compaction.c 19.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17 18
#include "internal.h"

19 20 21
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 * compact_control is used to track pages being migrated and the free pages
 * they are being migrated to during memory compaction. The free_pfn starts
 * at the end of a zone and migrate_pfn begins at the start. Movable pages
 * are moved to the end of a zone during a compaction run and the run
 * completes when free_pfn <= migrate_pfn
 */
struct compact_control {
	struct list_head freepages;	/* List of free pages to migrate to */
	struct list_head migratepages;	/* List of pages being migrated */
	unsigned long nr_freepages;	/* Number of isolated free pages */
	unsigned long nr_migratepages;	/* Number of pages to migrate */
	unsigned long free_pfn;		/* isolate_freepages search base */
	unsigned long migrate_pfn;	/* isolate_migratepages search base */
36
	bool sync;			/* Synchronous migration */
37

38 39
	unsigned int order;		/* order a direct compactor needs */
	int migratetype;		/* MOVABLE, RECLAIMABLE etc */
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
	struct zone *zone;
};

static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
	unsigned long count = 0;

	list_for_each_entry_safe(page, next, freelist, lru) {
		list_del(&page->lru);
		__free_page(page);
		count++;
	}

	return count;
}

/* Isolate free pages onto a private freelist. Must hold zone->lock */
static unsigned long isolate_freepages_block(struct zone *zone,
				unsigned long blockpfn,
				struct list_head *freelist)
{
	unsigned long zone_end_pfn, end_pfn;
63
	int nr_scanned = 0, total_isolated = 0;
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
	struct page *cursor;

	/* Get the last PFN we should scan for free pages at */
	zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
	end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);

	/* Find the first usable PFN in the block to initialse page cursor */
	for (; blockpfn < end_pfn; blockpfn++) {
		if (pfn_valid_within(blockpfn))
			break;
	}
	cursor = pfn_to_page(blockpfn);

	/* Isolate free pages. This assumes the block is valid */
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

		if (!pfn_valid_within(blockpfn))
			continue;
84
		nr_scanned++;
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

		if (!PageBuddy(page))
			continue;

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
			blockpfn += isolated - 1;
			cursor += isolated - 1;
		}
	}

104
	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
	return total_isolated;
}

/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{

	int migratetype = get_pageblock_migratetype(page);

	/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
	if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
		return false;

	/* If the page is a large free page, then allow migration */
	if (PageBuddy(page) && page_order(page) >= pageblock_order)
		return true;

	/* If the block is MIGRATE_MOVABLE, allow migration */
	if (migratetype == MIGRATE_MOVABLE)
		return true;

	/* Otherwise skip the block */
	return false;
}

/*
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
 */
static void isolate_freepages(struct zone *zone,
				struct compact_control *cc)
{
	struct page *page;
	unsigned long high_pfn, low_pfn, pfn;
	unsigned long flags;
	int nr_freepages = cc->nr_freepages;
	struct list_head *freelist = &cc->freepages;

143 144 145 146 147
	/*
	 * Initialise the free scanner. The starting point is where we last
	 * scanned from (or the end of the zone if starting). The low point
	 * is the end of the pageblock the migration scanner is using.
	 */
148 149
	pfn = cc->free_pfn;
	low_pfn = cc->migrate_pfn + pageblock_nr_pages;
150 151 152 153 154 155 156

	/*
	 * Take care that if the migration scanner is at the end of the zone
	 * that the free scanner does not accidentally move to the next zone
	 * in the next isolation cycle.
	 */
	high_pfn = min(low_pfn, pfn);
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184

	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
	for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
					pfn -= pageblock_nr_pages) {
		unsigned long isolated;

		if (!pfn_valid(pfn))
			continue;

		/*
		 * Check for overlapping nodes/zones. It's possible on some
		 * configurations to have a setup like
		 * node0 node1 node0
		 * i.e. it's possible that all pages within a zones range of
		 * pages do not belong to a single zone.
		 */
		page = pfn_to_page(pfn);
		if (page_zone(page) != zone)
			continue;

		/* Check the block is suitable for migration */
		if (!suitable_migration_target(page))
			continue;

