memory.c 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * drivers/base/memory.c - basic Memory class support
 *
 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
 *            Dave Hansen <haveblue@us.ibm.com>
 *
 * This file provides the necessary infrastructure to represent
 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
 * All arch-independent code that assumes MEMORY_HOTPLUG requires
 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
 */

#include <linux/sysdev.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/topology.h>
17
#include <linux/capability.h>
18 19 20 21 22
#include <linux/device.h>
#include <linux/memory.h>
#include <linux/kobject.h>
#include <linux/memory_hotplug.h>
#include <linux/mm.h>
23
#include <linux/mutex.h>
24 25 26 27 28 29
#include <asm/atomic.h>
#include <asm/uaccess.h>

#define MEMORY_CLASS_NAME	"memory"

static struct sysdev_class memory_sysdev_class = {
30
	.name = MEMORY_CLASS_NAME,
31 32
};

33
static const char *memory_uevent_name(struct kset *kset, struct kobject *kobj)
34 35 36 37
{
	return MEMORY_CLASS_NAME;
}

38
static int memory_uevent(struct kset *kset, struct kobject *obj, struct kobj_uevent_env *env)
39 40 41 42 43 44
{
	int retval = 0;

	return retval;
}

45 46 47
static struct kset_uevent_ops memory_uevent_ops = {
	.name		= memory_uevent_name,
	.uevent		= memory_uevent,
48 49
};

50
static BLOCKING_NOTIFIER_HEAD(memory_chain);
51

52
int register_memory_notifier(struct notifier_block *nb)
53
{
54
        return blocking_notifier_chain_register(&memory_chain, nb);
55
}
56
EXPORT_SYMBOL(register_memory_notifier);
57

58
void unregister_memory_notifier(struct notifier_block *nb)
59
{
60
        blocking_notifier_chain_unregister(&memory_chain, nb);
61
}
62
EXPORT_SYMBOL(unregister_memory_notifier);
63 64 65 66

/*
 * register_memory - Setup a sysfs device for a memory block
 */
67 68
static
int register_memory(struct memory_block *memory, struct mem_section *section)
69 70 71 72 73 74 75 76 77 78 79
{
	int error;

	memory->sysdev.cls = &memory_sysdev_class;
	memory->sysdev.id = __section_nr(section);

	error = sysdev_register(&memory->sysdev);
	return error;
}

static void
80
unregister_memory(struct memory_block *memory, struct mem_section *section)
81 82 83 84
{
	BUG_ON(memory->sysdev.cls != &memory_sysdev_class);
	BUG_ON(memory->sysdev.id != __section_nr(section));

85 86
	/* drop the ref. we got in remove_memory_block() */
	kobject_put(&memory->sysdev.kobj);
87 88 89 90 91 92 93 94
	sysdev_unregister(&memory->sysdev);
}

/*
 * use this as the physical section index that this memsection
 * uses.
 */

95 96
static ssize_t show_mem_phys_index(struct sys_device *dev,
			struct sysdev_attribute *attr, char *buf)
97 98 99 100 101 102
{
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);
	return sprintf(buf, "%08lx\n", mem->phys_index);
}

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
/*
 * Show whether the section of memory is likely to be hot-removable
 */
static ssize_t show_mem_removable(struct sys_device *dev, char *buf)
{
	unsigned long start_pfn;
	int ret;
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);

	start_pfn = section_nr_to_pfn(mem->phys_index);
	ret = is_mem_section_removable(start_pfn, PAGES_PER_SECTION);
	return sprintf(buf, "%d\n", ret);
}

118 119 120
/*
 * online, offline, going offline, etc.
 */
121 122
static ssize_t show_mem_state(struct sys_device *dev,
			struct sysdev_attribute *attr, char *buf)
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
{
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);
	ssize_t len = 0;

	/*
	 * We can probably put these states in a nice little array
	 * so that they're not open-coded
	 */
	switch (mem->state) {
		case MEM_ONLINE:
			len = sprintf(buf, "online\n");
			break;
		case MEM_OFFLINE:
			len = sprintf(buf, "offline\n");
			break;
		case MEM_GOING_OFFLINE:
			len = sprintf(buf, "going-offline\n");
			break;
		default:
			len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
					mem->state);
			WARN_ON(1);
			break;
	}

	return len;
}

152
int memory_notify(unsigned long val, void *v)
153
{
154
	return blocking_notifier_call_chain(&memory_chain, val, v);
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
}

/*
 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
 * OK to have direct references to sparsemem variables in here.
 */
static int
memory_block_action(struct memory_block *mem, unsigned long action)
{
	int i;
	unsigned long psection;
	unsigned long start_pfn, start_paddr;
	struct page *first_page;
	int ret;
	int old_state = mem->state;

	psection = mem->phys_index;
	first_page = pfn_to_page(psection << PFN_SECTION_SHIFT);

