cpuset.c 69.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
7
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
L
Linus Torvalds 已提交
8 9 10 11
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
12
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
13
 *  2003-10-22 Updates by Stephen Hemminger.
14
 *  2004 May-July Rework by Paul Jackson.
L
Linus Torvalds 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/config.h>
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
34
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
35 36 37 38 39 40
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
41
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
#include <asm/atomic.h>
55
#include <linux/mutex.h>
L
Linus Torvalds 已提交
56

57
#define CPUSET_SUPER_MAGIC		0x27e0eb
L
Linus Torvalds 已提交
58

59 60 61 62 63
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
64
int number_of_cpusets __read_mostly;
65

66 67 68 69 70 71 72 73 74
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
75 76 77 78 79
struct cpuset {
	unsigned long flags;		/* "unsigned long" so bitops work */
	cpumask_t cpus_allowed;		/* CPUs allowed to tasks in cpuset */
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

80 81 82
	/*
	 * Count is atomic so can incr (fork) or decr (exit) without a lock.
	 */
L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
	atomic_t count;			/* count tasks using this cpuset */

	/*
	 * We link our 'sibling' struct into our parents 'children'.
	 * Our children link their 'sibling' into our 'children'.
	 */
	struct list_head sibling;	/* my parents children */
	struct list_head children;	/* my children */

	struct cpuset *parent;		/* my parent */
	struct dentry *dentry;		/* cpuset fs entry */

	/*
	 * Copy of global cpuset_mems_generation as of the most
	 * recent time this cpuset changed its mems_allowed.
	 */
99 100 101
	int mems_generation;

	struct fmeter fmeter;		/* memory_pressure filter */
L
Linus Torvalds 已提交
102 103 104 105 106 107
};

/* bits in struct cpuset flags field */
typedef enum {
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
108
	CS_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
109
	CS_REMOVED,
110 111 112
	CS_NOTIFY_ON_RELEASE,
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
113 114 115 116 117
} cpuset_flagbits_t;

/* convenient tests for these bits */
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
118
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
119 120 121 122
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
123
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
124 125 126 127
}

static inline int is_removed(const struct cpuset *cs)
{
128
	return test_bit(CS_REMOVED, &cs->flags);
L
Linus Torvalds 已提交
129 130 131 132
}

static inline int notify_on_release(const struct cpuset *cs)
{
133
	return test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
L
Linus Torvalds 已提交
134 135
}

136 137
static inline int is_memory_migrate(const struct cpuset *cs)
{
138
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
139 140
}

141 142 143 144 145 146 147 148 149 150
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
/*
 * Increment this atomic integer everytime any cpuset changes its
 * mems_allowed value.  Users of cpusets can track this generation
 * number, and avoid having to lock and reload mems_allowed unless
 * the cpuset they're using changes generation.
 *
 * A single, global generation is needed because attach_task() could
 * reattach a task to a different cpuset, which must not have its
 * generation numbers aliased with those of that tasks previous cpuset.
 *
 * Generations are needed for mems_allowed because one task cannot
 * modify anothers memory placement.  So we must enable every task,
 * on every visit to __alloc_pages(), to efficiently check whether
 * its current->cpuset->mems_allowed has changed, requiring an update
 * of its current->mems_allowed.
 */
static atomic_t cpuset_mems_generation = ATOMIC_INIT(1);

static struct cpuset top_cpuset = {
	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
	.cpus_allowed = CPU_MASK_ALL,
	.mems_allowed = NODE_MASK_ALL,
	.count = ATOMIC_INIT(0),
	.sibling = LIST_HEAD_INIT(top_cpuset.sibling),
	.children = LIST_HEAD_INIT(top_cpuset.children),
};

static struct vfsmount *cpuset_mount;
179
static struct super_block *cpuset_sb;
L
Linus Torvalds 已提交
180 181

/*
182 183
 * We have two global cpuset mutexes below.  They can nest.
 * It is ok to first take manage_mutex, then nest callback_mutex.  We also
184 185 186
 * require taking task_lock() when dereferencing a tasks cpuset pointer.
 * See "The task_lock() exception", at the end of this comment.
 *
187 188 189
 * A task must hold both mutexes to modify cpusets.  If a task
 * holds manage_mutex, then it blocks others wanting that mutex,
 * ensuring that it is the only task able to also acquire callback_mutex
190 191
 * and be able to modify cpusets.  It can perform various checks on
 * the cpuset structure first, knowing nothing will change.  It can
192
 * also allocate memory while just holding manage_mutex.  While it is
193
 * performing these checks, various callback routines can briefly
194 195
 * acquire callback_mutex to query cpusets.  Once it is ready to make
 * the changes, it takes callback_mutex, blocking everyone else.
196 197
 *
 * Calls to the kernel memory allocator can not be made while holding
198
 * callback_mutex, as that would risk double tripping on callback_mutex
199 200 201
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
202
 * If a task is only holding callback_mutex, then it has read-only
203 204 205 206 207 208
 * access to cpusets.
 *
 * The task_struct fields mems_allowed and mems_generation may only
 * be accessed in the context of that task, so require no locks.
 *
 * Any task can increment and decrement the count field without lock.
209
 * So in general, code holding manage_mutex or callback_mutex can't rely
210
 * on the count field not changing.  However, if the count goes to
211
 * zero, then only attach_task(), which holds both mutexes, can
212 213 214
 * increment it again.  Because a count of zero means that no tasks
 * are currently attached, therefore there is no way a task attached
 * to that cpuset can fork (the other way to increment the count).
215
 * So code holding manage_mutex or callback_mutex can safely assume that
216
 * if the count is zero, it will stay zero.  Similarly, if a task
217
 * holds manage_mutex or callback_mutex on a cpuset with zero count, it
218
 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
219
 * both of those mutexes.
220 221
 *
 * The cpuset_common_file_write handler for operations that modify
222
 * the cpuset hierarchy holds manage_mutex across the entire operation,
223 224
 * single threading all such cpuset modifications across the system.
 *
225
 * The cpuset_common_file_read() handlers only hold callback_mutex across
226 227 228 229
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
230
 * (usually) take either mutex.  These are the two most performance
231
 * critical pieces of code here.  The exception occurs on cpuset_exit(),
232
 * when a task in a notify_on_release cpuset exits.  Then manage_mutex
233
 * is taken, and if the cpuset count is zero, a usermode call made
L
Linus Torvalds 已提交
234 235 236
 * to /sbin/cpuset_release_agent with the name of the cpuset (path
 * relative to the root of cpuset file system) as the argument.
 *
237 238 239 240 241 242 243 244 245 246 247 248 249
 * A cpuset can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cpusets is empty.  Since all
 * tasks in the system use _some_ cpuset, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cpuset
 * always has either children cpusets and/or using tasks.  So we don't
 * need a special hack to ensure that top_cpuset cannot be deleted.
 *
 * The above "Tale of Two Semaphores" would be complete, but for:
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of attach_task(),
 * which overwrites one tasks cpuset pointer with another.  It does
250
 * so using both mutexes, however there are several performance
251
 * critical places that need to reference task->cpuset without the
252
 * expense of grabbing a system global mutex.  Therefore except as
253 254 255 256
 * noted below, when dereferencing or, as in attach_task(), modifying
 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
 * (task->alloc_lock) already in the task_struct routinely used for
 * such matters.
257 258 259 260 261
 *
 * P.S.  One more locking exception.  RCU is used to guard the
 * update of a tasks cpuset pointer by attach_task() and the
 * access of task->cpuset->mems_generation via that pointer in
 * the routine cpuset_update_task_memory_state().
L
Linus Torvalds 已提交
262 263
 */

264 265
static DEFINE_MUTEX(manage_mutex);
static DEFINE_MUTEX(callback_mutex);
266

