty;

	/* Unmodified entries are uninteresting except on the first pass */
1614
	dirty = hpte_dirty(revp, hptp);
1615 1616 1617 1618
	if (!first_pass && !dirty)
		return 0;

	valid = 0;
1619
	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1620 1621
		valid = 1;
		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1622
		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
			valid = 0;
	}
	if (valid != want_valid)
		return 0;

	v = r = 0;
	if (valid || dirty) {
		/* lock the HPTE so it's stable and read it */
		preempt_disable();
		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
			cpu_relax();
1634
		v = be64_to_cpu(hptp[0]);
1635 1636 1637 1638 1639
		hr = be64_to_cpu(hptp[1]);
		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
			v = hpte_new_to_old_v(v, hr);
			hr = hpte_new_to_old_r(hr);
		}
1640 1641 1642 1643 1644 1645 1646

		/* re-evaluate valid and dirty from synchronized HPTE value */
		valid = !!(v & HPTE_V_VALID);
		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);

		/* Harvest R and C into guest view if necessary */
		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1647 1648
		if (valid && (rcbits_unset & hr)) {
			revp->guest_rpte |= (hr &
1649
				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1650 1651 1652
			dirty = 1;
		}

1653 1654 1655
		if (v & HPTE_V_ABSENT) {
			v &= ~HPTE_V_ABSENT;
			v |= HPTE_V_VALID;
1656
			valid = 1;
1657 1658 1659
		}
		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
			valid = 0;
1660 1661

		r = revp->guest_rpte;
1662 1663 1664 1665 1666
		/* only clear modified if this is the right sort of entry */
		if (valid == want_valid && dirty) {
			r &= ~HPTE_GR_MODIFIED;
			revp->guest_rpte = r;
		}
1667
		unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1668 1669 1670 1671
		preempt_enable();
		if (!(valid == want_valid && (first_pass || dirty)))
			ok = 0;
	}
1672 1673
	hpte[0] = cpu_to_be64(v);
	hpte[1] = cpu_to_be64(r);
1674 1675 1676 1677 1678 1679 1680 1681 1682
	return ok;
}

static ssize_t kvm_htab_read(struct file *file, char __user *buf,
			     size_t count, loff_t *ppos)
{
	struct kvm_htab_ctx *ctx = file->private_data;
	struct kvm *kvm = ctx->kvm;
	struct kvm_get_htab_header hdr;
1683
	__be64 *hptp;
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
	struct revmap_entry *revp;
	unsigned long i, nb, nw;
	unsigned long __user *lbuf;
	struct kvm_get_htab_header __user *hptr;
	unsigned long flags;
	int first_pass;
	unsigned long hpte[2];

	if (!access_ok(VERIFY_WRITE, buf, count))
		return -EFAULT;

	first_pass = ctx->first_pass;
	flags = ctx->flags;

	i = ctx->index;
1699 1700
	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
	revp = kvm->arch.hpt.rev + i;
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
	lbuf = (unsigned long __user *)buf;

	nb = 0;
	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
		/* Initialize header */
		hptr = (struct kvm_get_htab_header __user *)buf;
		hdr.n_valid = 0;
		hdr.n_invalid = 0;
		nw = nb;
		nb += sizeof(hdr);
		lbuf = (unsigned long __user *)(buf + sizeof(hdr));

		/* Skip uninteresting entries, i.e. clean on not-first pass */
		if (!first_pass) {
1715
			while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1716
			       !hpte_dirty(revp, hptp)) {
1717 1718 1719 1720 1721
				++i;
				hptp += 2;
				++revp;
			}
		}
1722
		hdr.index = i;
1723 1724

		/* Grab a series of valid entries */
1725
		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
		       hdr.n_valid < 0xffff &&
		       nb + HPTE_SIZE < count &&
		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
			/* valid entry, write it out */
			++hdr.n_valid;
			if (__put_user(hpte[0], lbuf) ||
			    __put_user(hpte[1], lbuf + 1))
				return -EFAULT;
			nb += HPTE_SIZE;
			lbuf += 2;
			++i;
			hptp += 2;
			++revp;
		}
		/* Now skip invalid entries while we can */
1741
		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
		       hdr.n_invalid < 0xffff &&
		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
			/* found an invalid entry */
			++hdr.n_invalid;
			++i;
			hptp += 2;
			++revp;
		}

		if (hdr.n_valid || hdr.n_invalid) {
			/* write back the header */
			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
				return -EFAULT;
			nw = nb;
			buf = (char __user *)lbuf;
		} else {
			nb = nw;
		}

		/* Check if we've wrapped around the hash table */
1762
		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
			i = 0;
			ctx->first_pass = 0;
			break;
		}
	}

	ctx->index = i;

	return nb;
}

static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
			      size_t count, loff_t *ppos)
{
	struct kvm_htab_ctx *ctx = file->private_data;
	struct kvm *kvm = ctx->kvm;
	struct kvm_get_htab_header hdr;
	unsigned long i, j;
	unsigned long v, r;
	unsigned long __user *lbuf;
1783
	__be64 *hptp;
1784 1785 1786
	unsigned long tmp[2];
	ssize_t nb;
	long int err, ret;
1787
	int hpte_setup;
1788 1789 1790 1791 1792 1793

	if (!access_ok(VERIFY_READ, buf, count))
		return -EFAULT;

	/* lock out vcpus from running while we're doing this */
	mutex_lock(&kvm->lock);
1794 1795 1796 1797
	hpte_setup = kvm->arch.hpte_setup_done;
	if (hpte_setup) {
		kvm->arch.hpte_setup_done = 0;	/* temporarily */
		/* order hpte_setup_done vs. vcpus_running */
1798 1799
		smp_mb();
		if (atomic_read(&kvm->arch.vcpus_running)) {
1800
			kvm->arch.hpte_setup_done = 1;
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
			mutex_unlock(&kvm->lock);
			return -EBUSY;
		}
	}

	err = 0;
	for (nb = 0; nb + sizeof(hdr) <= count; ) {
		err = -EFAULT;
		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
			break;

		err = 0;
		if (nb + hdr.n_valid * HPTE_SIZE > count)
			break;

		nb += sizeof(hdr);
		buf += sizeof(hdr);

		err = -EINVAL;
		i = hdr.index;
1821 1822
		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
		    i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1823 1824
			break;

1825
		hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1826 1827
		lbuf = (unsigned long __user *)buf;
		for (j = 0; j < hdr.n_valid; ++j) {
1828 1829 1830
			__be64 hpte_v;
			__be64 hpte_r;

1831
			err = -EFAULT;
1832 1833
			if (__get_user(hpte_v, lbuf) ||
			    __get_user(hpte_r, lbuf + 1))
1834
				goto out;
1835 1836
			v = be64_to_cpu(hpte_v);
			r = be64_to_cpu(hpte_r);
1837 1838 1839 1840 1841 1842
			err = -EINVAL;
			if (!(v & HPTE_V_VALID))
				goto out;
			lbuf += 2;
			nb += HPTE_SIZE;

1843
			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1844 1845 1846 1847 1848 1849 1850 1851 1852
				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
			err = -EIO;
			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
							 tmp);
			if (ret != H_SUCCESS) {
				pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
				       "r=%lx\n", ret, i, v, r);
				goto out;
			}
1853
			if (!hpte_setup && is_vrma_hpte(v)) {
1854
				unsigned long psize = hpte_base_page_size(v, r);
1855 1856 1857 1858 1859
				unsigned long senc = slb_pgsize_encoding(psize);
				unsigned long lpcr;

				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1860 1861
				lpcr = senc << (LPCR_VRMASD_SH - 4);
				kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1862
				hpte_setup = 1;
1863 1864 1865 1866 1867 1868
			}
			++i;
			hptp += 2;
		}

		for (j = 0; j < hdr.n_invalid; ++j) {
1869
			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1870 1871 1872 1873 1874 1875 1876 1877
				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
			++i;
			hptp += 2;
		}
		err = 0;
	}

 out:
1878
	/* Order HPTE updates vs. hpte_setup_done */
1879
	smp_wmb();
1880
	kvm->arch.hpte_setup_done = hpte_setup;
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
	mutex_unlock(&kvm->lock);

	if (err)
		return err;
	return nb;
}

static int kvm_htab_release(struct inode *inode, struct file *filp)
{
	struct kvm_htab_ctx *ctx = filp->private_data;

	filp->private_data = NULL;
	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
	kvm_put_kvm(ctx->kvm);
	kfree(ctx);
	return 0;
}

1900
static const struct file_operations kvm_htab_fops = {
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	.read		= kvm_htab_read,
	.write		= kvm_htab_write,
	.llseek		= default_llseek,
	.release	= kvm_htab_release,
};

int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
{
	int ret;
	struct kvm_htab_ctx *ctx;
	int rwflag;

	/* reject flags we don't recognize */
	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
		return -EINVAL;
	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
	if (!ctx)
		return -ENOMEM;
	kvm_get_kvm(kvm);
	ctx->kvm = kvm;
	ctx->index = ghf->start_index;
	ctx->flags = ghf->flags;
	ctx->first_pass = 1;

	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1926
	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
	if (ret < 0) {
		kvm_put_kvm(kvm);
		return ret;
	}

	if (rwflag == O_RDONLY) {
		mutex_lock(&kvm->slots_lock);
		atomic_inc(&kvm->arch.hpte_mod_interest);
		/* make sure kvmppc_do_h_enter etc. see the increment */
		synchronize_srcu_expedited(&kvm->srcu);
		mutex_unlock(&kvm->slots_lock);
	}

	return ret;
}

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
struct debugfs_htab_state {
	struct kvm	*kvm;
	struct mutex	mutex;
	unsigned long	hpt_index;
	int		chars_left;
	int		buf_index;
	char		buf[64];
};

static int debugfs_htab_open(struct inode *inode, struct file *file)
{
	struct kvm *kvm = inode->i_private;
	struct debugfs_htab_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(kvm);
	p->kvm = kvm;
	mutex_init(&p->mutex);
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_htab_release(struct inode *inode, struct file *file)
{
	struct debugfs_htab_state *p = file->private_data;

	kvm_put_kvm(p->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
				 size_t len, loff_t *ppos)
{
	struct debugfs_htab_state *p = file->private_data;
	ssize_t ret, r;
	unsigned long i, n;
	unsigned long v, hr, gr;
	struct kvm *kvm;
	__be64 *hptp;

	ret = mutex_lock_interruptible(&p->mutex);
	if (ret)
		return ret;

	if (p->chars_left) {
		n = p->chars_left;
		if (n > len)
			n = len;
		r = copy_to_user(buf, p->buf + p->buf_index, n);
		n -= r;
		p->chars_left -= n;
		p->buf_index += n;
		buf += n;
		len -= n;
		ret = n;
		if (r) {
			if (!n)
				ret = -EFAULT;
			goto out;
		}
	}

	kvm = p->kvm;
	i = p->hpt_index;
2012
	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2013 2014
	for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
	     ++i, hptp += 2) {
2015 2016 2017 2018 2019 2020 2021 2022 2023
		if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
			continue;

		/* lock the HPTE so it's stable and read it */
		preempt_disable();
		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
			cpu_relax();
		v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
		hr = be64_to_cpu(hptp[1]);
2024
		gr = kvm->arch.hpt.rev[i].guest_rpte;
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
		unlock_hpte(hptp, v);
		preempt_enable();

		if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
			continue;

		n = scnprintf(p->buf, sizeof(p->buf),
			      "%6lx %.16lx %.16lx %.16lx\n",
			      i, v, hr, gr);
		p->chars_left = n;
		if (n > len)
			n = len;
		r = copy_to_user(buf, p->buf, n);
		n -= r;
		p->chars_left -= n;
		p->buf_index = n;
		buf += n;
		len -= n;
		ret += n;
		if (r) {
			if (!ret)
				ret = -EFAULT;
			goto out;
		}
	}
	p->hpt_index = i;

 out:
	mutex_unlock(&p->mutex);
	return ret;
}

2057
static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
			   size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_htab_fops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_htab_open,
	.release = debugfs_htab_release,
	.read	 = debugfs_htab_read,
	.write	 = debugfs_htab_write,
	.llseek	 = generic_file_llseek,
};

void kvmppc_mmu_debugfs_init(struct kvm *kvm)
{
	kvm->arch.htab_dentry = debugfs_create_file("htab", 0400,
						    kvm->arch.debugfs_dir, kvm,
						    &debugfs_htab_fops);
}

2079 2080 2081 2082
void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
{
	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;

2083
	vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */
2084

2085 2086 2087 2088
	if (kvm_is_radix(vcpu->kvm))
		mmu->xlate = kvmppc_mmu_radix_xlate;
	else
		mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2089 2090 2091 2092
	mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;

	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
}