	/*
	 * The probe routines leave the pages reserved, just
	 * as the bootmem code does.  Make sure they're still
	 * that way.
	 */
	if (action == MEM_ONLINE) {
		for (i = 0; i < PAGES_PER_SECTION; i++) {
			if (PageReserved(first_page+i))
				continue;

			printk(KERN_WARNING "section number %ld page number %d "
				"not reserved, was it already online? \n",
				psection, i);
			return -EBUSY;
		}
	}

	switch (action) {
		case MEM_ONLINE:
			start_pfn = page_to_pfn(first_page);
			ret = online_pages(start_pfn, PAGES_PER_SECTION);
			break;
		case MEM_OFFLINE:
			mem->state = MEM_GOING_OFFLINE;
			start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
			ret = remove_memory(start_paddr,
					    PAGES_PER_SECTION << PAGE_SHIFT);
			if (ret) {
				mem->state = old_state;
				break;
			}
			break;
		default:
A
Arjan van de Ven 已提交
207
			WARN(1, KERN_WARNING "%s(%p, %ld) unknown action: %ld\n",
208
					__func__, mem, action, action);
209 210 211 212 213 214 215 216 217 218
			ret = -EINVAL;
	}

	return ret;
}

static int memory_block_change_state(struct memory_block *mem,
		unsigned long to_state, unsigned long from_state_req)
{
	int ret = 0;
219
	mutex_lock(&mem->state_mutex);
220 221 222 223 224 225 226 227 228 229 230

	if (mem->state != from_state_req) {
		ret = -EINVAL;
		goto out;
	}

	ret = memory_block_action(mem, to_state);
	if (!ret)
		mem->state = to_state;

out:
231
	mutex_unlock(&mem->state_mutex);
232 233 234 235
	return ret;
}

static ssize_t
236 237
store_mem_state(struct sys_device *dev,
		struct sysdev_attribute *attr, const char *buf, size_t count)
238 239 240 241 242 243 244 245
{
	struct memory_block *mem;
	unsigned int phys_section_nr;
	int ret = -EINVAL;

	mem = container_of(dev, struct memory_block, sysdev);
	phys_section_nr = mem->phys_index;

246
	if (!present_section_nr(phys_section_nr))
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
		goto out;

	if (!strncmp(buf, "online", min((int)count, 6)))
		ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
	else if(!strncmp(buf, "offline", min((int)count, 7)))
		ret = memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
out:
	if (ret)
		return ret;
	return count;
}

/*
 * phys_device is a bad name for this.  What I really want
 * is a way to differentiate between memory ranges that
 * are part of physical devices that constitute
 * a complete removable unit or fru.
 * i.e. do these ranges belong to the same physical device,
 * s.t. if I offline all of these sections I can then
 * remove the physical device?
 */
268 269
static ssize_t show_phys_device(struct sys_device *dev,
				struct sysdev_attribute *attr, char *buf)
270 271 272 273 274 275 276 277 278
{
	struct memory_block *mem =
		container_of(dev, struct memory_block, sysdev);
	return sprintf(buf, "%d\n", mem->phys_device);
}

static SYSDEV_ATTR(phys_index, 0444, show_mem_phys_index, NULL);
static SYSDEV_ATTR(state, 0644, show_mem_state, store_mem_state);
static SYSDEV_ATTR(phys_device, 0444, show_phys_device, NULL);
279
static SYSDEV_ATTR(removable, 0444, show_mem_removable, NULL);
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

#define mem_create_simple_file(mem, attr_name)	\
	sysdev_create_file(&mem->sysdev, &attr_##attr_name)
#define mem_remove_simple_file(mem, attr_name)	\
	sysdev_remove_file(&mem->sysdev, &attr_##attr_name)

/*
 * Block size attribute stuff
 */
static ssize_t
print_block_size(struct class *class, char *buf)
{
	return sprintf(buf, "%lx\n", (unsigned long)PAGES_PER_SECTION * PAGE_SIZE);
}

static CLASS_ATTR(block_size_bytes, 0444, print_block_size, NULL);

static int block_size_init(void)
{
299 300
	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
				&class_attr_block_size_bytes.attr);
301 302 303 304 305 306 307 308 309 310
}

/*
 * Some architectures will have custom drivers to do this, and
 * will not need to do it from userspace.  The fake hot-add code
 * as well as ppc64 will do all of their discovery in userspace
 * and will require this interface.
 */
#ifdef CONFIG_ARCH_MEMORY_PROBE
static ssize_t
311
memory_probe_store(struct class *class, const char *buf, size_t count)
312 313
{
	u64 phys_addr;
314
	int nid;
315 316 317 318
	int ret;

	phys_addr = simple_strtoull(buf, NULL, 0);