185 186 187 188 189 190 191 192 193 194 195 196 197
		/*
		 * Found a block suitable for isolating free pages from. Now
		 * we disabled interrupts, double check things are ok and
		 * isolate the pages. This is to minimise the time IRQs
		 * are disabled
		 */
		isolated = 0;
		spin_lock_irqsave(&zone->lock, flags);
		if (suitable_migration_target(page)) {
			isolated = isolate_freepages_block(zone, pfn, freelist);
			nr_freepages += isolated;
		}
		spin_unlock_irqrestore(&zone->lock, flags);
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

		/*
		 * Record the highest PFN we isolated pages from. When next
		 * looking for free pages, the search will restart here as
		 * page migration may have returned some pages to the allocator
		 */
		if (isolated)
			high_pfn = max(high_pfn, pfn);
	}

	/* split_free_page does not map the pages */
	list_for_each_entry(page, freelist, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
	}

	cc->free_pfn = high_pfn;
	cc->nr_freepages = nr_freepages;
}

/* Update the number of anon and file isolated pages in the zone */
static void acct_isolated(struct zone *zone, struct compact_control *cc)
{
	struct page *page;
222
	unsigned int count[2] = { 0, };
223

224 225
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
226

227 228
	__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
	__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
229 230 231 232 233
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
234
	unsigned long active, inactive, isolated;
235 236 237

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
238 239
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
240 241 242
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

243
	return isolated > (inactive + active) / 2;
244 245
}

246 247 248 249 250 251 252
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

253 254 255 256
/*
 * Isolate all pages that can be migrated from the block pointed to by
 * the migrate scanner within compact_control.
 */
257
static isolate_migrate_t isolate_migratepages(struct zone *zone,
258 259 260
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;
261
	unsigned long last_pageblock_nr = 0, pageblock_nr;
262
	unsigned long nr_scanned = 0, nr_isolated = 0;
263
	struct list_head *migratelist = &cc->migratepages;
264
	isolate_mode_t mode = ISOLATE_ACTIVE|ISOLATE_INACTIVE;
265 266 267 268 269 270 271 272 273 274

	/* Do not scan outside zone boundaries */
	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);

	/* Only scan within a pageblock boundary */
	end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);

	/* Do not cross the free scanner or scan within a memory hole */
	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
		cc->migrate_pfn = end_pfn;
275
		return ISOLATE_NONE;
276 277 278 279 280 281 282 283
	}

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
284 285 286 287
		/* async migration should just abort */
		if (!cc->sync)
			return ISOLATE_ABORT;

288 289 290
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
291
			return ISOLATE_ABORT;
292 293 294
	}

	/* Time to isolate some pages for migration */
295
	cond_resched();
296 297 298
	spin_lock_irq(&zone->lru_lock);
	for (; low_pfn < end_pfn; low_pfn++) {
		struct page *page;
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
		bool locked = true;

		/* give a chance to irqs before checking need_resched() */
		if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
			spin_unlock_irq(&zone->lru_lock);
			locked = false;
		}
		if (need_resched() || spin_is_contended(&zone->lru_lock)) {
			if (locked)
				spin_unlock_irq(&zone->lru_lock);
			cond_resched();
			spin_lock_irq(&zone->lru_lock);
			if (fatal_signal_pending(current))
				break;
		} else if (!locked)
			spin_lock_irq(&zone->lru_lock);

316 317
		if (!pfn_valid_within(low_pfn))
			continue;
318
		nr_scanned++;
319 320 321 322 323 324

		/* Get the page and skip if free */
		page = pfn_to_page(low_pfn);
		if (PageBuddy(page))
			continue;

325 326 327 328 329 330 331 332 333 334 335 336 337 338
		/*
		 * For async migration, also only scan in MOVABLE blocks. Async
		 * migration is optimistic to see if the minimum amount of work
		 * satisfies the allocation
		 */
		pageblock_nr = low_pfn >> pageblock_order;
		if (!cc->sync && last_pageblock_nr != pageblock_nr &&
				get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
			low_pfn += pageblock_nr_pages;
			low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
			last_pageblock_nr = pageblock_nr;
			continue;
		}

339 340 341 342 343 344 345 346 347 348 349 350 351
		if (!PageLRU(page))
			continue;

