zlib.c 16.3 KB
Newer Older
C
Chris Mason 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 *
 * Based on jffs2 zlib code:
 * Copyright © 2001-2007 Red Hat, Inc.
 * Created by David Woodhouse <dwmw2@infradead.org>
 */

#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/zlib.h>
#include <linux/zutil.h>
#include <linux/vmalloc.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/sched.h>
#include <linux/pagemap.h>
#include <linux/bio.h>
33
#include "compression.h"
C
Chris Mason 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373

/* Plan: call deflate() with avail_in == *sourcelen,
	avail_out = *dstlen - 12 and flush == Z_FINISH.
	If it doesn't manage to finish,	call it again with
	avail_in == 0 and avail_out set to the remaining 12
	bytes for it to clean up.
   Q: Is 12 bytes sufficient?
*/
#define STREAM_END_SPACE 12

struct workspace {
	z_stream inf_strm;
	z_stream def_strm;
	char *buf;
	struct list_head list;
};

static LIST_HEAD(idle_workspace);
static DEFINE_SPINLOCK(workspace_lock);
static unsigned long num_workspace;
static atomic_t alloc_workspace = ATOMIC_INIT(0);
static DECLARE_WAIT_QUEUE_HEAD(workspace_wait);

/*
 * this finds an available zlib workspace or allocates a new one
 * NULL or an ERR_PTR is returned if things go bad.
 */
static struct workspace *find_zlib_workspace(void)
{
	struct workspace *workspace;
	int ret;
	int cpus = num_online_cpus();

again:
	spin_lock(&workspace_lock);
	if (!list_empty(&idle_workspace)) {
		workspace = list_entry(idle_workspace.next, struct workspace,
				       list);
		list_del(&workspace->list);
		num_workspace--;
		spin_unlock(&workspace_lock);
		return workspace;

	}
	spin_unlock(&workspace_lock);
	if (atomic_read(&alloc_workspace) > cpus) {
		DEFINE_WAIT(wait);
		prepare_to_wait(&workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
		if (atomic_read(&alloc_workspace) > cpus)
			schedule();
		finish_wait(&workspace_wait, &wait);
		goto again;
	}
	atomic_inc(&alloc_workspace);
	workspace = kzalloc(sizeof(*workspace), GFP_NOFS);
	if (!workspace) {
		ret = -ENOMEM;
		goto fail;
	}

	workspace->def_strm.workspace = vmalloc(zlib_deflate_workspacesize());
	if (!workspace->def_strm.workspace) {
		ret = -ENOMEM;
		goto fail;
	}
	workspace->inf_strm.workspace = vmalloc(zlib_inflate_workspacesize());
	if (!workspace->inf_strm.workspace) {
		ret = -ENOMEM;
		goto fail_inflate;
	}
	workspace->buf = kmalloc(PAGE_CACHE_SIZE, GFP_NOFS);
	if (!workspace->buf) {
		ret = -ENOMEM;
		goto fail_kmalloc;
	}
	return workspace;

fail_kmalloc:
	vfree(workspace->inf_strm.workspace);
fail_inflate:
	vfree(workspace->def_strm.workspace);
fail:
	kfree(workspace);
	atomic_dec(&alloc_workspace);
	wake_up(&workspace_wait);
	return ERR_PTR(ret);
}

/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
static int free_workspace(struct workspace *workspace)
{
	spin_lock(&workspace_lock);
	if (num_workspace < num_online_cpus()) {
		list_add_tail(&workspace->list, &idle_workspace);
		num_workspace++;
		spin_unlock(&workspace_lock);
		if (waitqueue_active(&workspace_wait))
			wake_up(&workspace_wait);
		return 0;
	}
	spin_unlock(&workspace_lock);
	vfree(workspace->def_strm.workspace);
	vfree(workspace->inf_strm.workspace);
	kfree(workspace->buf);
	kfree(workspace);

	atomic_dec(&alloc_workspace);
	if (waitqueue_active(&workspace_wait))
		wake_up(&workspace_wait);
	return 0;
}

/*
 * cleanup function for module exit
 */
static void free_workspaces(void)
{
	struct workspace *workspace;
	while(!list_empty(&idle_workspace)) {
		workspace = list_entry(idle_workspace.next, struct workspace,
				       list);
		list_del(&workspace->list);
		vfree(workspace->def_strm.workspace);
		vfree(workspace->inf_strm.workspace);
		kfree(workspace->buf);
		kfree(workspace);
		atomic_dec(&alloc_workspace);
	}
}

/*
 * given an address space and start/len, compress the bytes.
 *
 * pages are allocated to hold the compressed result and stored
 * in 'pages'
 *
 * out_pages is used to return the number of pages allocated.  There
 * may be pages allocated even if we return an error
 *
 * total_in is used to return the number of bytes actually read.  It
 * may be smaller then len if we had to exit early because we
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
 * total_out is used to return the total number of compressed bytes
 *
 * max_out tells us the max number of bytes that we're allowed to
 * stuff into pages
 */
int btrfs_zlib_compress_pages(struct address_space *mapping,
			      u64 start, unsigned long len,
			      struct page **pages,
			      unsigned long nr_dest_pages,
			      unsigned long *out_pages,
			      unsigned long *total_in,
			      unsigned long *total_out,
			      unsigned long max_out)
{
	int ret;
	struct workspace *workspace;
	char *data_in;
	char *cpage_out;
	int nr_pages = 0;
	struct page *in_page = NULL;
	struct page *out_page = NULL;
	int out_written = 0;
	int in_read = 0;
	unsigned long bytes_left;

	*out_pages = 0;
	*total_out = 0;
	*total_in = 0;

	workspace = find_zlib_workspace();
	if (!workspace)
		return -1;

	if (Z_OK != zlib_deflateInit(&workspace->def_strm, 3)) {
		printk(KERN_WARNING "deflateInit failed\n");
		ret = -1;
		goto out;
	}

	workspace->def_strm.total_in = 0;
	workspace->def_strm.total_out = 0;

	in_page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
	data_in = kmap(in_page);

	out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
	cpage_out = kmap(out_page);
	pages[0] = out_page;
	nr_pages = 1;

	workspace->def_strm.next_in = data_in;
	workspace->def_strm.next_out = cpage_out;
	workspace->def_strm.avail_out = PAGE_CACHE_SIZE;
	workspace->def_strm.avail_in = min(len, PAGE_CACHE_SIZE);

	out_written = 0;
	in_read = 0;

	while (workspace->def_strm.total_in < len) {
		ret = zlib_deflate(&workspace->def_strm, Z_SYNC_FLUSH);
		if (ret != Z_OK) {
			printk(KERN_DEBUG "btrfs deflate in loop returned %d\n",
			       ret);
			zlib_deflateEnd(&workspace->def_strm);
			ret = -1;
			goto out;
		}

		/* we're making it bigger, give up */
		if (workspace->def_strm.total_in > 8192 &&
		    workspace->def_strm.total_in <
		    workspace->def_strm.total_out) {
			ret = -1;
			goto out;
		}
		/* we need another page for writing out.  Test this
		 * before the total_in so we will pull in a new page for
		 * the stream end if required
		 */
		if (workspace->def_strm.avail_out == 0) {
			kunmap(out_page);
			if (nr_pages == nr_dest_pages) {
				out_page = NULL;
				ret = -1;
				goto out;
			}
			out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
			cpage_out = kmap(out_page);
			pages[nr_pages] = out_page;
			nr_pages++;
			workspace->def_strm.avail_out = PAGE_CACHE_SIZE;
			workspace->def_strm.next_out = cpage_out;
		}
		/* we're all done */
		if (workspace->def_strm.total_in >= len)
			break;

		/* we've read in a full page, get a new one */
		if (workspace->def_strm.avail_in == 0) {
			if (workspace->def_strm.total_out > max_out)
				break;

			bytes_left = len - workspace->def_strm.total_in;
			kunmap(in_page);
			page_cache_release(in_page);

			start += PAGE_CACHE_SIZE;
			in_page = find_get_page(mapping,
						start >> PAGE_CACHE_SHIFT);
			data_in = kmap(in_page);
			workspace->def_strm.avail_in = min(bytes_left,
							   PAGE_CACHE_SIZE);
			workspace->def_strm.next_in = data_in;
		}
	}
	workspace->def_strm.avail_in = 0;
	ret = zlib_deflate(&workspace->def_strm, Z_FINISH);
	zlib_deflateEnd(&workspace->def_strm);

	if (ret != Z_STREAM_END) {
		ret = -1;
		goto out;
	}

	if (workspace->def_strm.total_out >= workspace->def_strm.total_in) {
		ret = -1;
		goto out;
	}

	ret = 0;
	*total_out = workspace->def_strm.total_out;
	*total_in = workspace->def_strm.total_in;
out:
	*out_pages = nr_pages;
	if (out_page)
		kunmap(out_page);

	if (in_page) {
		kunmap(in_page);
		page_cache_release(in_page);
	}
	free_workspace(workspace);
	return ret;
}

/*
 * pages_in is an array of pages with compressed data.
 *
 * disk_start is the starting logical offset of this array in the file
 *
 * bvec is a bio_vec of pages from the file that we want to decompress into
 *
 * vcnt is the count of pages in the biovec
 *
 * srclen is the number of bytes in pages_in
 *
 * The basic idea is that we have a bio that was created by readpages.
 * The pages in the bio are for the uncompressed data, and they may not
 * be contiguous.  They all correspond to the range of bytes covered by
 * the compressed extent.
 */
int btrfs_zlib_decompress_biovec(struct page **pages_in,
			      u64 disk_start,
			      struct bio_vec *bvec,
			      int vcnt,
			      size_t srclen)
{
	int ret = 0;
	int wbits = MAX_WBITS;
	struct workspace *workspace;
	char *data_in;
	size_t total_out = 0;
	unsigned long page_bytes_left;
	unsigned long page_in_index = 0;
	unsigned long page_out_index = 0;
	struct page *page_out;
	unsigned long total_pages_in = (srclen + PAGE_CACHE_SIZE - 1) /
					PAGE_CACHE_SIZE;
	unsigned long buf_start;
	unsigned long buf_offset;
	unsigned long bytes;
	unsigned long working_bytes;
	unsigned long pg_offset;
	unsigned long start_byte;
	unsigned long current_buf_start;
	char *kaddr;

	workspace = find_zlib_workspace();
	if (!workspace)
		return -ENOMEM;

	data_in = kmap(pages_in[page_in_index]);
	workspace->inf_strm.next_in = data_in;
374
	workspace->inf_strm.avail_in = min_t(size_t, srclen, PAGE_CACHE_SIZE);
C
Chris Mason 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
	workspace->inf_strm.total_in = 0;

	workspace->inf_strm.total_out = 0;
	workspace->inf_strm.next_out = workspace->buf;
	workspace->inf_strm.avail_out = PAGE_CACHE_SIZE;
	page_out = bvec[page_out_index].bv_page;
	page_bytes_left = PAGE_CACHE_SIZE;
	pg_offset = 0;

	/* If it's deflate, and it's got no preset dictionary, then
	   we can tell zlib to skip the adler32 check. */
	if (srclen > 2 && !(data_in[1] & PRESET_DICT) &&
	    ((data_in[0] & 0x0f) == Z_DEFLATED) &&
	    !(((data_in[0]<<8) + data_in[1]) % 31)) {

		wbits = -((data_in[0] >> 4) + 8);
		workspace->inf_strm.next_in += 2;
		workspace->inf_strm.avail_in -= 2;
	}

	if (Z_OK != zlib_inflateInit2(&workspace->inf_strm, wbits)) {
		printk(KERN_WARNING "inflateInit failed\n");
		ret = -1;
		goto out;
	}
	while(workspace->inf_strm.total_in < srclen) {
		ret = zlib_inflate(&workspace->inf_strm, Z_NO_FLUSH);
		if (ret != Z_OK && ret != Z_STREAM_END) {
			break;
		}

		/*
		 * buf start is the byte offset we're of the start of
		 * our workspace buffer
		 */
		buf_start = total_out;

		/* total_out is the last byte of the workspace buffer */
		total_out = workspace->inf_strm.total_out;

		working_bytes = total_out - buf_start;

		/*
		 * start byte is the first byte of the page we're currently
		 * copying into relative to the start of the compressed data.
		 */
		start_byte = page_offset(page_out) - disk_start;

		if (working_bytes == 0) {
			/* we didn't make progress in this inflate
			 * call, we're done
			 */
427
			if (ret != Z_STREAM_END) {
C
Chris Mason 已提交
428
				ret = -1;
429
			}
C
Chris Mason 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
			break;
		}

		/* we haven't yet hit data corresponding to this page */
		if (total_out <= start_byte) {
			goto next;
		}

		/*
		 * the start of the data we care about is offset into
		 * the middle of our working buffer
		 */
		if (total_out > start_byte && buf_start < start_byte) {
			buf_offset = start_byte - buf_start;
			working_bytes -= buf_offset;
		} else {
			buf_offset = 0;
		}
		current_buf_start = buf_start;

		/* copy bytes from the working buffer into the pages */
		while(working_bytes > 0) {
			bytes = min(PAGE_CACHE_SIZE - pg_offset,
				    PAGE_CACHE_SIZE - buf_offset);
			bytes = min(bytes, working_bytes);
			kaddr = kmap_atomic(page_out, KM_USER0);
			memcpy(kaddr + pg_offset, workspace->buf + buf_offset,
			       bytes);
			kunmap_atomic(kaddr, KM_USER0);
			flush_dcache_page(page_out);

			pg_offset += bytes;
			page_bytes_left -= bytes;
			buf_offset += bytes;
			working_bytes -= bytes;
			current_buf_start += bytes;

			/* check if we need to pick another page */
			if (page_bytes_left == 0) {
				page_out_index++;
				if (page_out_index >= vcnt) {
					ret = 0;
					goto done;
				}
				page_out = bvec[page_out_index].bv_page;
				pg_offset = 0;
				page_bytes_left = PAGE_CACHE_SIZE;
				start_byte = page_offset(page_out) - disk_start;

				/*
				 * make sure our new page is covered by this
				 * working buffer
				 */
				if (total_out <= start_byte) {
					goto next;
				}

				/* the next page in the biovec might not
				 * be adjacent to the last page, but it
				 * might still be found inside this working
				 * buffer.  bump our offset pointer
				 */
				if (total_out > start_byte &&
				    current_buf_start < start_byte) {
					buf_offset = start_byte - buf_start;
					working_bytes = total_out - start_byte;
					current_buf_start = buf_start +
						buf_offset;
				}
			}
		}
next:
		workspace->inf_strm.next_out = workspace->buf;
		workspace->inf_strm.avail_out = PAGE_CACHE_SIZE;

		if (workspace->inf_strm.avail_in == 0) {
			unsigned long tmp;
			kunmap(pages_in[page_in_index]);
			page_in_index++;
			if (page_in_index >= total_pages_in) {
				data_in = NULL;
				break;
			}
			data_in = kmap(pages_in[page_in_index]);
			workspace->inf_strm.next_in = data_in;
			tmp = srclen - workspace->inf_strm.total_in;
			workspace->inf_strm.avail_in = min(tmp,
							   PAGE_CACHE_SIZE);
		}
	}
	if (ret != Z_STREAM_END) {
		ret = -1;
	} else {
		ret = 0;
	}
done:
	zlib_inflateEnd(&workspace->inf_strm);
	if (data_in)
		kunmap(pages_in[page_in_index]);
out:
	free_workspace(workspace);
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_zlib_decompress(unsigned char *data_in,
			  struct page *dest_page,
			  unsigned long start_byte,
			  size_t srclen, size_t destlen)
{
	int ret = 0;
	int wbits = MAX_WBITS;
	struct workspace *workspace;
	unsigned long bytes_left = destlen;
	unsigned long total_out = 0;
	char *kaddr;

	if (destlen > PAGE_CACHE_SIZE)
		return -ENOMEM;

	workspace = find_zlib_workspace();
	if (!workspace)
		return -ENOMEM;

	workspace->inf_strm.next_in = data_in;
	workspace->inf_strm.avail_in = srclen;
	workspace->inf_strm.total_in = 0;

	workspace->inf_strm.next_out = workspace->buf;
	workspace->inf_strm.avail_out = PAGE_CACHE_SIZE;
	workspace->inf_strm.total_out = 0;
	/* If it's deflate, and it's got no preset dictionary, then
	   we can tell zlib to skip the adler32 check. */
	if (srclen > 2 && !(data_in[1] & PRESET_DICT) &&
	    ((data_in[0] & 0x0f) == Z_DEFLATED) &&
	    !(((data_in[0]<<8) + data_in[1]) % 31)) {

		wbits = -((data_in[0] >> 4) + 8);
		workspace->inf_strm.next_in += 2;
		workspace->inf_strm.avail_in -= 2;
	}

	if (Z_OK != zlib_inflateInit2(&workspace->inf_strm, wbits)) {
		printk(KERN_WARNING "inflateInit failed\n");
		ret = -1;
		goto out;
	}

	while(bytes_left > 0) {
		unsigned long buf_start;
		unsigned long buf_offset;
		unsigned long bytes;
		unsigned long pg_offset = 0;

		ret = zlib_inflate(&workspace->inf_strm, Z_NO_FLUSH);
		if (ret != Z_OK && ret != Z_STREAM_END) {
			break;
		}

		buf_start = total_out;
		total_out = workspace->inf_strm.total_out;

		if (total_out == buf_start) {
			ret = -1;
			break;
		}

		if (total_out <= start_byte) {
			goto next;
		}

		if (total_out > start_byte && buf_start < start_byte) {
			buf_offset = start_byte - buf_start;
		} else {
			buf_offset = 0;
		}

		bytes = min(PAGE_CACHE_SIZE - pg_offset,
			    PAGE_CACHE_SIZE - buf_offset);
		bytes = min(bytes, bytes_left);

		kaddr = kmap_atomic(dest_page, KM_USER0);
		memcpy(kaddr + pg_offset, workspace->buf + buf_offset, bytes);
		kunmap_atomic(kaddr, KM_USER0);

		pg_offset += bytes;
		bytes_left -= bytes;
next:
		workspace->inf_strm.next_out = workspace->buf;
		workspace->inf_strm.avail_out = PAGE_CACHE_SIZE;
	}
	if (ret != Z_STREAM_END && bytes_left != 0) {
		ret = -1;
	} else {
		ret = 0;
	}
	zlib_inflateEnd(&workspace->inf_strm);
out:
	free_workspace(workspace);
	return ret;
}

void btrfs_zlib_exit(void)
{
    free_workspaces();
}