L
Linus Torvalds 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
/*
 * A couple of forward declarations required, due to cyclic reference loop:
 *  cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
 *  -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
 */

static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);

static struct backing_dev_info cpuset_backing_dev_info = {
	.ra_pages = 0,		/* No readahead */
	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
};

static struct inode *cpuset_new_inode(mode_t mode)
{
	struct inode *inode = new_inode(cpuset_sb);

	if (inode) {
		inode->i_mode = mode;
		inode->i_uid = current->fsuid;
		inode->i_gid = current->fsgid;
		inode->i_blksize = PAGE_CACHE_SIZE;
		inode->i_blocks = 0;
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
	}
	return inode;
}

static void cpuset_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cpuset */
	if (S_ISDIR(inode->i_mode)) {
		struct cpuset *cs = dentry->d_fsdata;
		BUG_ON(!(is_removed(cs)));
		kfree(cs);
	}
	iput(inode);
}

static struct dentry_operations cpuset_dops = {
	.d_iput = cpuset_diput,
};

static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
{
314
	struct dentry *d = lookup_one_len(name, parent, strlen(name));
L
Linus Torvalds 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
	if (!IS_ERR(d))
		d->d_op = &cpuset_dops;
	return d;
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cpuset_d_remove_dir(struct dentry *dentry)
{
	struct list_head *node;

	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
E
Eric Dumazet 已提交
339
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
L
Linus Torvalds 已提交
340 341 342 343 344 345 346 347 348 349 350
		list_del_init(node);
		if (d->d_inode) {
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
E
Eric Dumazet 已提交
351
	list_del_init(&dentry->d_u.d_child);
L
Linus Torvalds 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

static struct super_operations cpuset_ops = {
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
};

static int cpuset_fill_super(struct super_block *sb, void *unused_data,
							int unused_silent)
{
	struct inode *inode;
	struct dentry *root;

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CPUSET_SUPER_MAGIC;
	sb->s_op = &cpuset_ops;
	cpuset_sb = sb;

	inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
	if (inode) {
		inode->i_op = &simple_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;
		/* directories start off with i_nlink == 2 (for "." entry) */
		inode->i_nlink++;
	} else {
		return -ENOMEM;
	}

	root = d_alloc_root(inode);
	if (!root) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = root;
	return 0;
}

static struct super_block *cpuset_get_sb(struct file_system_type *fs_type,
					int flags, const char *unused_dev_name,
					void *data)
{
	return get_sb_single(fs_type, flags, data, cpuset_fill_super);
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
	.get_sb = cpuset_get_sb,
	.kill_sb = kill_litter_super,
};

/* struct cftype:
 *
 * The files in the cpuset filesystem mostly have a very simple read/write
 * handling, some common function will take care of it. Nevertheless some cases
 * (read tasks) are special and therefore I define this structure for every
 * kind of file.
 *
 *
 * When reading/writing to a file:
 *	- the cpuset to use in file->f_dentry->d_parent->d_fsdata
 *	- the 'cftype' of the file is file->f_dentry->d_fsdata
 */

struct cftype {
	char *name;
	int private;
	int (*open) (struct inode *inode, struct file *file);
	ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
							loff_t *ppos);
	int (*write) (struct file *file, const char __user *buf, size_t nbytes,
							loff_t *ppos);
	int (*release) (struct inode *inode, struct file *file);
};

static inline struct cpuset *__d_cs(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

/*
440
 * Call with manage_mutex held.  Writes path of cpuset into buf.
L
Linus Torvalds 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
 * Returns 0 on success, -errno on error.
 */

static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
{
	char *start;

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
		int len = cs->dentry->d_name.len;
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
		memcpy(start, cs->dentry->d_name.name, len);
		cs = cs->parent;
		if (!cs)
			break;
		if (!cs->parent)
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

/*
 * Notify userspace when a cpuset is released, by running
 * /sbin/cpuset_release_agent with the name of the cpuset (path
 * relative to the root of cpuset file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cpuset.
 *
 * This races with the possibility that some other task will be
 * attached to this cpuset before it is removed, or that some other
 * user task will 'mkdir' a child cpuset of this cpuset.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
 * unused, and this cpuset will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
484 485 486 487 488 489 490 491
 * The final arg to call_usermodehelper() is 0, which means don't
 * wait.  The separate /sbin/cpuset_release_agent task is forked by
 * call_usermodehelper(), then control in this thread returns here,
 * without waiting for the release agent task.  We don't bother to
 * wait because the caller of this routine has no use for the exit
 * status of the /sbin/cpuset_release_agent task, so no sense holding
 * our caller up for that.
 *
492
 * When we had only one cpuset mutex, we had to call this
493 494
 * without holding it, to avoid deadlock when call_usermodehelper()
 * allocated memory.  With two locks, we could now call this while
495 496
 * holding manage_mutex, but we still don't, so as to minimize
 * the time manage_mutex is held.
L
Linus Torvalds 已提交
497 498
 */

499
static void cpuset_release_agent(const char *pathbuf)
L
Linus Torvalds 已提交
500 501 502 503
{
	char *argv[3], *envp[3];
	int i;

504 505 506
	if (!pathbuf)
		return;

L
Linus Torvalds 已提交
507 508
	i = 0;
	argv[i++] = "/sbin/cpuset_release_agent";
509
	argv[i++] = (char *)pathbuf;
L
Linus Torvalds 已提交
510 511 512 513 514 515 516 517
	argv[i] = NULL;

	i = 0;
	/* minimal command environment */
	envp[i++] = "HOME=/";
	envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
	envp[i] = NULL;

518 519
	call_usermodehelper(argv[0], argv, envp, 0);
	kfree(pathbuf);
L
Linus Torvalds 已提交
520 521 522 523 524 525
}

/*
 * Either cs->count of using tasks transitioned to zero, or the
 * cs->children list of child cpusets just became empty.  If this
 * cs is notify_on_release() and now both the user count is zero and
526 527
 * the list of children is empty, prepare cpuset path in a kmalloc'd
 * buffer, to be returned via ppathbuf, so that the caller can invoke
528 529
 * cpuset_release_agent() with it later on, once manage_mutex is dropped.
 * Call here with manage_mutex held.
530 531 532 533 534
 *
 * This check_for_release() routine is responsible for kmalloc'ing
 * pathbuf.  The above cpuset_release_agent() is responsible for
 * kfree'ing pathbuf.  The caller of these routines is responsible
 * for providing a pathbuf pointer, initialized to NULL, then
535 536
 * calling check_for_release() with manage_mutex held and the address
 * of the pathbuf pointer, then dropping manage_mutex, then calling
537
 * cpuset_release_agent() with pathbuf, as set by check_for_release().
L
Linus Torvalds 已提交
538 539
 */

540
static void check_for_release(struct cpuset *cs, char **ppathbuf)
L
Linus Torvalds 已提交
541 542 543 544 545 546 547 548 549
{
	if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
	    list_empty(&cs->children)) {
		char *buf;

		buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
		if (!buf)
			return;
		if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
550 551 552
			kfree(buf);
		else
			*ppathbuf = buf;
L
Linus Torvalds 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566
	}
}

/*
 * Return in *pmask the portion of a cpusets's cpus_allowed that
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online cpus.  If we get
 * all the way to the top and still haven't found any online cpus,
 * return cpu_online_map.  Or if passed a NULL cs from an exit'ing
 * task, return cpu_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of cpu_online_map.
 *
567
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
 */

static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
{
	while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
		cs = cs->parent;
	if (cs)
		cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
	else
		*pmask = cpu_online_map;
	BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online mems.  If we get
 * all the way to the top and still haven't found any online mems,
 * return node_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of node_online_map.
 *
591
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604
 */

static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
	while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
		cs = cs->parent;
	if (cs)
		nodes_and(*pmask, cs->mems_allowed, node_online_map);
	else
		*pmask = node_online_map;
	BUG_ON(!nodes_intersects(*pmask, node_online_map));
}

605 606 607 608 609 610
/**
 * cpuset_update_task_memory_state - update task memory placement
 *
 * If the current tasks cpusets mems_allowed changed behind our
 * backs, update current->mems_allowed, mems_generation and task NUMA
 * mempolicy to the new value.
611
 *
612 613 614 615
 * Task mempolicy is updated by rebinding it relative to the
 * current->cpuset if a task has its memory placement changed.
 * Do not call this routine if in_interrupt().
 *
616 617
 * Call without callback_mutex or task_lock() held.  May be called
 * with or without manage_mutex held.  Doesn't need task_lock to guard
618 619 620
 * against another task changing a non-NULL cpuset pointer to NULL,
 * as that is only done by a task on itself, and if the current task
 * is here, it is not simultaneously in the exit code NULL'ing its
621
 * cpuset pointer.  This routine also might acquire callback_mutex and
622
 * current->mm->mmap_sem during call.
623
 *
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
 * Reading current->cpuset->mems_generation doesn't need task_lock
 * to guard the current->cpuset derefence, because it is guarded
 * from concurrent freeing of current->cpuset by attach_task(),
 * using RCU.
 *
 * The rcu_dereference() is technically probably not needed,
 * as I don't actually mind if I see a new cpuset pointer but
 * an old value of mems_generation.  However this really only
 * matters on alpha systems using cpusets heavily.  If I dropped
 * that rcu_dereference(), it would save them a memory barrier.
 * For all other arch's, rcu_dereference is a no-op anyway, and for
 * alpha systems not using cpusets, another planned optimization,
 * avoiding the rcu critical section for tasks in the root cpuset
 * which is statically allocated, so can't vanish, will make this
 * irrelevant.  Better to use RCU as intended, than to engage in
 * some cute trick to save a memory barrier that is impossible to
 * test, for alpha systems using cpusets heavily, which might not
 * even exist.
642 643 644 645 646
 *
 * This routine is needed to update the per-task mems_allowed data,
 * within the tasks context, when it is trying to allocate memory
 * (in various mm/mempolicy.c routines) and notices that some other
 * task has been modifying its cpuset.
L
Linus Torvalds 已提交
647 648
 */

649
void cpuset_update_task_memory_state(void)
L
Linus Torvalds 已提交
650
{
651
	int my_cpusets_mem_gen;
652
	struct task_struct *tsk = current;
653
	struct cpuset *cs;
654

655 656 657 658 659 660 661 662 663
	if (tsk->cpuset == &top_cpuset) {
		/* Don't need rcu for top_cpuset.  It's never freed. */
		my_cpusets_mem_gen = top_cpuset.mems_generation;
	} else {
		rcu_read_lock();
		cs = rcu_dereference(tsk->cpuset);
		my_cpusets_mem_gen = cs->mems_generation;
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
664

665
	if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
666
		mutex_lock(&callback_mutex);
667 668 669 670
		task_lock(tsk);
		cs = tsk->cpuset;	/* Maybe changed when task not locked */
		guarantee_online_mems(cs, &tsk->mems_allowed);
		tsk->cpuset_mems_generation = cs->mems_generation;
671 672 673 674 675 676 677 678
		if (is_spread_page(cs))
			tsk->flags |= PF_SPREAD_PAGE;
		else
			tsk->flags &= ~PF_SPREAD_PAGE;
		if (is_spread_slab(cs))
			tsk->flags |= PF_SPREAD_SLAB;
		else
			tsk->flags &= ~PF_SPREAD_SLAB;
679
		task_unlock(tsk);
680
		mutex_unlock(&callback_mutex);
681
		mpol_rebind_task(tsk, &tsk->mems_allowed);
L
Linus Torvalds 已提交
682 683 684 685 686 687 688 689
	}
}

/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
690
 * are only set if the other's are set.  Call holding manage_mutex.
L
Linus Torvalds 已提交
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
	return	cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
708
 * manage_mutex held.
L
Linus Torvalds 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
	struct cpuset *c, *par;

	/* Each of our child cpusets must be a subset of us */
	list_for_each_entry(c, &cur->children, sibling) {
		if (!is_cpuset_subset(c, trial))
			return -EBUSY;
	}

	/* Remaining checks don't apply to root cpuset */
	if ((par = cur->parent) == NULL)
		return 0;

	/* We must be a subset of our parent cpuset */
	if (!is_cpuset_subset(trial, par))
		return -EACCES;

	/* If either I or some sibling (!= me) is exclusive, we can't overlap */
	list_for_each_entry(c, &par->children, sibling) {
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
		    cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
			return -EINVAL;
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
			return -EINVAL;
	}

	return 0;
}

754 755 756 757 758 759 760 761
/*
 * For a given cpuset cur, partition the system as follows
 * a. All cpus in the parent cpuset's cpus_allowed that are not part of any
 *    exclusive child cpusets
 * b. All cpus in the current cpuset's cpus_allowed that are not part of any
 *    exclusive child cpusets
 * Build these two partitions by calling partition_sched_domains
 *
762
 * Call with manage_mutex held.  May nest a call to the
763 764
 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
 */
765

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
static void update_cpu_domains(struct cpuset *cur)
{
	struct cpuset *c, *par = cur->parent;
	cpumask_t pspan, cspan;

	if (par == NULL || cpus_empty(cur->cpus_allowed))
		return;

	/*
	 * Get all cpus from parent's cpus_allowed not part of exclusive
	 * children
	 */
	pspan = par->cpus_allowed;
	list_for_each_entry(c, &par->children, sibling) {
		if (is_cpu_exclusive(c))
			cpus_andnot(pspan, pspan, c->cpus_allowed);
	}
	if (is_removed(cur) || !is_cpu_exclusive(cur)) {
		cpus_or(pspan, pspan, cur->cpus_allowed);
		if (cpus_equal(pspan, cur->cpus_allowed))
			return;
		cspan = CPU_MASK_NONE;
	} else {
		if (cpus_empty(pspan))
			return;
		cspan = cur->cpus_allowed;
		/*
		 * Get all cpus from current cpuset's cpus_allowed not part
		 * of exclusive children
		 */
		list_for_each_entry(c, &cur->children, sibling) {
			if (is_cpu_exclusive(c))
				cpus_andnot(cspan, cspan, c->cpus_allowed);
		}
	}

	lock_cpu_hotplug();
	partition_sched_domains(&pspan, &cspan);
	unlock_cpu_hotplug();
}

807
/*
808
 * Call with manage_mutex held.  May take callback_mutex during call.
809 810
 */

L
Linus Torvalds 已提交
811 812 813
static int update_cpumask(struct cpuset *cs, char *buf)
{
	struct cpuset trialcs;
814
	int retval, cpus_unchanged;
L
Linus Torvalds 已提交
815 816 817 818 819 820 821 822 823

	trialcs = *cs;
	retval = cpulist_parse(buf, trialcs.cpus_allowed);
	if (retval < 0)
		return retval;
	cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
	if (cpus_empty(trialcs.cpus_allowed))
		return -ENOSPC;
	retval = validate_change(cs, &trialcs);
824 825 826
	if (retval < 0)
		return retval;
	cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
827
	mutex_lock(&callback_mutex);
828
	cs->cpus_allowed = trialcs.cpus_allowed;
829
	mutex_unlock(&callback_mutex);
830 831 832
	if (is_cpu_exclusive(cs) && !cpus_unchanged)
		update_cpu_domains(cs);
	return 0;
L
Linus Torvalds 已提交
833 834
}

835
/*
836 837 838
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
 * cpusets mems_allowed and mems_generation, and for each
839 840 841
 * task in the cpuset, rebind any vma mempolicies and if
 * the cpuset is marked 'memory_migrate', migrate the tasks
 * pages to the new memory.
842
 *
843
 * Call with manage_mutex held.  May take callback_mutex during call.
844 845 846
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
847 848
 */

L
Linus Torvalds 已提交
849 850 851
static int update_nodemask(struct cpuset *cs, char *buf)
{
	struct cpuset trialcs;
852
	nodemask_t oldmem;
853 854 855
	struct task_struct *g, *p;
	struct mm_struct **mmarray;
	int i, n, ntasks;
856
	int migrate;
857
	int fudge;
L
Linus Torvalds 已提交
858 859 860 861 862
	int retval;

	trialcs = *cs;
	retval = nodelist_parse(buf, trialcs.mems_allowed);
	if (retval < 0)
863
		goto done;
L
Linus Torvalds 已提交
864
	nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
865 866 867 868 869
	oldmem = cs->mems_allowed;
	if (nodes_equal(oldmem, trialcs.mems_allowed)) {
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
870 871 872
	if (nodes_empty(trialcs.mems_allowed)) {
		retval = -ENOSPC;
		goto done;
L
Linus Torvalds 已提交
873
	}
874 875 876 877
	retval = validate_change(cs, &trialcs);
	if (retval < 0)
		goto done;

878
	mutex_lock(&callback_mutex);
879
	cs->mems_allowed = trialcs.mems_allowed;
880
	cs->mems_generation = atomic_inc_return(&cpuset_mems_generation);
881
	mutex_unlock(&callback_mutex);
882

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
	set_cpuset_being_rebound(cs);		/* causes mpol_copy() rebind */

	fudge = 10;				/* spare mmarray[] slots */
	fudge += cpus_weight(cs->cpus_allowed);	/* imagine one fork-bomb/cpu */
	retval = -ENOMEM;

	/*
	 * Allocate mmarray[] to hold mm reference for each task
	 * in cpuset cs.  Can't kmalloc GFP_KERNEL while holding
	 * tasklist_lock.  We could use GFP_ATOMIC, but with a
	 * few more lines of code, we can retry until we get a big
	 * enough mmarray[] w/o using GFP_ATOMIC.
	 */
	while (1) {
		ntasks = atomic_read(&cs->count);	/* guess */
		ntasks += fudge;
		mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
		if (!mmarray)
			goto done;
		write_lock_irq(&tasklist_lock);		/* block fork */
		if (atomic_read(&cs->count) <= ntasks)
			break;				/* got enough */
		write_unlock_irq(&tasklist_lock);	/* try again */
		kfree(mmarray);
	}

	n = 0;

	/* Load up mmarray[] with mm reference for each task in cpuset. */
	do_each_thread(g, p) {
		struct mm_struct *mm;

		if (n >= ntasks) {
			printk(KERN_WARNING
				"Cpuset mempolicy rebind incomplete.\n");
			continue;
		}
		if (p->cpuset != cs)
			continue;
		mm = get_task_mm(p);
		if (!mm)
			continue;
		mmarray[n++] = mm;
	} while_each_thread(g, p);
	write_unlock_irq(&tasklist_lock);

	/*
	 * Now that we've dropped the tasklist spinlock, we can
	 * rebind the vma mempolicies of each mm in mmarray[] to their
	 * new cpuset, and release that mm.  The mpol_rebind_mm()
	 * call takes mmap_sem, which we couldn't take while holding
	 * tasklist_lock.  Forks can happen again now - the mpol_copy()
	 * cpuset_being_rebound check will catch such forks, and rebind
	 * their vma mempolicies too.  Because we still hold the global
937
	 * cpuset manage_mutex, we know that no other rebind effort will
938 939
	 * be contending for the global variable cpuset_being_rebound.
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
940
	 * is idempotent.  Also migrate pages in each mm to new nodes.
941
	 */
942
	migrate = is_memory_migrate(cs);
943 944 945 946
	for (i = 0; i < n; i++) {
		struct mm_struct *mm = mmarray[i];

		mpol_rebind_mm(mm, &cs->mems_allowed);
947 948 949 950
		if (migrate) {
			do_migrate_pages(mm, &oldmem, &cs->mems_allowed,
							MPOL_MF_MOVE_ALL);
		}
951 952 953 954 955 956 957
		mmput(mm);
	}

	/* We're done rebinding vma's to this cpusets new mems_allowed. */
	kfree(mmarray);
	set_cpuset_being_rebound(NULL);
	retval = 0;
958
done:
L
Linus Torvalds 已提交
959 960 961
	return retval;
}

962
/*
963
 * Call with manage_mutex held.
964 965 966 967 968 969 970 971 972 973 974
 */

static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
{
	if (simple_strtoul(buf, NULL, 10) != 0)
		cpuset_memory_pressure_enabled = 1;
	else
		cpuset_memory_pressure_enabled = 0;
	return 0;
}

L
Linus Torvalds 已提交
975 976 977
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
 * bit:	the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
978 979
 *				CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
 *				CS_SPREAD_PAGE, CS_SPREAD_SLAB)
L
Linus Torvalds 已提交
980 981
 * cs:	the cpuset to update
 * buf:	the buffer where we read the 0 or 1
982
 *
983
 * Call with manage_mutex held.
L
Linus Torvalds 已提交
984 985 986 987 988 989
 */

static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
{
	int turning_on;
	struct cpuset trialcs;
990
	int err, cpu_exclusive_changed;
L
Linus Torvalds 已提交
991 992 993 994 995 996 997 998 999 1000

	turning_on = (simple_strtoul(buf, NULL, 10) != 0);

	trialcs = *cs;
	if (turning_on)
		set_bit(bit, &trialcs.flags);
	else
		clear_bit(bit, &trialcs.flags);

	err = validate_change(cs, &trialcs);
1001 1002 1003 1004
	if (err < 0)
		return err;
	cpu_exclusive_changed =
		(is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs));
1005
	mutex_lock(&callback_mutex);
1006 1007 1008 1009
	if (turning_on)
		set_bit(bit, &cs->flags);
	else
		clear_bit(bit, &cs->flags);
1010
	mutex_unlock(&callback_mutex);
1011 1012 1013 1014

	if (cpu_exclusive_changed)
                update_cpu_domains(cs);
	return 0;
L
Linus Torvalds 已提交
1015 1016
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
/*
 * Frequency meter - How fast is some event occuring?
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1115 1116 1117 1118 1119
/*
 * Attack task specified by pid in 'pidbuf' to cpuset 'cs', possibly
 * writing the path of the old cpuset in 'ppathbuf' if it needs to be
 * notified on release.
 *
1120
 * Call holding manage_mutex.  May take callback_mutex and task_lock of
1121 1122 1123
 * the task 'pid' during call.
 */

1124
static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
L
Linus Torvalds 已提交
1125 1126 1127 1128 1129
{
	pid_t pid;
	struct task_struct *tsk;
	struct cpuset *oldcs;
	cpumask_t cpus;
1130
	nodemask_t from, to;
1131
	struct mm_struct *mm;
L
Linus Torvalds 已提交
1132

1133
	if (sscanf(pidbuf, "%d", &pid) != 1)
L
Linus Torvalds 已提交
1134 1135 1136 1137 1138 1139 1140 1141
		return -EIO;
	if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
		return -ENOSPC;

	if (pid) {
		read_lock(&tasklist_lock);

		tsk = find_task_by_pid(pid);
1142
		if (!tsk || tsk->flags & PF_EXITING) {
L
Linus Torvalds 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
			read_unlock(&tasklist_lock);
			return -ESRCH;
		}

		get_task_struct(tsk);
		read_unlock(&tasklist_lock);

		if ((current->euid) && (current->euid != tsk->uid)
		    && (current->euid != tsk->suid)) {
			put_task_struct(tsk);
			return -EACCES;
		}
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1160
	mutex_lock(&callback_mutex);
1161

L
Linus Torvalds 已提交
1162 1163 1164 1165
	task_lock(tsk);
	oldcs = tsk->cpuset;
	if (!oldcs) {
		task_unlock(tsk);
1166
		mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1167 1168 1169 1170
		put_task_struct(tsk);
		return -ESRCH;
	}
	atomic_inc(&cs->count);
1171
	rcu_assign_pointer(tsk->cpuset, cs);
L
Linus Torvalds 已提交
1172 1173 1174 1175 1176
	task_unlock(tsk);

	guarantee_online_cpus(cs, &cpus);
	set_cpus_allowed(tsk, cpus);

1177 1178 1179
	from = oldcs->mems_allowed;
	to = cs->mems_allowed;

1180
	mutex_unlock(&callback_mutex);
1181 1182 1183 1184 1185 1186 1187

	mm = get_task_mm(tsk);
	if (mm) {
		mpol_rebind_mm(mm, &to);
		mmput(mm);
	}

1188 1189
	if (is_memory_migrate(cs))
		do_migrate_pages(tsk->mm, &from, &to, MPOL_MF_MOVE_ALL);
L
Linus Torvalds 已提交
1190
	put_task_struct(tsk);
1191
	synchronize_rcu();
L
Linus Torvalds 已提交
1192
	if (atomic_dec_and_test(&oldcs->count))
1193
		check_for_release(oldcs, ppathbuf);
L
Linus Torvalds 已提交
1194 1195 1196 1197 1198 1199 1200 1201
	return 0;
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
	FILE_ROOT,
	FILE_DIR,
1202
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1203 1204 1205 1206 1207
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
	FILE_NOTIFY_ON_RELEASE,
1208 1209
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1210 1211
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
	FILE_TASKLIST,
} cpuset_filetype_t;

static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf,
					size_t nbytes, loff_t *unused_ppos)
{
	struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
	struct cftype *cft = __d_cft(file->f_dentry);
	cpuset_filetype_t type = cft->private;
	char *buffer;
1222
	char *pathbuf = NULL;
L
Linus Torvalds 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	int retval = 0;

	/* Crude upper limit on largest legitimate cpulist user might write. */
	if (nbytes > 100 + 6 * NR_CPUS)
		return -E2BIG;

	/* +1 for nul-terminator */
	if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
		return -ENOMEM;

	if (copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out1;
	}
	buffer[nbytes] = 0;	/* nul-terminate */

1239
	mutex_lock(&manage_mutex);
L
Linus Torvalds 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

	if (is_removed(cs)) {
		retval = -ENODEV;
		goto out2;
	}

	switch (type) {
	case FILE_CPULIST:
		retval = update_cpumask(cs, buffer);
		break;
	case FILE_MEMLIST:
		retval = update_nodemask(cs, buffer);
		break;
	case FILE_CPU_EXCLUSIVE:
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
		break;
	case FILE_MEM_EXCLUSIVE:
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
		break;
	case FILE_NOTIFY_ON_RELEASE:
		retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
		break;
1262 1263 1264
	case FILE_MEMORY_MIGRATE:
		retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
		break;
1265 1266 1267 1268 1269 1270
	case FILE_MEMORY_PRESSURE_ENABLED:
		retval = update_memory_pressure_enabled(cs, buffer);
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1271 1272 1273 1274 1275 1276 1277 1278
	case FILE_SPREAD_PAGE:
		retval = update_flag(CS_SPREAD_PAGE, cs, buffer);
		cs->mems_generation = atomic_inc_return(&cpuset_mems_generation);
		break;
	case FILE_SPREAD_SLAB:
		retval = update_flag(CS_SPREAD_SLAB, cs, buffer);
		cs->mems_generation = atomic_inc_return(&cpuset_mems_generation);
		break;
L
Linus Torvalds 已提交
1279
	case FILE_TASKLIST:
1280
		retval = attach_task(cs, buffer, &pathbuf);
L
Linus Torvalds 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289
		break;
	default:
		retval = -EINVAL;
		goto out2;
	}

	if (retval == 0)
		retval = nbytes;
out2:
1290
	mutex_unlock(&manage_mutex);
1291
	cpuset_release_agent(pathbuf);
L
Linus Torvalds 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
out1:
	kfree(buffer);
	return retval;
}

static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	ssize_t retval = 0;
	struct cftype *cft = __d_cft(file->f_dentry);
	if (!cft)
		return -ENODEV;

	/* special function ? */
	if (cft->write)
		retval = cft->write(file, buf, nbytes, ppos);
	else
		retval = cpuset_common_file_write(file, buf, nbytes, ppos);

	return retval;
}

/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 * A single large read to a buffer that crosses a page boundary is
 * ok, because the result being copied to user land is not recomputed
 * across a page fault.
 */

static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
{
	cpumask_t mask;

1330
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
1331
	mask = cs->cpus_allowed;
1332
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1333 1334 1335 1336 1337 1338 1339 1340

	return cpulist_scnprintf(page, PAGE_SIZE, mask);
}

static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
{
	nodemask_t mask;

1341
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
1342
	mask = cs->mems_allowed;
1343
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378

	return nodelist_scnprintf(page, PAGE_SIZE, mask);
}

static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
				size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
	cpuset_filetype_t type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

	if (!(page = (char *)__get_free_page(GFP_KERNEL)))
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_CPULIST:
		s += cpuset_sprintf_cpulist(s, cs);
		break;
	case FILE_MEMLIST:
		s += cpuset_sprintf_memlist(s, cs);
		break;
	case FILE_CPU_EXCLUSIVE:
		*s++ = is_cpu_exclusive(cs) ? '1' : '0';
		break;
	case FILE_MEM_EXCLUSIVE:
		*s++ = is_mem_exclusive(cs) ? '1' : '0';
		break;
	case FILE_NOTIFY_ON_RELEASE:
		*s++ = notify_on_release(cs) ? '1' : '0';
		break;
1379 1380 1381
	case FILE_MEMORY_MIGRATE:
		*s++ = is_memory_migrate(cs) ? '1' : '0';
		break;
1382 1383 1384 1385 1386 1387
	case FILE_MEMORY_PRESSURE_ENABLED:
		*s++ = cpuset_memory_pressure_enabled ? '1' : '0';
		break;
	case FILE_MEMORY_PRESSURE:
		s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter));
		break;
1388 1389 1390 1391 1392 1393
	case FILE_SPREAD_PAGE:
		*s++ = is_spread_page(cs) ? '1' : '0';
		break;
	case FILE_SPREAD_SLAB:
		*s++ = is_spread_slab(cs) ? '1' : '0';
		break;
L
Linus Torvalds 已提交
1394 1395 1396 1397 1398 1399
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

A
Al Viro 已提交
1400
	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
L
Linus Torvalds 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
out:
	free_page((unsigned long)page);
	return retval;
}

static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
								loff_t *ppos)
{
	ssize_t retval = 0;
	struct cftype *cft = __d_cft(file->f_dentry);
	if (!cft)
		return -ENODEV;

	/* special function ? */
	if (cft->read)
		retval = cft->read(file, buf, nbytes, ppos);
	else
		retval = cpuset_common_file_read(file, buf, nbytes, ppos);

	return retval;
}

static int cpuset_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;

	cft = __d_cft(file->f_dentry);
	if (!cft)
		return -ENODEV;
	if (cft->open)
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cpuset_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

P
Paul Jackson 已提交
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
/*
 * cpuset_rename - Only allow simple rename of directories in place.
 */
static int cpuset_rename(struct inode *old_dir, struct dentry *old_dentry,
                  struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

L
Linus Torvalds 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
static struct file_operations cpuset_file_operations = {
	.read = cpuset_file_read,
	.write = cpuset_file_write,
	.llseek = generic_file_llseek,
	.open = cpuset_file_open,
	.release = cpuset_file_release,
};

static struct inode_operations cpuset_dir_inode_operations = {
	.lookup = simple_lookup,
	.mkdir = cpuset_mkdir,
	.rmdir = cpuset_rmdir,
P
Paul Jackson 已提交
1478
	.rename = cpuset_rename,
L
Linus Torvalds 已提交
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
};

static int cpuset_create_file(struct dentry *dentry, int mode)
{
	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cpuset_new_inode(mode);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cpuset_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inode->i_nlink++;
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cpuset_file_operations;
	}

	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
 *	cpuset_create_dir - create a directory for an object.
1512
 *	cs:	the cpuset we create the directory for.
L
Linus Torvalds 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
 *		It must have a valid ->parent field
 *		And we are going to fill its ->dentry field.
 *	name:	The name to give to the cpuset directory. Will be copied.
 *	mode:	mode to set on new directory.
 */

static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
{
	struct dentry *dentry = NULL;
	struct dentry *parent;
	int error = 0;

	parent = cs->parent->dentry;
	dentry = cpuset_get_dentry(parent, name);
	if (IS_ERR(dentry))
		return PTR_ERR(dentry);
	error = cpuset_create_file(dentry, S_IFDIR | mode);
	if (!error) {
		dentry->d_fsdata = cs;
		parent->d_inode->i_nlink++;
		cs->dentry = dentry;
	}
	dput(dentry);

	return error;
}

static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
{
	struct dentry *dentry;
	int error;

1545
	mutex_lock(&dir->d_inode->i_mutex);
L
Linus Torvalds 已提交
1546 1547 1548 1549 1550 1551 1552 1553
	dentry = cpuset_get_dentry(dir, cft->name);
	if (!IS_ERR(dentry)) {
		error = cpuset_create_file(dentry, 0644 | S_IFREG);
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
1554
	mutex_unlock(&dir->d_inode->i_mutex);
L
Linus Torvalds 已提交
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
	return error;
}

/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cpuset has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 * Upon tasks file open(), a struct ctr_struct is allocated, that
 * will have a pointer to an array (also allocated here).  The struct
 * ctr_struct * is stored in file->private_data.  Its resources will
 * be freed by release() when the file is closed.  The array is used
 * to sprintf the PIDs and then used by read().
 */

/* cpusets_tasks_read array */

struct ctr_struct {
	char *buf;
	int bufsz;
};

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
1582 1583 1584
 * Return actual number of pids loaded.  No need to task_lock(p)
 * when reading out p->cpuset, as we don't really care if it changes
 * on the next cycle, and we are not going to try to dereference it.
L
Linus Torvalds 已提交
1585
 */
1586
static int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
L
Linus Torvalds 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
{
	int n = 0;
	struct task_struct *g, *p;

	read_lock(&tasklist_lock);

	do_each_thread(g, p) {
		if (p->cpuset == cs) {
			pidarray[n++] = p->pid;
			if (unlikely(n == npids))
				goto array_full;
		}
	} while_each_thread(g, p);

array_full:
	read_unlock(&tasklist_lock);
	return n;
}

static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

/*
 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
 * decimal pids in 'buf'.  Don't write more than 'sz' chars, but return
 * count 'cnt' of how many chars would be written if buf were large enough.
 */
static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
{
	int cnt = 0;
	int i;

	for (i = 0; i < npids; i++)
		cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
	return cnt;
}

1626 1627 1628 1629
/*
 * Handle an open on 'tasks' file.  Prepare a buffer listing the
 * process id's of tasks currently attached to the cpuset being opened.
 *
1630
 * Does not require any specific cpuset mutexes, and does not take any.
1631
 */
L
Linus Torvalds 已提交
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
static int cpuset_tasks_open(struct inode *unused, struct file *file)
{
	struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
	struct ctr_struct *ctr;
	pid_t *pidarray;
	int npids;
	char c;

	if (!(file->f_mode & FMODE_READ))
		return 0;

	ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
	if (!ctr)
		goto err0;

	/*
	 * If cpuset gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cpuset users didn't
	 * show up until sometime later on.
	 */
	npids = atomic_read(&cs->count);
	pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
	if (!pidarray)
		goto err1;

	npids = pid_array_load(pidarray, npids, cs);
	sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);

	/* Call pid_array_to_buf() twice, first just to get bufsz */
	ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
	ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
	if (!ctr->buf)
		goto err2;
	ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);

	kfree(pidarray);
	file->private_data = ctr;
	return 0;

err2:
	kfree(pidarray);
err1:
	kfree(ctr);
err0:
	return -ENOMEM;
}

static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct ctr_struct *ctr = file->private_data;

	if (*ppos + nbytes > ctr->bufsz)
		nbytes = ctr->bufsz - *ppos;
	if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
		return -EFAULT;
	*ppos += nbytes;
	return nbytes;
}

static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
{
	struct ctr_struct *ctr;

	if (file->f_mode & FMODE_READ) {
		ctr = file->private_data;
		kfree(ctr->buf);
		kfree(ctr);
	}
	return 0;
}

/*
 * for the common functions, 'private' gives the type of file
 */

static struct cftype cft_tasks = {
	.name = "tasks",
	.open = cpuset_tasks_open,
	.read = cpuset_tasks_read,
	.release = cpuset_tasks_release,
	.private = FILE_TASKLIST,
};

static struct cftype cft_cpus = {
	.name = "cpus",
	.private = FILE_CPULIST,
};

static struct cftype cft_mems = {
	.name = "mems",
	.private = FILE_MEMLIST,
};

static struct cftype cft_cpu_exclusive = {
	.name = "cpu_exclusive",
	.private = FILE_CPU_EXCLUSIVE,
};

static struct cftype cft_mem_exclusive = {
	.name = "mem_exclusive",
	.private = FILE_MEM_EXCLUSIVE,
};

static struct cftype cft_notify_on_release = {
	.name = "notify_on_release",
	.private = FILE_NOTIFY_ON_RELEASE,
};

1742 1743 1744 1745 1746
static struct cftype cft_memory_migrate = {
	.name = "memory_migrate",
	.private = FILE_MEMORY_MIGRATE,
};

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
static struct cftype cft_memory_pressure_enabled = {
	.name = "memory_pressure_enabled",
	.private = FILE_MEMORY_PRESSURE_ENABLED,
};

static struct cftype cft_memory_pressure = {
	.name = "memory_pressure",
	.private = FILE_MEMORY_PRESSURE,
};

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
static struct cftype cft_spread_page = {
	.name = "memory_spread_page",
	.private = FILE_SPREAD_PAGE,
};

static struct cftype cft_spread_slab = {
	.name = "memory_spread_slab",
	.private = FILE_SPREAD_SLAB,
};

L
Linus Torvalds 已提交
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
static int cpuset_populate_dir(struct dentry *cs_dentry)
{
	int err;

	if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
		return err;
1781 1782
	if ((err = cpuset_add_file(cs_dentry, &cft_memory_migrate)) < 0)
		return err;
1783 1784
	if ((err = cpuset_add_file(cs_dentry, &cft_memory_pressure)) < 0)
		return err;
1785 1786 1787 1788
	if ((err = cpuset_add_file(cs_dentry, &cft_spread_page)) < 0)
		return err;
	if ((err = cpuset_add_file(cs_dentry, &cft_spread_slab)) < 0)
		return err;
L
Linus Torvalds 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
	if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
		return err;
	return 0;
}

/*
 *	cpuset_create - create a cpuset
 *	parent:	cpuset that will be parent of the new cpuset.
 *	name:		name of the new cpuset. Will be strcpy'ed.
 *	mode:		mode to set on new inode
 *
1800
 *	Must be called with the mutex on the parent inode held
L
Linus Torvalds 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
 */

static long cpuset_create(struct cpuset *parent, const char *name, int mode)
{
	struct cpuset *cs;
	int err;

	cs = kmalloc(sizeof(*cs), GFP_KERNEL);
	if (!cs)
		return -ENOMEM;

1812
	mutex_lock(&manage_mutex);
1813
	cpuset_update_task_memory_state();
L
Linus Torvalds 已提交
1814 1815 1816
	cs->flags = 0;
	if (notify_on_release(parent))
		set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
1817 1818 1819 1820
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1821 1822 1823 1824 1825
	cs->cpus_allowed = CPU_MASK_NONE;
	cs->mems_allowed = NODE_MASK_NONE;
	atomic_set(&cs->count, 0);
	INIT_LIST_HEAD(&cs->sibling);
	INIT_LIST_HEAD(&cs->children);
1826
	cs->mems_generation = atomic_inc_return(&cpuset_mems_generation);
1827
	fmeter_init(&cs->fmeter);
L
Linus Torvalds 已提交
1828 1829 1830

	cs->parent = parent;

1831
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
1832
	list_add(&cs->sibling, &cs->parent->children);
1833
	number_of_cpusets++;
1834
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1835 1836 1837 1838 1839 1840

	err = cpuset_create_dir(cs, name, mode);
	if (err < 0)
		goto err;

	/*
1841
	 * Release manage_mutex before cpuset_populate_dir() because it
1842
	 * will down() this new directory's i_mutex and if we race with
L
Linus Torvalds 已提交
1843 1844
	 * another mkdir, we might deadlock.
	 */
1845
	mutex_unlock(&manage_mutex);
L
Linus Torvalds 已提交
1846 1847 1848 1849 1850 1851

	err = cpuset_populate_dir(cs->dentry);
	/* If err < 0, we have a half-filled directory - oh well ;) */
	return 0;
err:
	list_del(&cs->sibling);
1852
	mutex_unlock(&manage_mutex);
L
Linus Torvalds 已提交
1853 1854 1855 1856 1857 1858 1859 1860
	kfree(cs);
	return err;
}

static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cpuset *c_parent = dentry->d_parent->d_fsdata;

1861
	/* the vfs holds inode->i_mutex already */
L
Linus Torvalds 已提交
1862 1863 1864 1865 1866 1867 1868 1869
	return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
}

static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
	struct cpuset *cs = dentry->d_fsdata;
	struct dentry *d;
	struct cpuset *parent;
1870
	char *pathbuf = NULL;
L
Linus Torvalds 已提交
1871

1872
	/* the vfs holds both inode->i_mutex already */
L
Linus Torvalds 已提交
1873

1874
	mutex_lock(&manage_mutex);
1875
	cpuset_update_task_memory_state();
L
Linus Torvalds 已提交
1876
	if (atomic_read(&cs->count) > 0) {
1877
		mutex_unlock(&manage_mutex);
L
Linus Torvalds 已提交
1878 1879 1880
		return -EBUSY;
	}
	if (!list_empty(&cs->children)) {
1881
		mutex_unlock(&manage_mutex);
L
Linus Torvalds 已提交
1882 1883 1884
		return -EBUSY;
	}
	parent = cs->parent;
1885
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
1886
	set_bit(CS_REMOVED, &cs->flags);
1887 1888
	if (is_cpu_exclusive(cs))
		update_cpu_domains(cs);
L
Linus Torvalds 已提交
1889
	list_del(&cs->sibling);	/* delete my sibling from parent->children */
1890
	spin_lock(&cs->dentry->d_lock);
L
Linus Torvalds 已提交
1891 1892 1893 1894 1895
	d = dget(cs->dentry);
	cs->dentry = NULL;
	spin_unlock(&d->d_lock);
	cpuset_d_remove_dir(d);
	dput(d);
1896
	number_of_cpusets--;
1897
	mutex_unlock(&callback_mutex);
1898 1899
	if (list_empty(&parent->children))
		check_for_release(parent, &pathbuf);
1900
	mutex_unlock(&manage_mutex);
1901
	cpuset_release_agent(pathbuf);
L
Linus Torvalds 已提交
1902 1903 1904
	return 0;
}

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
/*
 * cpuset_init_early - just enough so that the calls to
 * cpuset_update_task_memory_state() in early init code
 * are harmless.
 */

int __init cpuset_init_early(void)
{
	struct task_struct *tsk = current;

	tsk->cpuset = &top_cpuset;
1916
	tsk->cpuset->mems_generation = atomic_inc_return(&cpuset_mems_generation);
1917 1918 1919
	return 0;
}

L
Linus Torvalds 已提交
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
	struct dentry *root;
	int err;

	top_cpuset.cpus_allowed = CPU_MASK_ALL;
	top_cpuset.mems_allowed = NODE_MASK_ALL;

1934
	fmeter_init(&top_cpuset.fmeter);
1935
	top_cpuset.mems_generation = atomic_inc_return(&cpuset_mems_generation);
L
Linus Torvalds 已提交
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953

	init_task.cpuset = &top_cpuset;

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
		goto out;
	cpuset_mount = kern_mount(&cpuset_fs_type);
	if (IS_ERR(cpuset_mount)) {
		printk(KERN_ERR "cpuset: could not mount!\n");
		err = PTR_ERR(cpuset_mount);
		cpuset_mount = NULL;
		goto out;
	}
	root = cpuset_mount->mnt_sb->s_root;
	root->d_fsdata = &top_cpuset;
	root->d_inode->i_nlink++;
	top_cpuset.dentry = root;
	root->d_inode->i_op = &cpuset_dir_inode_operations;
1954
	number_of_cpusets = 1;
L
Linus Torvalds 已提交
1955
	err = cpuset_populate_dir(root);
1956 1957 1958
	/* memory_pressure_enabled is in root cpuset only */
	if (err == 0)
		err = cpuset_add_file(root, &cft_memory_pressure_enabled);
L
Linus Torvalds 已提交
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
out:
	return err;
}

/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
 **/

void __init cpuset_init_smp(void)
{
	top_cpuset.cpus_allowed = cpu_online_map;
	top_cpuset.mems_allowed = node_online_map;
}

/**
 * cpuset_fork - attach newly forked task to its parents cpuset.
1977
 * @tsk: pointer to task_struct of forking parent process.
L
Linus Torvalds 已提交
1978
 *
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
 * Description: A task inherits its parent's cpuset at fork().
 *
 * A pointer to the shared cpuset was automatically copied in fork.c
 * by dup_task_struct().  However, we ignore that copy, since it was
 * not made under the protection of task_lock(), so might no longer be
 * a valid cpuset pointer.  attach_task() might have already changed
 * current->cpuset, allowing the previously referenced cpuset to
 * be removed and freed.  Instead, we task_lock(current) and copy
 * its present value of current->cpuset for our freshly forked child.
 *
 * At the point that cpuset_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
L
Linus Torvalds 已提交
1991 1992
 **/

1993
void cpuset_fork(struct task_struct *child)
L
Linus Torvalds 已提交
1994
{
1995 1996 1997 1998
	task_lock(current);
	child->cpuset = current->cpuset;
	atomic_inc(&child->cpuset->count);
	task_unlock(current);
L
Linus Torvalds 已提交
1999 2000 2001 2002 2003 2004 2005 2006
}

/**
 * cpuset_exit - detach cpuset from exiting task
 * @tsk: pointer to task_struct of exiting process
 *
 * Description: Detach cpuset from @tsk and release it.
 *
2007
 * Note that cpusets marked notify_on_release force every task in
2008
 * them to take the global manage_mutex mutex when exiting.
2009 2010 2011 2012 2013
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cpusets where very high task exit scaling
 * is required on large systems.
 *
 * Don't even think about derefencing 'cs' after the cpuset use count
2014 2015
 * goes to zero, except inside a critical section guarded by manage_mutex
 * or callback_mutex.   Otherwise a zero cpuset use count is a license to
2016 2017
 * any other task to nuke the cpuset immediately, via cpuset_rmdir().
 *
2018 2019 2020
 * This routine has to take manage_mutex, not callback_mutex, because
 * it is holding that mutex while calling check_for_release(),
 * which calls kmalloc(), so can't be called holding callback_mutex().
2021 2022 2023
 *
 * We don't need to task_lock() this reference to tsk->cpuset,
 * because tsk is already marked PF_EXITING, so attach_task() won't
P
Paul Jackson 已提交
2024
 * mess with it, or task is a failed fork, never visible to attach_task.
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
 *
 * Hack:
 *
 *    Set the exiting tasks cpuset to the root cpuset (top_cpuset).
 *
 *    Don't leave a task unable to allocate memory, as that is an
 *    accident waiting to happen should someone add a callout in
 *    do_exit() after the cpuset_exit() call that might allocate.
 *    If a task tries to allocate memory with an invalid cpuset,
 *    it will oops in cpuset_update_task_memory_state().
 *
 *    We call cpuset_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to
 *    the root cpuset (top_cpuset) for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cpuset, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cpuset function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cpuset reference count, to no avail.
 *
 *    Normally, holding a reference to a cpuset without bumping its
 *    count is unsafe.   The cpuset could go away, or someone could
 *    attach us to a different cpuset, decrementing the count on
 *    the first cpuset that we never incremented.  But in this case,
 *    top_cpuset isn't going away, and either task has PF_EXITING set,
 *    which wards off any attach_task() attempts, or task is a failed
 *    fork, never visible to attach_task.
 *
 *    Another way to do this would be to set the cpuset pointer
 *    to NULL here, and check in cpuset_update_task_memory_state()
 *    for a NULL pointer.  This hack avoids that NULL check, for no
 *    cost (other than this way too long comment ;).
L
Linus Torvalds 已提交
2058 2059 2060 2061 2062 2063 2064
 **/

void cpuset_exit(struct task_struct *tsk)
{
	struct cpuset *cs;

	cs = tsk->cpuset;
2065
	tsk->cpuset = &top_cpuset;	/* Hack - see comment above */
L
Linus Torvalds 已提交
2066

2067
	if (notify_on_release(cs)) {
2068 2069
		char *pathbuf = NULL;

2070
		mutex_lock(&manage_mutex);
2071
		if (atomic_dec_and_test(&cs->count))
2072
			check_for_release(cs, &pathbuf);
2073
		mutex_unlock(&manage_mutex);
2074
		cpuset_release_agent(pathbuf);
2075 2076
	} else {
		atomic_dec(&cs->count);
L
Linus Torvalds 已提交
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
	}
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
 *
 * Description: Returns the cpumask_t cpus_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
 * subset of cpu_online_map, even if this means going outside the
 * tasks cpuset.
 **/

2090
cpumask_t cpuset_cpus_allowed(struct task_struct *tsk)
L
Linus Torvalds 已提交
2091 2092 2093
{
	cpumask_t mask;

2094
	mutex_lock(&callback_mutex);
2095
	task_lock(tsk);
L
Linus Torvalds 已提交
2096
	guarantee_online_cpus(tsk->cpuset, &mask);
2097
	task_unlock(tsk);
2098
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
2099 2100 2101 2102 2103 2104 2105 2106 2107

	return mask;
}

void cpuset_init_current_mems_allowed(void)
{
	current->mems_allowed = NODE_MASK_ALL;
}

2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
 * subset of node_online_map, even if this means going outside the
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;

2122
	mutex_lock(&callback_mutex);
2123 2124 2125
	task_lock(tsk);
	guarantee_online_mems(tsk->cpuset, &mask);
	task_unlock(tsk);
2126
	mutex_unlock(&callback_mutex);
2127 2128 2129 2130

	return mask;
}

2131 2132 2133 2134
/**
 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
 * @zl: the zonelist to be checked
 *
L
Linus Torvalds 已提交
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
 */
int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
{
	int i;

	for (i = 0; zl->zones[i]; i++) {
		int nid = zl->zones[i]->zone_pgdat->node_id;

		if (node_isset(nid, current->mems_allowed))
			return 1;
	}
	return 0;
}

2150 2151
/*
 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
2152
 * ancestor to the specified cpuset.  Call holding callback_mutex.
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
 * If no ancestor is mem_exclusive (an unusual configuration), then
 * returns the root cpuset.
 */
static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
{
	while (!is_mem_exclusive(cs) && cs->parent)
		cs = cs->parent;
	return cs;
}

2163
/**
2164 2165 2166
 * cpuset_zone_allowed - Can we allocate memory on zone z's memory node?
 * @z: is this zone on an allowed node?
 * @gfp_mask: memory allocation flags (we use __GFP_HARDWALL)
2167
 *
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
 * If we're in interrupt, yes, we can always allocate.  If zone
 * z's node is in our tasks mems_allowed, yes.  If it's not a
 * __GFP_HARDWALL request and this zone's nodes is in the nearest
 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
 * Otherwise, no.
 *
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
 * and do not allow allocations outside the current tasks cpuset.
 * GFP_KERNEL allocations are not so marked, so can escape to the
 * nearest mem_exclusive ancestor cpuset.
 *
2179
 * Scanning up parent cpusets requires callback_mutex.  The __alloc_pages()
2180 2181 2182 2183
 * routine only calls here with __GFP_HARDWALL bit _not_ set if
 * it's a GFP_KERNEL allocation, and all nodes in the current tasks
 * mems_allowed came up empty on the first pass over the zonelist.
 * So only GFP_KERNEL allocations, if all nodes in the cpuset are
2184
 * short of memory, might require taking the callback_mutex mutex.
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
 *
 * The first loop over the zonelist in mm/page_alloc.c:__alloc_pages()
 * calls here with __GFP_HARDWALL always set in gfp_mask, enforcing
 * hardwall cpusets - no allocation on a node outside the cpuset is
 * allowed (unless in interrupt, of course).
 *
 * The second loop doesn't even call here for GFP_ATOMIC requests
 * (if the __alloc_pages() local variable 'wait' is set).  That check
 * and the checks below have the combined affect in the second loop of
 * the __alloc_pages() routine that:
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
 *	GFP_KERNEL   - any node in enclosing mem_exclusive cpuset ok
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
 **/

2201
int __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2202
{
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
	int node;			/* node that zone z is on */
	const struct cpuset *cs;	/* current cpuset ancestors */
	int allowed = 1;		/* is allocation in zone z allowed? */

	if (in_interrupt())
		return 1;
	node = z->zone_pgdat->node_id;
	if (node_isset(node, current->mems_allowed))
		return 1;
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2215 2216 2217
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2218
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2219
	mutex_lock(&callback_mutex);
2220 2221 2222 2223 2224

	task_lock(current);
	cs = nearest_exclusive_ancestor(current->cpuset);
	task_unlock(current);

2225
	allowed = node_isset(node, cs->mems_allowed);
2226
	mutex_unlock(&callback_mutex);
2227
	return allowed;
L
Linus Torvalds 已提交
2228 2229
}

P
Paul Jackson 已提交
2230 2231 2232
/**
 * cpuset_lock - lock out any changes to cpuset structures
 *
2233
 * The out of memory (oom) code needs to mutex_lock cpusets
P
Paul Jackson 已提交
2234
 * from being changed while it scans the tasklist looking for a
2235
 * task in an overlapping cpuset.  Expose callback_mutex via this
P
Paul Jackson 已提交
2236 2237
 * cpuset_lock() routine, so the oom code can lock it, before
 * locking the task list.  The tasklist_lock is a spinlock, so
2238
 * must be taken inside callback_mutex.
P
Paul Jackson 已提交
2239 2240 2241 2242
 */

void cpuset_lock(void)
{
2243
	mutex_lock(&callback_mutex);
P
Paul Jackson 已提交
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
}

/**
 * cpuset_unlock - release lock on cpuset changes
 *
 * Undo the lock taken in a previous cpuset_lock() call.
 */

void cpuset_unlock(void)
{
2254
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
2255 2256
}

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
/**
 * cpuset_mem_spread_node() - On which node to begin search for a page
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

int cpuset_mem_spread_node(void)
{
	int node;

	node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
	current->cpuset_mem_spread_rotor = node;
	return node;
}
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2295 2296 2297 2298 2299 2300 2301 2302 2303
/**
 * cpuset_excl_nodes_overlap - Do we overlap @p's mem_exclusive ancestors?
 * @p: pointer to task_struct of some other task.
 *
 * Description: Return true if the nearest mem_exclusive ancestor
 * cpusets of tasks @p and current overlap.  Used by oom killer to
 * determine if task @p's memory usage might impact the memory
 * available to the current task.
 *
2304
 * Call while holding callback_mutex.
2305 2306 2307 2308 2309 2310 2311
 **/

int cpuset_excl_nodes_overlap(const struct task_struct *p)
{
	const struct cpuset *cs1, *cs2;	/* my and p's cpuset ancestors */
	int overlap = 0;		/* do cpusets overlap? */

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
	task_lock(current);
	if (current->flags & PF_EXITING) {
		task_unlock(current);
		goto done;
	}
	cs1 = nearest_exclusive_ancestor(current->cpuset);
	task_unlock(current);

	task_lock((struct task_struct *)p);
	if (p->flags & PF_EXITING) {
		task_unlock((struct task_struct *)p);
		goto done;
	}
	cs2 = nearest_exclusive_ancestor(p->cpuset);
	task_unlock((struct task_struct *)p);

2328 2329 2330 2331 2332
	overlap = nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
done:
	return overlap;
}

2333 2334 2335 2336 2337 2338
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2339
int cpuset_memory_pressure_enabled __read_mostly;
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
	struct cpuset *cs;

	task_lock(current);
	cs = current->cpuset;
	fmeter_markevent(&cs->fmeter);
	task_unlock(current);
}

L
Linus Torvalds 已提交
2369 2370 2371 2372
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2373 2374
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2375
 *    and we take manage_mutex, keeping attach_task() from changing it
2376
 *    anyway.
L
Linus Torvalds 已提交
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
 */

static int proc_cpuset_show(struct seq_file *m, void *v)
{
	struct cpuset *cs;
	struct task_struct *tsk;
	char *buf;
	int retval = 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	tsk = m->private;
2391
	mutex_lock(&manage_mutex);
L
Linus Torvalds 已提交
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
	cs = tsk->cpuset;
	if (!cs) {
		retval = -EINVAL;
		goto out;
	}

	retval = cpuset_path(cs, buf, PAGE_SIZE);
	if (retval < 0)
		goto out;
	seq_puts(m, buf);
	seq_putc(m, '\n');
out:
2404
	mutex_unlock(&manage_mutex);
L
Linus Torvalds 已提交
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
	kfree(buf);
	return retval;
}

static int cpuset_open(struct inode *inode, struct file *file)
{
	struct task_struct *tsk = PROC_I(inode)->task;
	return single_open(file, proc_cpuset_show, tsk);
}

struct file_operations proc_cpuset_operations = {
	.open		= cpuset_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
{
	buffer += sprintf(buffer, "Cpus_allowed:\t");
	buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
	buffer += sprintf(buffer, "\n");
	buffer += sprintf(buffer, "Mems_allowed:\t");
	buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
	buffer += sprintf(buffer, "\n");
	return buffer;
}