		/*
		 * PageLRU is set, and lru_lock excludes isolation,
		 * splitting and collapsing (collapsing has already
		 * happened if PageLRU is set).
		 */
		if (PageTransHuge(page)) {
			low_pfn += (1 << compound_order(page)) - 1;
			continue;
		}

352
		/* Try isolate the page */
353
		if (__isolate_lru_page(page, mode, 0) != 0)
354 355
			continue;

356 357
		VM_BUG_ON(PageTransCompound(page));

358 359 360 361
		/* Successfully isolated */
		del_page_from_lru_list(zone, page, page_lru(page));
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
362
		nr_isolated++;
363 364

		/* Avoid isolating too much */
365 366
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
367
			break;
368
		}
369 370 371 372 373 374 375
	}

	acct_isolated(zone, cc);

	spin_unlock_irq(&zone->lru_lock);
	cc->migrate_pfn = low_pfn;

376 377
	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);

378
	return ISOLATE_SUCCESS;
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

	/* Isolate free pages if necessary */
	if (list_empty(&cc->freepages)) {
		isolate_freepages(cc->zone, cc);

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
 * We cannot control nr_migratepages and nr_freepages fully when migration is
 * running as migrate_pages() has no knowledge of compact_control. When
 * migration is complete, we count the number of pages on the lists by hand.
 */
static void update_nr_listpages(struct compact_control *cc)
{
	int nr_migratepages = 0;
	int nr_freepages = 0;
	struct page *page;

	list_for_each_entry(page, &cc->migratepages, lru)
		nr_migratepages++;
	list_for_each_entry(page, &cc->freepages, lru)
		nr_freepages++;

	cc->nr_migratepages = nr_migratepages;
	cc->nr_freepages = nr_freepages;
}

static int compact_finished(struct zone *zone,
428
			    struct compact_control *cc)
429
{
430
	unsigned int order;
431
	unsigned long watermark;
432

433 434 435 436 437 438 439
	if (fatal_signal_pending(current))
		return COMPACT_PARTIAL;

	/* Compaction run completes if the migrate and free scanner meet */
	if (cc->free_pfn <= cc->migrate_pfn)
		return COMPACT_COMPLETE;

440 441 442 443
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
444 445 446
	if (cc->order == -1)
		return COMPACT_CONTINUE;

447 448 449 450 451 452 453
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);
	watermark += (1 << cc->order);

	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
		return COMPACT_CONTINUE;

454 455 456 457 458 459 460 461 462 463 464
	/* Direct compactor: Is a suitable page free? */
	for (order = cc->order; order < MAX_ORDER; order++) {
		/* Job done if page is free of the right migratetype */
		if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
			return COMPACT_PARTIAL;

		/* Job done if allocation would set block type */
		if (order >= pageblock_order && zone->free_area[order].nr_free)
			return COMPACT_PARTIAL;
	}

465 466 467
	return COMPACT_CONTINUE;
}

468 469 470 471 472 473 474 475 476 477 478 479
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
unsigned long compaction_suitable(struct zone *zone, int order)
{
	int fragindex;
	unsigned long watermark;

480 481 482 483 484 485 486
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

487 488 489 490 491 492 493 494 495 496 497 498 499
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
	watermark = low_wmark_pages(zone) + (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
500 501
	 * index of -1000 implies allocations might succeed depending on
	 * watermarks
502 503 504 505 506 507 508 509 510
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
		return COMPACT_SKIPPED;

511 512
	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
	    0, 0))
513 514 515 516 517
		return COMPACT_PARTIAL;

	return COMPACT_CONTINUE;
}

518 519 520 521
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;

522 523 524 525 526 527 528 529 530 531 532
	ret = compaction_suitable(zone, cc->order);
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

533 534 535 536 537 538 539 540 541
	/* Setup to move all movable pages to the end of the zone */
	cc->migrate_pfn = zone->zone_start_pfn;
	cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
	cc->free_pfn &= ~(pageblock_nr_pages-1);

	migrate_prep_local();

	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
		unsigned long nr_migrate, nr_remaining;
542
		int err;
543