319 320
	nid = memory_add_physaddr_to_nid(phys_addr);
	ret = add_memory(nid, phys_addr, PAGES_PER_SECTION << PAGE_SHIFT);
321 322 323 324 325 326 327 328 329 330

	if (ret)
		count = ret;

	return count;
}
static CLASS_ATTR(probe, 0700, NULL, memory_probe_store);

static int memory_probe_init(void)
{
331 332
	return sysfs_create_file(&memory_sysdev_class.kset.kobj,
				&class_attr_probe.attr);
333 334
}
#else
335 336 337 338
static inline int memory_probe_init(void)
{
	return 0;
}
339 340 341 342 343 344 345 346 347 348 349
#endif

/*
 * Note that phys_device is optional.  It is here to allow for
 * differentiation between which *physical* devices each
 * section belongs to...
 */

static int add_memory_block(unsigned long node_id, struct mem_section *section,
		     unsigned long state, int phys_device)
{
350
	struct memory_block *mem = kzalloc(sizeof(*mem), GFP_KERNEL);
351 352 353 354 355 356 357
	int ret = 0;

	if (!mem)
		return -ENOMEM;

	mem->phys_index = __section_nr(section);
	mem->state = state;
358
	mutex_init(&mem->state_mutex);
359 360
	mem->phys_device = phys_device;

361
	ret = register_memory(mem, section);
362 363 364 365 366 367
	if (!ret)
		ret = mem_create_simple_file(mem, phys_index);
	if (!ret)
		ret = mem_create_simple_file(mem, state);
	if (!ret)
		ret = mem_create_simple_file(mem, phys_device);
368 369
	if (!ret)
		ret = mem_create_simple_file(mem, removable);
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413

	return ret;
}

/*
 * For now, we have a linear search to go find the appropriate
 * memory_block corresponding to a particular phys_index. If
 * this gets to be a real problem, we can always use a radix
 * tree or something here.
 *
 * This could be made generic for all sysdev classes.
 */
static struct memory_block *find_memory_block(struct mem_section *section)
{
	struct kobject *kobj;
	struct sys_device *sysdev;
	struct memory_block *mem;
	char name[sizeof(MEMORY_CLASS_NAME) + 9 + 1];

	/*
	 * This only works because we know that section == sysdev->id
	 * slightly redundant with sysdev_register()
	 */
	sprintf(&name[0], "%s%d", MEMORY_CLASS_NAME, __section_nr(section));

	kobj = kset_find_obj(&memory_sysdev_class.kset, name);
	if (!kobj)
		return NULL;

	sysdev = container_of(kobj, struct sys_device, kobj);
	mem = container_of(sysdev, struct memory_block, sysdev);

	return mem;
}

int remove_memory_block(unsigned long node_id, struct mem_section *section,
		int phys_device)
{
	struct memory_block *mem;

	mem = find_memory_block(section);
	mem_remove_simple_file(mem, phys_index);
	mem_remove_simple_file(mem, state);
	mem_remove_simple_file(mem, phys_device);
414
	mem_remove_simple_file(mem, removable);
415
	unregister_memory(mem, section);
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430

	return 0;
}

/*
 * need an interface for the VM to add new memory regions,
 * but without onlining it.
 */
int register_new_memory(struct mem_section *section)
{
	return add_memory_block(0, section, MEM_OFFLINE, 0);
}

int unregister_memory_section(struct mem_section *section)
{
431
	if (!present_section(section))
432 433 434 435 436 437 438 439 440 441 442 443
		return -EINVAL;

	return remove_memory_block(0, section, 0);
}

/*
 * Initialize the sysfs support for memory devices...
 */
int __init memory_dev_init(void)
{
	unsigned int i;
	int ret;
444
	int err;
445

446
	memory_sysdev_class.kset.uevent_ops = &memory_uevent_ops;
447
	ret = sysdev_class_register(&memory_sysdev_class);
448 449
	if (ret)
		goto out;
450 451 452 453 454 455

	/*
	 * Create entries for memory sections that were found
	 * during boot and have been initialized
	 */
	for (i = 0; i < NR_MEM_SECTIONS; i++) {
456
		if (!present_section_nr(i))
457
			continue;
458 459 460
		err = add_memory_block(0, __nr_to_section(i), MEM_ONLINE, 0);
		if (!ret)
			ret = err;
461 462
	}

463 464 465 466 467 468 469 470
	err = memory_probe_init();
	if (!ret)
		ret = err;
	err = block_size_init();
	if (!ret)
		ret = err;
out:
	if (ret)
471
		printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
472 473
	return ret;
}