544 545 546 547 548
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
			goto out;
		case ISOLATE_NONE:
549
			continue;
550 551 552
		case ISOLATE_SUCCESS:
			;
		}
553 554

		nr_migrate = cc->nr_migratepages;
555
		err = migrate_pages(&cc->migratepages, compaction_alloc,
556
				(unsigned long)cc, false,
557
				cc->sync);
558 559 560 561 562 563 564
		update_nr_listpages(cc);
		nr_remaining = cc->nr_migratepages;

		count_vm_event(COMPACTBLOCKS);
		count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
		if (nr_remaining)
			count_vm_events(COMPACTPAGEFAILED, nr_remaining);
565 566
		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
						nr_remaining);
567 568

		/* Release LRU pages not migrated */
569
		if (err) {
570 571 572 573 574 575
			putback_lru_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
		}

	}

576
out:
577 578 579 580 581 582
	/* Release free pages and check accounting */
	cc->nr_freepages -= release_freepages(&cc->freepages);
	VM_BUG_ON(cc->nr_freepages != 0);

	return ret;
}
583

584
static unsigned long compact_zone_order(struct zone *zone,
585
				 int order, gfp_t gfp_mask,
586
				 bool sync)
587 588 589 590 591 592 593
{
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
		.migratetype = allocflags_to_migratetype(gfp_mask),
		.zone = zone,
594
		.sync = sync,
595 596 597 598 599 600 601
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

	return compact_zone(zone, &cc);
}

602 603
int sysctl_extfrag_threshold = 500;

604 605 606 607 608 609
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @zonelist: The zonelist used for the current allocation
 * @order: The order of the current allocation
 * @gfp_mask: The GFP mask of the current allocation
 * @nodemask: The allowed nodes to allocate from
610
 * @sync: Whether migration is synchronous or not
611 612 613 614
 *
 * This is the main entry point for direct page compaction.
 */
unsigned long try_to_compact_pages(struct zonelist *zonelist,
615 616
			int order, gfp_t gfp_mask, nodemask_t *nodemask,
			bool sync)
617 618 619 620 621 622 623 624 625 626 627 628 629
{
	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
	int rc = COMPACT_SKIPPED;

	/*
	 * Check whether it is worth even starting compaction. The order check is
	 * made because an assumption is made that the page allocator can satisfy
	 * the "cheaper" orders without taking special steps
	 */
630
	if (!order || !may_enter_fs || !may_perform_io)
631 632 633 634 635 636 637 638 639
		return rc;

	count_vm_event(COMPACTSTALL);

	/* Compact each zone in the list */
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
								nodemask) {
		int status;

640
		status = compact_zone_order(zone, order, gfp_mask, sync);
641 642
		rc = max(status, rc);

643 644
		/* If a normal allocation would succeed, stop compacting */
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
645 646 647 648 649 650 651
			break;
	}

	return rc;
}


652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
/* Compact all zones within a node */
static int compact_node(int nid)
{
	int zoneid;
	pg_data_t *pgdat;
	struct zone *zone;

	if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
		return -EINVAL;
	pgdat = NODE_DATA(nid);

	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct compact_control cc = {
			.nr_freepages = 0,
			.nr_migratepages = 0,
670
			.order = -1,
671
			.sync = true,
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
		};

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		cc.zone = zone;
		INIT_LIST_HEAD(&cc.freepages);
		INIT_LIST_HEAD(&cc.migratepages);

		compact_zone(zone, &cc);

		VM_BUG_ON(!list_empty(&cc.freepages));
		VM_BUG_ON(!list_empty(&cc.migratepages));
	}

	return 0;
}

/* Compact all nodes in the system */
static int compact_nodes(void)
{
	int nid;

	for_each_online_node(nid)
		compact_node(nid);

	return COMPACT_COMPLETE;
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
		return compact_nodes();

	return 0;
}
714

715 716 717 718 719 720 721 722
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

723
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
724 725
ssize_t sysfs_compact_node(struct device *dev,
			struct device_attribute *attr,
726 727 728 729 730 731
			const char *buf, size_t count)
{
	compact_node(dev->id);

	return count;
}
732
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
733 734 735

int compaction_register_node(struct node *node)
{
736
	return device_create_file(&node->dev, &dev_attr_compact);
737 738 739 740
}

void compaction_unregister_node(struct node *node)
{
741
	return device_remove_file(&node->dev, &dev_attr_compact);
742 743
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */