stmmac_main.c 52.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
/*******************************************************************************
  This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
  ST Ethernet IPs are built around a Synopsys IP Core.

  Copyright (C) 2007-2009  STMicroelectronics Ltd

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>

  Documentation available at:
	http://www.stlinux.com
  Support available at:
	https://bugzilla.stlinux.com/
*******************************************************************************/

#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/if_vlan.h>
#include <linux/dma-mapping.h>
#include "stmmac.h"

#define STMMAC_RESOURCE_NAME	"stmmaceth"
#define PHY_RESOURCE_NAME	"stmmacphy"

#undef STMMAC_DEBUG
/*#define STMMAC_DEBUG*/
#ifdef STMMAC_DEBUG
#define DBG(nlevel, klevel, fmt, args...) \
		((void)(netif_msg_##nlevel(priv) && \
		printk(KERN_##klevel fmt, ## args)))
#else
#define DBG(nlevel, klevel, fmt, args...) do { } while (0)
#endif

#undef STMMAC_RX_DEBUG
/*#define STMMAC_RX_DEBUG*/
#ifdef STMMAC_RX_DEBUG
#define RX_DBG(fmt, args...)  printk(fmt, ## args)
#else
#define RX_DBG(fmt, args...)  do { } while (0)
#endif

#undef STMMAC_XMIT_DEBUG
/*#define STMMAC_XMIT_DEBUG*/
#ifdef STMMAC_TX_DEBUG
#define TX_DBG(fmt, args...)  printk(fmt, ## args)
#else
#define TX_DBG(fmt, args...)  do { } while (0)
#endif

#define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
#define JUMBO_LEN	9000

/* Module parameters */
#define TX_TIMEO 5000 /* default 5 seconds */
static int watchdog = TX_TIMEO;
module_param(watchdog, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");

static int debug = -1;		/* -1: default, 0: no output, 16:  all */
module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");

static int phyaddr = -1;
module_param(phyaddr, int, S_IRUGO);
MODULE_PARM_DESC(phyaddr, "Physical device address");

#define DMA_TX_SIZE 256
static int dma_txsize = DMA_TX_SIZE;
module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");

#define DMA_RX_SIZE 256
static int dma_rxsize = DMA_RX_SIZE;
module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");

static int flow_ctrl = FLOW_OFF;
module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");

static int pause = PAUSE_TIME;
module_param(pause, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(pause, "Flow Control Pause Time");

#define TC_DEFAULT 64
static int tc = TC_DEFAULT;
module_param(tc, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(tc, "DMA threshold control value");

#define RX_NO_COALESCE	1	/* Always interrupt on completion */
#define TX_NO_COALESCE	-1	/* No moderation by default */

/* Pay attention to tune this parameter; take care of both
 * hardware capability and network stabitily/performance impact.
 * Many tests showed that ~4ms latency seems to be good enough. */
#ifdef CONFIG_STMMAC_TIMER
#define DEFAULT_PERIODIC_RATE	256
static int tmrate = DEFAULT_PERIODIC_RATE;
module_param(tmrate, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
#endif

#define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
static int buf_sz = DMA_BUFFER_SIZE;
module_param(buf_sz, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(buf_sz, "DMA buffer size");

/* In case of Giga ETH, we can enable/disable the COE for the
 * transmit HW checksum computation.
 * Note that, if tx csum is off in HW, SG will be still supported. */
static int tx_coe = HW_CSUM;
module_param(tx_coe, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(tx_coe, "GMAC COE type 2 [on/off]");

static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);

static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev);

/**
 * stmmac_verify_args - verify the driver parameters.
 * Description: it verifies if some wrong parameter is passed to the driver.
 * Note that wrong parameters are replaced with the default values.
 */
static void stmmac_verify_args(void)
{
	if (unlikely(watchdog < 0))
		watchdog = TX_TIMEO;
	if (unlikely(dma_rxsize < 0))
		dma_rxsize = DMA_RX_SIZE;
	if (unlikely(dma_txsize < 0))
		dma_txsize = DMA_TX_SIZE;
	if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
		buf_sz = DMA_BUFFER_SIZE;
	if (unlikely(flow_ctrl > 1))
		flow_ctrl = FLOW_AUTO;
	else if (likely(flow_ctrl < 0))
		flow_ctrl = FLOW_OFF;
	if (unlikely((pause < 0) || (pause > 0xffff)))
		pause = PAUSE_TIME;

	return;
}

#if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
static void print_pkt(unsigned char *buf, int len)
{
	int j;
	pr_info("len = %d byte, buf addr: 0x%p", len, buf);
	for (j = 0; j < len; j++) {
		if ((j % 16) == 0)
			pr_info("\n %03x:", j);
		pr_info(" %02x", buf[j]);
	}
	pr_info("\n");
	return;
}
#endif

/* minimum number of free TX descriptors required to wake up TX process */
#define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)

static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
{
	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
}

/**
 * stmmac_adjust_link
 * @dev: net device structure
 * Description: it adjusts the link parameters.
 */
static void stmmac_adjust_link(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct phy_device *phydev = priv->phydev;
	unsigned long ioaddr = dev->base_addr;
	unsigned long flags;
	int new_state = 0;
	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;

	if (phydev == NULL)
		return;

	DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
	    phydev->addr, phydev->link);

	spin_lock_irqsave(&priv->lock, flags);
	if (phydev->link) {
		u32 ctrl = readl(ioaddr + MAC_CTRL_REG);

		/* Now we make sure that we can be in full duplex mode.
		 * If not, we operate in half-duplex mode. */
		if (phydev->duplex != priv->oldduplex) {
			new_state = 1;
			if (!(phydev->duplex))
228
				ctrl &= ~priv->hw->link.duplex;
229
			else
230
				ctrl |= priv->hw->link.duplex;
231 232 233 234
			priv->oldduplex = phydev->duplex;
		}
		/* Flow Control operation */
		if (phydev->pause)
235 236
			priv->hw->mac->flow_ctrl(ioaddr, phydev->duplex,
						 fc, pause_time);
237 238 239 240 241 242

		if (phydev->speed != priv->speed) {
			new_state = 1;
			switch (phydev->speed) {
			case 1000:
				if (likely(priv->is_gmac))
243
					ctrl &= ~priv->hw->link.port;
244 245 246 247
				break;
			case 100:
			case 10:
				if (priv->is_gmac) {
248
					ctrl |= priv->hw->link.port;
249
					if (phydev->speed == SPEED_100) {
250
						ctrl |= priv->hw->link.speed;
251
					} else {
252
						ctrl &= ~(priv->hw->link.speed);
253 254
					}
				} else {
255
					ctrl &= ~priv->hw->link.port;
256
				}
257 258 259
				if (likely(priv->fix_mac_speed))
					priv->fix_mac_speed(priv->bsp_priv,
							    phydev->speed);
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
				break;
			default:
				if (netif_msg_link(priv))
					pr_warning("%s: Speed (%d) is not 10"
				       " or 100!\n", dev->name, phydev->speed);
				break;
			}

			priv->speed = phydev->speed;
		}

		writel(ctrl, ioaddr + MAC_CTRL_REG);

		if (!priv->oldlink) {
			new_state = 1;
			priv->oldlink = 1;
		}
	} else if (priv->oldlink) {
		new_state = 1;
		priv->oldlink = 0;
		priv->speed = 0;
		priv->oldduplex = -1;
	}

	if (new_state && netif_msg_link(priv))
		phy_print_status(phydev);

	spin_unlock_irqrestore(&priv->lock, flags);

	DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
}

/**
 * stmmac_init_phy - PHY initialization
 * @dev: net device structure
 * Description: it initializes the driver's PHY state, and attaches the PHY
 * to the mac driver.
 *  Return value:
 *  0 on success
 */
static int stmmac_init_phy(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct phy_device *phydev;
304 305
	char phy_id[MII_BUS_ID_SIZE + 3];
	char bus_id[MII_BUS_ID_SIZE];
306 307 308 309 310 311 312 313 314 315 316

	priv->oldlink = 0;
	priv->speed = 0;
	priv->oldduplex = -1;

	if (priv->phy_addr == -1) {
		/* We don't have a PHY, so do nothing */
		return 0;
	}

	snprintf(bus_id, MII_BUS_ID_SIZE, "%x", priv->bus_id);
317 318
	snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
		 priv->phy_addr);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id);

	phydev = phy_connect(dev, phy_id, &stmmac_adjust_link, 0,
			priv->phy_interface);

	if (IS_ERR(phydev)) {
		pr_err("%s: Could not attach to PHY\n", dev->name);
		return PTR_ERR(phydev);
	}

	/*
	 * Broken HW is sometimes missing the pull-up resistor on the
	 * MDIO line, which results in reads to non-existent devices returning
	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
	 * device as well.
	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
	 */
	if (phydev->phy_id == 0) {
		phy_disconnect(phydev);
		return -ENODEV;
	}
	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
	       " Link = %d\n", dev->name, phydev->phy_id, phydev->link);

	priv->phydev = phydev;

	return 0;
}

static inline void stmmac_mac_enable_rx(unsigned long ioaddr)
{
	u32 value = readl(ioaddr + MAC_CTRL_REG);
	value |= MAC_RNABLE_RX;
	/* Set the RE (receive enable bit into the MAC CTRL register).  */
	writel(value, ioaddr + MAC_CTRL_REG);
}

static inline void stmmac_mac_enable_tx(unsigned long ioaddr)
{
	u32 value = readl(ioaddr + MAC_CTRL_REG);
	value |= MAC_ENABLE_TX;
	/* Set the TE (transmit enable bit into the MAC CTRL register).  */
	writel(value, ioaddr + MAC_CTRL_REG);
}

static inline void stmmac_mac_disable_rx(unsigned long ioaddr)
{
	u32 value = readl(ioaddr + MAC_CTRL_REG);
	value &= ~MAC_RNABLE_RX;
	writel(value, ioaddr + MAC_CTRL_REG);
}

static inline void stmmac_mac_disable_tx(unsigned long ioaddr)
{
	u32 value = readl(ioaddr + MAC_CTRL_REG);
	value &= ~MAC_ENABLE_TX;
	writel(value, ioaddr + MAC_CTRL_REG);
}

/**
 * display_ring
 * @p: pointer to the ring.
 * @size: size of the ring.
 * Description: display all the descriptors within the ring.
 */
static void display_ring(struct dma_desc *p, int size)
{
	struct tmp_s {
		u64 a;
		unsigned int b;
		unsigned int c;
	};
	int i;
	for (i = 0; i < size; i++) {
		struct tmp_s *x = (struct tmp_s *)(p + i);
		pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
		       i, (unsigned int)virt_to_phys(&p[i]),
		       (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
		       x->b, x->c);
		pr_info("\n");
	}
}

/**
 * init_dma_desc_rings - init the RX/TX descriptor rings
 * @dev: net device structure
 * Description:  this function initializes the DMA RX/TX descriptors
 * and allocates the socket buffers.
 */
static void init_dma_desc_rings(struct net_device *dev)
{
	int i;
	struct stmmac_priv *priv = netdev_priv(dev);
	struct sk_buff *skb;
	unsigned int txsize = priv->dma_tx_size;
	unsigned int rxsize = priv->dma_rx_size;
	unsigned int bfsize = priv->dma_buf_sz;
416
	int buff2_needed = 0, dis_ic = 0;
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

	/* Set the Buffer size according to the MTU;
	 * indeed, in case of jumbo we need to bump-up the buffer sizes.
	 */
	if (unlikely(dev->mtu >= BUF_SIZE_8KiB))
		bfsize = BUF_SIZE_16KiB;
	else if (unlikely(dev->mtu >= BUF_SIZE_4KiB))
		bfsize = BUF_SIZE_8KiB;
	else if (unlikely(dev->mtu >= BUF_SIZE_2KiB))
		bfsize = BUF_SIZE_4KiB;
	else if (unlikely(dev->mtu >= DMA_BUFFER_SIZE))
		bfsize = BUF_SIZE_2KiB;
	else
		bfsize = DMA_BUFFER_SIZE;

432 433 434 435 436
#ifdef CONFIG_STMMAC_TIMER
	/* Disable interrupts on completion for the reception if timer is on */
	if (likely(priv->tm->enable))
		dis_ic = 1;
#endif
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	/* If the MTU exceeds 8k so use the second buffer in the chain */
	if (bfsize >= BUF_SIZE_8KiB)
		buff2_needed = 1;

	DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
	    txsize, rxsize, bfsize);

	priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
	priv->rx_skbuff =
	    kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
	priv->dma_rx =
	    (struct dma_desc *)dma_alloc_coherent(priv->device,
						  rxsize *
						  sizeof(struct dma_desc),
						  &priv->dma_rx_phy,
						  GFP_KERNEL);
	priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
				       GFP_KERNEL);
	priv->dma_tx =
	    (struct dma_desc *)dma_alloc_coherent(priv->device,
						  txsize *
						  sizeof(struct dma_desc),
						  &priv->dma_tx_phy,
						  GFP_KERNEL);

	if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
		pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
		return;
	}

	DBG(probe, INFO, "stmmac (%s) DMA desc rings: virt addr (Rx %p, "
	    "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
	    dev->name, priv->dma_rx, priv->dma_tx,
	    (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);

	/* RX INITIALIZATION */
	DBG(probe, INFO, "stmmac: SKB addresses:\n"
			 "skb\t\tskb data\tdma data\n");

	for (i = 0; i < rxsize; i++) {
		struct dma_desc *p = priv->dma_rx + i;

		skb = netdev_alloc_skb_ip_align(dev, bfsize);
		if (unlikely(skb == NULL)) {
			pr_err("%s: Rx init fails; skb is NULL\n", __func__);
			break;
		}
		priv->rx_skbuff[i] = skb;
		priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
						bfsize, DMA_FROM_DEVICE);

		p->des2 = priv->rx_skbuff_dma[i];
		if (unlikely(buff2_needed))
			p->des3 = p->des2 + BUF_SIZE_8KiB;
		DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
			priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
	}
	priv->cur_rx = 0;
	priv->dirty_rx = (unsigned int)(i - rxsize);
	priv->dma_buf_sz = bfsize;
	buf_sz = bfsize;

	/* TX INITIALIZATION */
	for (i = 0; i < txsize; i++) {
		priv->tx_skbuff[i] = NULL;
		priv->dma_tx[i].des2 = 0;
	}
	priv->dirty_tx = 0;
	priv->cur_tx = 0;

	/* Clear the Rx/Tx descriptors */
508 509
	priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
	priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543

	if (netif_msg_hw(priv)) {
		pr_info("RX descriptor ring:\n");
		display_ring(priv->dma_rx, rxsize);
		pr_info("TX descriptor ring:\n");
		display_ring(priv->dma_tx, txsize);
	}
	return;
}

static void dma_free_rx_skbufs(struct stmmac_priv *priv)
{
	int i;

	for (i = 0; i < priv->dma_rx_size; i++) {
		if (priv->rx_skbuff[i]) {
			dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
					 priv->dma_buf_sz, DMA_FROM_DEVICE);
			dev_kfree_skb_any(priv->rx_skbuff[i]);
		}
		priv->rx_skbuff[i] = NULL;
	}
	return;
}

static void dma_free_tx_skbufs(struct stmmac_priv *priv)
{
	int i;

	for (i = 0; i < priv->dma_tx_size; i++) {
		if (priv->tx_skbuff[i] != NULL) {
			struct dma_desc *p = priv->dma_tx + i;
			if (p->des2)
				dma_unmap_single(priv->device, p->des2,
544 545
						 priv->hw->desc->get_tx_len(p),
						 DMA_TO_DEVICE);
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
			dev_kfree_skb_any(priv->tx_skbuff[i]);
			priv->tx_skbuff[i] = NULL;
		}
	}
	return;
}

static void free_dma_desc_resources(struct stmmac_priv *priv)
{
	/* Release the DMA TX/RX socket buffers */
	dma_free_rx_skbufs(priv);
	dma_free_tx_skbufs(priv);

	/* Free the region of consistent memory previously allocated for
	 * the DMA */
	dma_free_coherent(priv->device,
			  priv->dma_tx_size * sizeof(struct dma_desc),
			  priv->dma_tx, priv->dma_tx_phy);
	dma_free_coherent(priv->device,
			  priv->dma_rx_size * sizeof(struct dma_desc),
			  priv->dma_rx, priv->dma_rx_phy);
	kfree(priv->rx_skbuff_dma);
	kfree(priv->rx_skbuff);
	kfree(priv->tx_skbuff);

	return;
}

/**
 *  stmmac_dma_operation_mode - HW DMA operation mode
 *  @priv : pointer to the private device structure.
 *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
 *  or Store-And-Forward capability. It also verifies the COE for the
 *  transmission in case of Giga ETH.
 */
static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
{
	if (!priv->is_gmac) {
		/* MAC 10/100 */
585
		priv->hw->dma->dma_mode(priv->dev->base_addr, tc, 0);
586 587 588
		priv->tx_coe = NO_HW_CSUM;
	} else {
		if ((priv->dev->mtu <= ETH_DATA_LEN) && (tx_coe)) {
589 590
			priv->hw->dma->dma_mode(priv->dev->base_addr,
						SF_DMA_MODE, SF_DMA_MODE);
591 592 593 594
			tc = SF_DMA_MODE;
			priv->tx_coe = HW_CSUM;
		} else {
			/* Checksum computation is performed in software. */
595 596
			priv->hw->dma->dma_mode(priv->dev->base_addr, tc,
						SF_DMA_MODE);
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
			priv->tx_coe = NO_HW_CSUM;
		}
	}
	tx_coe = priv->tx_coe;

	return;
}

/**
 * stmmac_tx:
 * @priv: private driver structure
 * Description: it reclaims resources after transmission completes.
 */
static void stmmac_tx(struct stmmac_priv *priv)
{
	unsigned int txsize = priv->dma_tx_size;
	unsigned long ioaddr = priv->dev->base_addr;

	while (priv->dirty_tx != priv->cur_tx) {
		int last;
		unsigned int entry = priv->dirty_tx % txsize;
		struct sk_buff *skb = priv->tx_skbuff[entry];
		struct dma_desc *p = priv->dma_tx + entry;

		/* Check if the descriptor is owned by the DMA. */
622
		if (priv->hw->desc->get_tx_owner(p))
623 624 625
			break;

		/* Verify tx error by looking at the last segment */
626
		last = priv->hw->desc->get_tx_ls(p);
627 628
		if (likely(last)) {
			int tx_error =
629 630 631
				priv->hw->desc->tx_status(&priv->dev->stats,
							  &priv->xstats, p,
							  ioaddr);
632 633 634 635 636 637 638 639 640 641 642
			if (likely(tx_error == 0)) {
				priv->dev->stats.tx_packets++;
				priv->xstats.tx_pkt_n++;
			} else
				priv->dev->stats.tx_errors++;
		}
		TX_DBG("%s: curr %d, dirty %d\n", __func__,
			priv->cur_tx, priv->dirty_tx);

		if (likely(p->des2))
			dma_unmap_single(priv->device, p->des2,
643
					 priv->hw->desc->get_tx_len(p),
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
					 DMA_TO_DEVICE);
		if (unlikely(p->des3))
			p->des3 = 0;

		if (likely(skb != NULL)) {
			/*
			 * If there's room in the queue (limit it to size)
			 * we add this skb back into the pool,
			 * if it's the right size.
			 */
			if ((skb_queue_len(&priv->rx_recycle) <
				priv->dma_rx_size) &&
				skb_recycle_check(skb, priv->dma_buf_sz))
				__skb_queue_head(&priv->rx_recycle, skb);
			else
				dev_kfree_skb(skb);

			priv->tx_skbuff[entry] = NULL;
		}

664
		priv->hw->desc->release_tx_desc(p);
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

		entry = (++priv->dirty_tx) % txsize;
	}
	if (unlikely(netif_queue_stopped(priv->dev) &&
		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
		netif_tx_lock(priv->dev);
		if (netif_queue_stopped(priv->dev) &&
		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
			TX_DBG("%s: restart transmit\n", __func__);
			netif_wake_queue(priv->dev);
		}
		netif_tx_unlock(priv->dev);
	}
	return;
}

static inline void stmmac_enable_irq(struct stmmac_priv *priv)
{
683 684 685 686
#ifdef CONFIG_STMMAC_TIMER
	if (likely(priv->tm->enable))
		priv->tm->timer_start(tmrate);
	else
687
#endif
688
		priv->hw->dma->enable_dma_irq(priv->dev->base_addr);
689 690 691 692
}

static inline void stmmac_disable_irq(struct stmmac_priv *priv)
{
693 694 695 696
#ifdef CONFIG_STMMAC_TIMER
	if (likely(priv->tm->enable))
		priv->tm->timer_stop();
	else
697
#endif
698
		priv->hw->dma->disable_dma_irq(priv->dev->base_addr);
699 700 701 702 703 704 705
}

static int stmmac_has_work(struct stmmac_priv *priv)
{
	unsigned int has_work = 0;
	int rxret, tx_work = 0;

706
	rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
		(priv->cur_rx % priv->dma_rx_size));

	if (priv->dirty_tx != priv->cur_tx)
		tx_work = 1;

	if (likely(!rxret || tx_work))
		has_work = 1;

	return has_work;
}

static inline void _stmmac_schedule(struct stmmac_priv *priv)
{
	if (likely(stmmac_has_work(priv))) {
		stmmac_disable_irq(priv);
		napi_schedule(&priv->napi);
	}
}

#ifdef CONFIG_STMMAC_TIMER
void stmmac_schedule(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	priv->xstats.sched_timer_n++;

	_stmmac_schedule(priv);

	return;
}

static void stmmac_no_timer_started(unsigned int x)
{;
};

static void stmmac_no_timer_stopped(void)
{;
};
#endif

/**
 * stmmac_tx_err:
 * @priv: pointer to the private device structure
 * Description: it cleans the descriptors and restarts the transmission
 * in case of errors.
 */
static void stmmac_tx_err(struct stmmac_priv *priv)
{
	netif_stop_queue(priv->dev);

757
	priv->hw->dma->stop_tx(priv->dev->base_addr);
758
	dma_free_tx_skbufs(priv);
759
	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
760 761
	priv->dirty_tx = 0;
	priv->cur_tx = 0;
762
	priv->hw->dma->start_tx(priv->dev->base_addr);
763 764 765 766 767 768 769 770

	priv->dev->stats.tx_errors++;
	netif_wake_queue(priv->dev);

	return;
}


771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
static void stmmac_dma_interrupt(struct stmmac_priv *priv)
{
	unsigned long ioaddr = priv->dev->base_addr;
	int status;

	status = priv->hw->dma->dma_interrupt(priv->dev->base_addr,
					      &priv->xstats);
	if (likely(status == handle_tx_rx))
		_stmmac_schedule(priv);

	else if (unlikely(status == tx_hard_error_bump_tc)) {
		/* Try to bump up the dma threshold on this failure */
		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
			tc += 64;
			priv->hw->dma->dma_mode(ioaddr, tc, SF_DMA_MODE);
			priv->xstats.threshold = tc;
787
		}
788 789 790
		stmmac_tx_err(priv);
	} else if (unlikely(status == tx_hard_error))
		stmmac_tx_err(priv);
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828

	return;
}

/**
 *  stmmac_open - open entry point of the driver
 *  @dev : pointer to the device structure.
 *  Description:
 *  This function is the open entry point of the driver.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_open(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	unsigned long ioaddr = dev->base_addr;
	int ret;

	/* Check that the MAC address is valid.  If its not, refuse
	 * to bring the device up. The user must specify an
	 * address using the following linux command:
	 *      ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx  */
	if (!is_valid_ether_addr(dev->dev_addr)) {
		random_ether_addr(dev->dev_addr);
		pr_warning("%s: generated random MAC address %pM\n", dev->name,
			dev->dev_addr);
	}

	stmmac_verify_args();

	ret = stmmac_init_phy(dev);
	if (unlikely(ret)) {
		pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
		return ret;
	}

	/* Request the IRQ lines */
829
	ret = request_irq(dev->irq, stmmac_interrupt,
830 831 832 833 834 835 836 837
			  IRQF_SHARED, dev->name, dev);
	if (unlikely(ret < 0)) {
		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
		       __func__, dev->irq, ret);
		return ret;
	}

#ifdef CONFIG_STMMAC_TIMER
838
	priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
839 840 841 842 843 844
	if (unlikely(priv->tm == NULL)) {
		pr_err("%s: ERROR: timer memory alloc failed \n", __func__);
		return -ENOMEM;
	}
	priv->tm->freq = tmrate;

845 846
	/* Test if the external timer can be actually used.
	 * In case of failure continue without timer. */
847
	if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
848
		pr_warning("stmmaceth: cannot attach the external timer.\n");
849 850 851 852
		tmrate = 0;
		priv->tm->freq = 0;
		priv->tm->timer_start = stmmac_no_timer_started;
		priv->tm->timer_stop = stmmac_no_timer_stopped;
853 854
	} else
		priv->tm->enable = 1;
855 856 857 858 859 860 861 862 863
#endif

	/* Create and initialize the TX/RX descriptors chains. */
	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
	init_dma_desc_rings(dev);

	/* DMA initialization and SW reset */
864 865
	if (unlikely(priv->hw->dma->init(ioaddr, priv->pbl, priv->dma_tx_phy,
					 priv->dma_rx_phy) < 0)) {
866 867 868 869 870 871

		pr_err("%s: DMA initialization failed\n", __func__);
		return -1;
	}

	/* Copy the MAC addr into the HW  */
872
	priv->hw->mac->set_umac_addr(ioaddr, dev->dev_addr, 0);
873 874 875
	/* If required, perform hw setup of the bus. */
	if (priv->bus_setup)
		priv->bus_setup(ioaddr);
876
	/* Initialize the MAC Core */
877
	priv->hw->mac->core_init(ioaddr);
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897

	priv->shutdown = 0;

	/* Initialise the MMC (if present) to disable all interrupts. */
	writel(0xffffffff, ioaddr + MMC_HIGH_INTR_MASK);
	writel(0xffffffff, ioaddr + MMC_LOW_INTR_MASK);

	/* Enable the MAC Rx/Tx */
	stmmac_mac_enable_rx(ioaddr);
	stmmac_mac_enable_tx(ioaddr);

	/* Set the HW DMA mode and the COE */
	stmmac_dma_operation_mode(priv);

	/* Extra statistics */
	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
	priv->xstats.threshold = tc;

	/* Start the ball rolling... */
	DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
898 899
	priv->hw->dma->start_tx(ioaddr);
	priv->hw->dma->start_rx(ioaddr);
900 901 902 903 904 905

#ifdef CONFIG_STMMAC_TIMER
	priv->tm->timer_start(tmrate);
#endif
	/* Dump DMA/MAC registers */
	if (netif_msg_hw(priv)) {
906 907
		priv->hw->mac->dump_regs(ioaddr);
		priv->hw->dma->dump_regs(ioaddr);
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
	}

	if (priv->phydev)
		phy_start(priv->phydev);

	napi_enable(&priv->napi);
	skb_queue_head_init(&priv->rx_recycle);
	netif_start_queue(dev);
	return 0;
}

/**
 *  stmmac_release - close entry point of the driver
 *  @dev : device pointer.
 *  Description:
 *  This is the stop entry point of the driver.
 */
static int stmmac_release(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	/* Stop and disconnect the PHY */
	if (priv->phydev) {
		phy_stop(priv->phydev);
		phy_disconnect(priv->phydev);
		priv->phydev = NULL;
	}

	netif_stop_queue(dev);

#ifdef CONFIG_STMMAC_TIMER
	/* Stop and release the timer */
	stmmac_close_ext_timer();
	if (priv->tm != NULL)
		kfree(priv->tm);
#endif
	napi_disable(&priv->napi);
	skb_queue_purge(&priv->rx_recycle);

	/* Free the IRQ lines */
	free_irq(dev->irq, dev);

	/* Stop TX/RX DMA and clear the descriptors */
951 952
	priv->hw->dma->stop_tx(dev->base_addr);
	priv->hw->dma->stop_rx(dev->base_addr);
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022

	/* Release and free the Rx/Tx resources */
	free_dma_desc_resources(priv);

	/* Disable the MAC core */
	stmmac_mac_disable_tx(dev->base_addr);
	stmmac_mac_disable_rx(dev->base_addr);

	netif_carrier_off(dev);

	return 0;
}

/*
 * To perform emulated hardware segmentation on skb.
 */
static int stmmac_sw_tso(struct stmmac_priv *priv, struct sk_buff *skb)
{
	struct sk_buff *segs, *curr_skb;
	int gso_segs = skb_shinfo(skb)->gso_segs;

	/* Estimate the number of fragments in the worst case */
	if (unlikely(stmmac_tx_avail(priv) < gso_segs)) {
		netif_stop_queue(priv->dev);
		TX_DBG(KERN_ERR "%s: TSO BUG! Tx Ring full when queue awake\n",
		       __func__);
		if (stmmac_tx_avail(priv) < gso_segs)
			return NETDEV_TX_BUSY;

		netif_wake_queue(priv->dev);
	}
	TX_DBG("\tstmmac_sw_tso: segmenting: skb %p (len %d)\n",
	       skb, skb->len);

	segs = skb_gso_segment(skb, priv->dev->features & ~NETIF_F_TSO);
	if (unlikely(IS_ERR(segs)))
		goto sw_tso_end;

	do {
		curr_skb = segs;
		segs = segs->next;
		TX_DBG("\t\tcurrent skb->len: %d, *curr %p,"
		       "*next %p\n", curr_skb->len, curr_skb, segs);
		curr_skb->next = NULL;
		stmmac_xmit(curr_skb, priv->dev);
	} while (segs);

sw_tso_end:
	dev_kfree_skb(skb);

	return NETDEV_TX_OK;
}

static unsigned int stmmac_handle_jumbo_frames(struct sk_buff *skb,
					       struct net_device *dev,
					       int csum_insertion)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	unsigned int nopaged_len = skb_headlen(skb);
	unsigned int txsize = priv->dma_tx_size;
	unsigned int entry = priv->cur_tx % txsize;
	struct dma_desc *desc = priv->dma_tx + entry;

	if (nopaged_len > BUF_SIZE_8KiB) {

		int buf2_size = nopaged_len - BUF_SIZE_8KiB;

		desc->des2 = dma_map_single(priv->device, skb->data,
					    BUF_SIZE_8KiB, DMA_TO_DEVICE);
		desc->des3 = desc->des2 + BUF_SIZE_4KiB;
1023 1024
		priv->hw->desc->prepare_tx_desc(desc, 1, BUF_SIZE_8KiB,
						csum_insertion);
1025 1026 1027 1028 1029 1030 1031 1032

		entry = (++priv->cur_tx) % txsize;
		desc = priv->dma_tx + entry;

		desc->des2 = dma_map_single(priv->device,
					skb->data + BUF_SIZE_8KiB,
					buf2_size, DMA_TO_DEVICE);
		desc->des3 = desc->des2 + BUF_SIZE_4KiB;
1033 1034 1035
		priv->hw->desc->prepare_tx_desc(desc, 0, buf2_size,
						csum_insertion);
		priv->hw->desc->set_tx_owner(desc);
1036 1037 1038 1039 1040
		priv->tx_skbuff[entry] = NULL;
	} else {
		desc->des2 = dma_map_single(priv->device, skb->data,
					nopaged_len, DMA_TO_DEVICE);
		desc->des3 = desc->des2 + BUF_SIZE_4KiB;
1041 1042
		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
						csum_insertion);
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	}
	return entry;
}

/**
 *  stmmac_xmit:
 *  @skb : the socket buffer
 *  @dev : device pointer
 *  Description : Tx entry point of the driver.
 */
static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	unsigned int txsize = priv->dma_tx_size;
	unsigned int entry;
	int i, csum_insertion = 0;
	int nfrags = skb_shinfo(skb)->nr_frags;
	struct dma_desc *desc, *first;

	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
		if (!netif_queue_stopped(dev)) {
			netif_stop_queue(dev);
			/* This is a hard error, log it. */
			pr_err("%s: BUG! Tx Ring full when queue awake\n",
				__func__);
		}
		return NETDEV_TX_BUSY;
	}

	entry = priv->cur_tx % txsize;

#ifdef STMMAC_XMIT_DEBUG
	if ((skb->len > ETH_FRAME_LEN) || nfrags)
		pr_info("stmmac xmit:\n"
		       "\tskb addr %p - len: %d - nopaged_len: %d\n"
		       "\tn_frags: %d - ip_summed: %d - %s gso\n",
		       skb, skb->len, skb_headlen(skb), nfrags, skb->ip_summed,
		       !skb_is_gso(skb) ? "isn't" : "is");
#endif

	if (unlikely(skb_is_gso(skb)))
		return stmmac_sw_tso(priv, skb);

	if (likely((skb->ip_summed == CHECKSUM_PARTIAL))) {
		if (likely(priv->tx_coe == NO_HW_CSUM))
			skb_checksum_help(skb);
		else
			csum_insertion = 1;
	}

	desc = priv->dma_tx + entry;
	first = desc;

#ifdef STMMAC_XMIT_DEBUG
	if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
		pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
		       "\t\tn_frags: %d, ip_summed: %d\n",
		       skb->len, skb_headlen(skb), nfrags, skb->ip_summed);
#endif
	priv->tx_skbuff[entry] = skb;
	if (unlikely(skb->len >= BUF_SIZE_4KiB)) {
		entry = stmmac_handle_jumbo_frames(skb, dev, csum_insertion);
		desc = priv->dma_tx + entry;
	} else {
		unsigned int nopaged_len = skb_headlen(skb);
		desc->des2 = dma_map_single(priv->device, skb->data,
					nopaged_len, DMA_TO_DEVICE);
1110 1111
		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
						csum_insertion);
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	}

	for (i = 0; i < nfrags; i++) {
		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
		int len = frag->size;

		entry = (++priv->cur_tx) % txsize;
		desc = priv->dma_tx + entry;

		TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
		desc->des2 = dma_map_page(priv->device, frag->page,
					  frag->page_offset,
					  len, DMA_TO_DEVICE);
		priv->tx_skbuff[entry] = NULL;
1126 1127
		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
		priv->hw->desc->set_tx_owner(desc);
1128 1129 1130
	}

	/* Interrupt on completition only for the latest segment */
1131
	priv->hw->desc->close_tx_desc(desc);
1132

1133
#ifdef CONFIG_STMMAC_TIMER
1134 1135
	/* Clean IC while using timer */
	if (likely(priv->tm->enable))
1136
		priv->hw->desc->clear_tx_ic(desc);
1137 1138
#endif
	/* To avoid raise condition */
1139
	priv->hw->desc->set_tx_owner(first);
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

	priv->cur_tx++;

#ifdef STMMAC_XMIT_DEBUG
	if (netif_msg_pktdata(priv)) {
		pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
		       "first=%p, nfrags=%d\n",
		       (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
		       entry, first, nfrags);
		display_ring(priv->dma_tx, txsize);
		pr_info(">>> frame to be transmitted: ");
		print_pkt(skb->data, skb->len);
	}
#endif
	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
		TX_DBG("%s: stop transmitted packets\n", __func__);
		netif_stop_queue(dev);
	}

	dev->stats.tx_bytes += skb->len;

1161
	priv->hw->dma->enable_dma_transmission(dev->base_addr);
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197

	return NETDEV_TX_OK;
}

static inline void stmmac_rx_refill(struct stmmac_priv *priv)
{
	unsigned int rxsize = priv->dma_rx_size;
	int bfsize = priv->dma_buf_sz;
	struct dma_desc *p = priv->dma_rx;

	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
		unsigned int entry = priv->dirty_rx % rxsize;
		if (likely(priv->rx_skbuff[entry] == NULL)) {
			struct sk_buff *skb;

			skb = __skb_dequeue(&priv->rx_recycle);
			if (skb == NULL)
				skb = netdev_alloc_skb_ip_align(priv->dev,
								bfsize);

			if (unlikely(skb == NULL))
				break;

			priv->rx_skbuff[entry] = skb;
			priv->rx_skbuff_dma[entry] =
			    dma_map_single(priv->device, skb->data, bfsize,
					   DMA_FROM_DEVICE);

			(p + entry)->des2 = priv->rx_skbuff_dma[entry];
			if (unlikely(priv->is_gmac)) {
				if (bfsize >= BUF_SIZE_8KiB)
					(p + entry)->des3 =
					    (p + entry)->des2 + BUF_SIZE_8KiB;
			}
			RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
		}
1198
		priv->hw->desc->set_rx_owner(p + entry);
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	}
	return;
}

static int stmmac_rx(struct stmmac_priv *priv, int limit)
{
	unsigned int rxsize = priv->dma_rx_size;
	unsigned int entry = priv->cur_rx % rxsize;
	unsigned int next_entry;
	unsigned int count = 0;
	struct dma_desc *p = priv->dma_rx + entry;
	struct dma_desc *p_next;

#ifdef STMMAC_RX_DEBUG
	if (netif_msg_hw(priv)) {
		pr_debug(">>> stmmac_rx: descriptor ring:\n");
		display_ring(priv->dma_rx, rxsize);
	}
#endif
	count = 0;
1219
	while (!priv->hw->desc->get_rx_owner(p)) {
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
		int status;

		if (count >= limit)
			break;

		count++;

		next_entry = (++priv->cur_rx) % rxsize;
		p_next = priv->dma_rx + next_entry;
		prefetch(p_next);

		/* read the status of the incoming frame */
1232 1233
		status = (priv->hw->desc->rx_status(&priv->dev->stats,
						    &priv->xstats, p));
1234 1235 1236 1237 1238
		if (unlikely(status == discard_frame))
			priv->dev->stats.rx_errors++;
		else {
			struct sk_buff *skb;
			/* Length should omit the CRC */
1239
			int frame_len = priv->hw->desc->get_rx_frame_len(p) - 4;
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374

#ifdef STMMAC_RX_DEBUG
			if (frame_len > ETH_FRAME_LEN)
				pr_debug("\tRX frame size %d, COE status: %d\n",
					frame_len, status);

			if (netif_msg_hw(priv))
				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
					p, entry, p->des2);
#endif
			skb = priv->rx_skbuff[entry];
			if (unlikely(!skb)) {
				pr_err("%s: Inconsistent Rx descriptor chain\n",
					priv->dev->name);
				priv->dev->stats.rx_dropped++;
				break;
			}
			prefetch(skb->data - NET_IP_ALIGN);
			priv->rx_skbuff[entry] = NULL;

			skb_put(skb, frame_len);
			dma_unmap_single(priv->device,
					 priv->rx_skbuff_dma[entry],
					 priv->dma_buf_sz, DMA_FROM_DEVICE);
#ifdef STMMAC_RX_DEBUG
			if (netif_msg_pktdata(priv)) {
				pr_info(" frame received (%dbytes)", frame_len);
				print_pkt(skb->data, frame_len);
			}
#endif
			skb->protocol = eth_type_trans(skb, priv->dev);

			if (unlikely(status == csum_none)) {
				/* always for the old mac 10/100 */
				skb->ip_summed = CHECKSUM_NONE;
				netif_receive_skb(skb);
			} else {
				skb->ip_summed = CHECKSUM_UNNECESSARY;
				napi_gro_receive(&priv->napi, skb);
			}

			priv->dev->stats.rx_packets++;
			priv->dev->stats.rx_bytes += frame_len;
			priv->dev->last_rx = jiffies;
		}
		entry = next_entry;
		p = p_next;	/* use prefetched values */
	}

	stmmac_rx_refill(priv);

	priv->xstats.rx_pkt_n += count;

	return count;
}

/**
 *  stmmac_poll - stmmac poll method (NAPI)
 *  @napi : pointer to the napi structure.
 *  @budget : maximum number of packets that the current CPU can receive from
 *	      all interfaces.
 *  Description :
 *   This function implements the the reception process.
 *   Also it runs the TX completion thread
 */
static int stmmac_poll(struct napi_struct *napi, int budget)
{
	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
	int work_done = 0;

	priv->xstats.poll_n++;
	stmmac_tx(priv);
	work_done = stmmac_rx(priv, budget);

	if (work_done < budget) {
		napi_complete(napi);
		stmmac_enable_irq(priv);
	}
	return work_done;
}

/**
 *  stmmac_tx_timeout
 *  @dev : Pointer to net device structure
 *  Description: this function is called when a packet transmission fails to
 *   complete within a reasonable tmrate. The driver will mark the error in the
 *   netdev structure and arrange for the device to be reset to a sane state
 *   in order to transmit a new packet.
 */
static void stmmac_tx_timeout(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	/* Clear Tx resources and restart transmitting again */
	stmmac_tx_err(priv);
	return;
}

/* Configuration changes (passed on by ifconfig) */
static int stmmac_config(struct net_device *dev, struct ifmap *map)
{
	if (dev->flags & IFF_UP)	/* can't act on a running interface */
		return -EBUSY;

	/* Don't allow changing the I/O address */
	if (map->base_addr != dev->base_addr) {
		pr_warning("%s: can't change I/O address\n", dev->name);
		return -EOPNOTSUPP;
	}

	/* Don't allow changing the IRQ */
	if (map->irq != dev->irq) {
		pr_warning("%s: can't change IRQ number %d\n",
		       dev->name, dev->irq);
		return -EOPNOTSUPP;
	}

	/* ignore other fields */
	return 0;
}

/**
 *  stmmac_multicast_list - entry point for multicast addressing
 *  @dev : pointer to the device structure
 *  Description:
 *  This function is a driver entry point which gets called by the kernel
 *  whenever multicast addresses must be enabled/disabled.
 *  Return value:
 *  void.
 */
static void stmmac_multicast_list(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	spin_lock(&priv->lock);
1375
	priv->hw->mac->set_filter(dev);
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	spin_unlock(&priv->lock);
	return;
}

/**
 *  stmmac_change_mtu - entry point to change MTU size for the device.
 *  @dev : device pointer.
 *  @new_mtu : the new MTU size for the device.
 *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
 *  to drive packet transmission. Ethernet has an MTU of 1500 octets
 *  (ETH_DATA_LEN). This value can be changed with ifconfig.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int max_mtu;

	if (netif_running(dev)) {
		pr_err("%s: must be stopped to change its MTU\n", dev->name);
		return -EBUSY;
	}

	if (priv->is_gmac)
		max_mtu = JUMBO_LEN;
	else
		max_mtu = ETH_DATA_LEN;

	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
		return -EINVAL;
	}

	dev->mtu = new_mtu;

	return 0;
}

static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct stmmac_priv *priv = netdev_priv(dev);

	if (unlikely(!dev)) {
		pr_err("%s: invalid dev pointer\n", __func__);
		return IRQ_NONE;
	}

	if (priv->is_gmac) {
		unsigned long ioaddr = dev->base_addr;
		/* To handle GMAC own interrupts */
1429
		priv->hw->mac->host_irq_status(ioaddr);
1430
	}
1431 1432

	stmmac_dma_interrupt(priv);
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550

	return IRQ_HANDLED;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling receive - used by NETCONSOLE and other diagnostic tools
 * to allow network I/O with interrupts disabled. */
static void stmmac_poll_controller(struct net_device *dev)
{
	disable_irq(dev->irq);
	stmmac_interrupt(dev->irq, dev);
	enable_irq(dev->irq);
}
#endif

/**
 *  stmmac_ioctl - Entry point for the Ioctl
 *  @dev: Device pointer.
 *  @rq: An IOCTL specefic structure, that can contain a pointer to
 *  a proprietary structure used to pass information to the driver.
 *  @cmd: IOCTL command
 *  Description:
 *  Currently there are no special functionality supported in IOCTL, just the
 *  phy_mii_ioctl(...) can be invoked.
 */
static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int ret = -EOPNOTSUPP;

	if (!netif_running(dev))
		return -EINVAL;

	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		if (!priv->phydev)
			return -EINVAL;

		spin_lock(&priv->lock);
		ret = phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
		spin_unlock(&priv->lock);
	default:
		break;
	}
	return ret;
}

#ifdef STMMAC_VLAN_TAG_USED
static void stmmac_vlan_rx_register(struct net_device *dev,
				    struct vlan_group *grp)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	DBG(probe, INFO, "%s: Setting vlgrp to %p\n", dev->name, grp);

	spin_lock(&priv->lock);
	priv->vlgrp = grp;
	spin_unlock(&priv->lock);

	return;
}
#endif

static const struct net_device_ops stmmac_netdev_ops = {
	.ndo_open = stmmac_open,
	.ndo_start_xmit = stmmac_xmit,
	.ndo_stop = stmmac_release,
	.ndo_change_mtu = stmmac_change_mtu,
	.ndo_set_multicast_list = stmmac_multicast_list,
	.ndo_tx_timeout = stmmac_tx_timeout,
	.ndo_do_ioctl = stmmac_ioctl,
	.ndo_set_config = stmmac_config,
#ifdef STMMAC_VLAN_TAG_USED
	.ndo_vlan_rx_register = stmmac_vlan_rx_register,
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = stmmac_poll_controller,
#endif
	.ndo_set_mac_address = eth_mac_addr,
};

/**
 * stmmac_probe - Initialization of the adapter .
 * @dev : device pointer
 * Description: The function initializes the network device structure for
 * the STMMAC driver. It also calls the low level routines
 * in order to init the HW (i.e. the DMA engine)
 */
static int stmmac_probe(struct net_device *dev)
{
	int ret = 0;
	struct stmmac_priv *priv = netdev_priv(dev);

	ether_setup(dev);

	dev->netdev_ops = &stmmac_netdev_ops;
	stmmac_set_ethtool_ops(dev);

	dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_HIGHDMA);
	dev->watchdog_timeo = msecs_to_jiffies(watchdog);
#ifdef STMMAC_VLAN_TAG_USED
	/* Both mac100 and gmac support receive VLAN tag detection */
	dev->features |= NETIF_F_HW_VLAN_RX;
#endif
	priv->msg_enable = netif_msg_init(debug, default_msg_level);

	if (priv->is_gmac)
		priv->rx_csum = 1;

	if (flow_ctrl)
		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */

	priv->pause = pause;
	netif_napi_add(dev, &priv->napi, stmmac_poll, 64);

	/* Get the MAC address */
1551
	priv->hw->mac->get_umac_addr(dev->base_addr, dev->dev_addr, 0);
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592

	if (!is_valid_ether_addr(dev->dev_addr))
		pr_warning("\tno valid MAC address;"
			"please, use ifconfig or nwhwconfig!\n");

	ret = register_netdev(dev);
	if (ret) {
		pr_err("%s: ERROR %i registering the device\n",
		       __func__, ret);
		return -ENODEV;
	}

	DBG(probe, DEBUG, "%s: Scatter/Gather: %s - HW checksums: %s\n",
	    dev->name, (dev->features & NETIF_F_SG) ? "on" : "off",
	    (dev->features & NETIF_F_HW_CSUM) ? "on" : "off");

	spin_lock_init(&priv->lock);

	return ret;
}

/**
 * stmmac_mac_device_setup
 * @dev : device pointer
 * Description: select and initialise the mac device (mac100 or Gmac).
 */
static int stmmac_mac_device_setup(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	unsigned long ioaddr = dev->base_addr;

	struct mac_device_info *device;

	if (priv->is_gmac)
		device = gmac_setup(ioaddr);
	else
		device = mac100_setup(ioaddr);

	if (!device)
		return -ENOMEM;

1593
	priv->hw = device;
1594

1595
	priv->wolenabled = priv->hw->pmt;	/* PMT supported */
1596 1597 1598 1599 1600 1601 1602 1603
	if (priv->wolenabled == PMT_SUPPORTED)
		priv->wolopts = WAKE_MAGIC;		/* Magic Frame */

	return 0;
}

static int stmmacphy_dvr_probe(struct platform_device *pdev)
{
1604
	struct plat_stmmacphy_data *plat_dat = pdev->dev.platform_data;
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635

	pr_debug("stmmacphy_dvr_probe: added phy for bus %d\n",
	       plat_dat->bus_id);

	return 0;
}

static int stmmacphy_dvr_remove(struct platform_device *pdev)
{
	return 0;
}

static struct platform_driver stmmacphy_driver = {
	.driver = {
		   .name = PHY_RESOURCE_NAME,
		   },
	.probe = stmmacphy_dvr_probe,
	.remove = stmmacphy_dvr_remove,
};

/**
 * stmmac_associate_phy
 * @dev: pointer to device structure
 * @data: points to the private structure.
 * Description: Scans through all the PHYs we have registered and checks if
 * any are associated with our MAC.  If so, then just fill in
 * the blanks in our local context structure
 */
static int stmmac_associate_phy(struct device *dev, void *data)
{
	struct stmmac_priv *priv = (struct stmmac_priv *)data;
1636
	struct plat_stmmacphy_data *plat_dat = dev->platform_data;
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725

	DBG(probe, DEBUG, "%s: checking phy for bus %d\n", __func__,
		plat_dat->bus_id);

	/* Check that this phy is for the MAC being initialised */
	if (priv->bus_id != plat_dat->bus_id)
		return 0;

	/* OK, this PHY is connected to the MAC.
	   Go ahead and get the parameters */
	DBG(probe, DEBUG, "%s: OK. Found PHY config\n", __func__);
	priv->phy_irq =
	    platform_get_irq_byname(to_platform_device(dev), "phyirq");
	DBG(probe, DEBUG, "%s: PHY irq on bus %d is %d\n", __func__,
	    plat_dat->bus_id, priv->phy_irq);

	/* Override with kernel parameters if supplied XXX CRS XXX
	 * this needs to have multiple instances */
	if ((phyaddr >= 0) && (phyaddr <= 31))
		plat_dat->phy_addr = phyaddr;

	priv->phy_addr = plat_dat->phy_addr;
	priv->phy_mask = plat_dat->phy_mask;
	priv->phy_interface = plat_dat->interface;
	priv->phy_reset = plat_dat->phy_reset;

	DBG(probe, DEBUG, "%s: exiting\n", __func__);
	return 1;	/* forces exit of driver_for_each_device() */
}

/**
 * stmmac_dvr_probe
 * @pdev: platform device pointer
 * Description: the driver is initialized through platform_device.
 */
static int stmmac_dvr_probe(struct platform_device *pdev)
{
	int ret = 0;
	struct resource *res;
	unsigned int *addr = NULL;
	struct net_device *ndev = NULL;
	struct stmmac_priv *priv;
	struct plat_stmmacenet_data *plat_dat;

	pr_info("STMMAC driver:\n\tplatform registration... ");
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res) {
		ret = -ENODEV;
		goto out;
	}
	pr_info("done!\n");

	if (!request_mem_region(res->start, (res->end - res->start),
				pdev->name)) {
		pr_err("%s: ERROR: memory allocation failed"
		       "cannot get the I/O addr 0x%x\n",
		       __func__, (unsigned int)res->start);
		ret = -EBUSY;
		goto out;
	}

	addr = ioremap(res->start, (res->end - res->start));
	if (!addr) {
		pr_err("%s: ERROR: memory mapping failed \n", __func__);
		ret = -ENOMEM;
		goto out;
	}

	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
	if (!ndev) {
		pr_err("%s: ERROR: allocating the device\n", __func__);
		ret = -ENOMEM;
		goto out;
	}

	SET_NETDEV_DEV(ndev, &pdev->dev);

	/* Get the MAC information */
	ndev->irq = platform_get_irq_byname(pdev, "macirq");
	if (ndev->irq == -ENXIO) {
		pr_err("%s: ERROR: MAC IRQ configuration "
		       "information not found\n", __func__);
		ret = -ENODEV;
		goto out;
	}

	priv = netdev_priv(ndev);
	priv->device = &(pdev->dev);
	priv->dev = ndev;
1726
	plat_dat = pdev->dev.platform_data;
1727 1728 1729 1730 1731 1732 1733 1734 1735
	priv->bus_id = plat_dat->bus_id;
	priv->pbl = plat_dat->pbl;	/* TLI */
	priv->is_gmac = plat_dat->has_gmac;	/* GMAC is on board */

	platform_set_drvdata(pdev, ndev);

	/* Set the I/O base addr */
	ndev->base_addr = (unsigned long)addr;

1736 1737 1738 1739 1740
	/* Verify embedded resource for the platform */
	ret = stmmac_claim_resource(pdev);
	if (ret < 0)
		goto out;

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	/* MAC HW revice detection */
	ret = stmmac_mac_device_setup(ndev);
	if (ret < 0)
		goto out;

	/* Network Device Registration */
	ret = stmmac_probe(ndev);
	if (ret < 0)
		goto out;

	/* associate a PHY - it is provided by another platform bus */
	if (!driver_for_each_device
	    (&(stmmacphy_driver.driver), NULL, (void *)priv,
	     stmmac_associate_phy)) {
		pr_err("No PHY device is associated with this MAC!\n");
		ret = -ENODEV;
		goto out;
	}

	priv->fix_mac_speed = plat_dat->fix_mac_speed;
1761
	priv->bus_setup = plat_dat->bus_setup;
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	priv->bsp_priv = plat_dat->bsp_priv;

	pr_info("\t%s - (dev. name: %s - id: %d, IRQ #%d\n"
	       "\tIO base addr: 0x%08x)\n", ndev->name, pdev->name,
	       pdev->id, ndev->irq, (unsigned int)addr);

	/* MDIO bus Registration */
	pr_debug("\tMDIO bus (id: %d)...", priv->bus_id);
	ret = stmmac_mdio_register(ndev);
	if (ret < 0)
		goto out;
	pr_debug("registered!\n");

out:
	if (ret < 0) {
		platform_set_drvdata(pdev, NULL);
		release_mem_region(res->start, (res->end - res->start));
		if (addr != NULL)
			iounmap(addr);
	}

	return ret;
}

/**
 * stmmac_dvr_remove
 * @pdev: platform device pointer
 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
 * changes the link status, releases the DMA descriptor rings,
 * unregisters the MDIO bus and unmaps the allocated memory.
 */
static int stmmac_dvr_remove(struct platform_device *pdev)
{
	struct net_device *ndev = platform_get_drvdata(pdev);
1796
	struct stmmac_priv *priv = netdev_priv(ndev);
1797 1798 1799 1800
	struct resource *res;

	pr_info("%s:\n\tremoving driver", __func__);

1801 1802
	priv->hw->dma->stop_rx(ndev->base_addr);
	priv->hw->dma->stop_tx(ndev->base_addr);
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842

	stmmac_mac_disable_rx(ndev->base_addr);
	stmmac_mac_disable_tx(ndev->base_addr);

	netif_carrier_off(ndev);

	stmmac_mdio_unregister(ndev);

	platform_set_drvdata(pdev, NULL);
	unregister_netdev(ndev);

	iounmap((void *)ndev->base_addr);
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	release_mem_region(res->start, (res->end - res->start));

	free_netdev(ndev);

	return 0;
}

#ifdef CONFIG_PM
static int stmmac_suspend(struct platform_device *pdev, pm_message_t state)
{
	struct net_device *dev = platform_get_drvdata(pdev);
	struct stmmac_priv *priv = netdev_priv(dev);
	int dis_ic = 0;

	if (!dev || !netif_running(dev))
		return 0;

	spin_lock(&priv->lock);

	if (state.event == PM_EVENT_SUSPEND) {
		netif_device_detach(dev);
		netif_stop_queue(dev);
		if (priv->phydev)
			phy_stop(priv->phydev);

#ifdef CONFIG_STMMAC_TIMER
		priv->tm->timer_stop();
1843 1844
		if (likely(priv->tm->enable))
			dis_ic = 1;
1845 1846 1847 1848
#endif
		napi_disable(&priv->napi);

		/* Stop TX/RX DMA */
1849 1850
		priv->hw->dma->stop_tx(dev->base_addr);
		priv->hw->dma->stop_rx(dev->base_addr);
1851
		/* Clear the Rx/Tx descriptors */
1852 1853 1854
		priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
					     dis_ic);
		priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
1855 1856 1857 1858 1859 1860

		stmmac_mac_disable_tx(dev->base_addr);

		if (device_may_wakeup(&(pdev->dev))) {
			/* Enable Power down mode by programming the PMT regs */
			if (priv->wolenabled == PMT_SUPPORTED)
1861 1862
				priv->hw->mac->pmt(dev->base_addr,
						   priv->wolopts);
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
		} else {
			stmmac_mac_disable_rx(dev->base_addr);
		}
	} else {
		priv->shutdown = 1;
		/* Although this can appear slightly redundant it actually
		 * makes fast the standby operation and guarantees the driver
		 * working if hibernation is on media. */
		stmmac_release(dev);
	}

	spin_unlock(&priv->lock);
	return 0;
}

static int stmmac_resume(struct platform_device *pdev)
{
	struct net_device *dev = platform_get_drvdata(pdev);
	struct stmmac_priv *priv = netdev_priv(dev);
	unsigned long ioaddr = dev->base_addr;

	if (!netif_running(dev))
		return 0;

	spin_lock(&priv->lock);

	if (priv->shutdown) {
		/* Re-open the interface and re-init the MAC/DMA
		   and the rings. */
		stmmac_open(dev);
		goto out_resume;
	}

	/* Power Down bit, into the PM register, is cleared
	 * automatically as soon as a magic packet or a Wake-up frame
	 * is received. Anyway, it's better to manually clear
	 * this bit because it can generate problems while resuming
	 * from another devices (e.g. serial console). */
	if (device_may_wakeup(&(pdev->dev)))
		if (priv->wolenabled == PMT_SUPPORTED)
1903
			priv->hw->mac->pmt(dev->base_addr, 0);
1904 1905 1906 1907 1908 1909

	netif_device_attach(dev);

	/* Enable the MAC and DMA */
	stmmac_mac_enable_rx(ioaddr);
	stmmac_mac_enable_tx(ioaddr);
1910 1911
	priv->hw->dma->start_tx(ioaddr);
	priv->hw->dma->start_rx(ioaddr);
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

#ifdef CONFIG_STMMAC_TIMER
	priv->tm->timer_start(tmrate);
#endif
	napi_enable(&priv->napi);

	if (priv->phydev)
		phy_start(priv->phydev);

	netif_start_queue(dev);

out_resume:
	spin_unlock(&priv->lock);
	return 0;
}
#endif

static struct platform_driver stmmac_driver = {
	.driver = {
		   .name = STMMAC_RESOURCE_NAME,
		   },
	.probe = stmmac_dvr_probe,
	.remove = stmmac_dvr_remove,
#ifdef CONFIG_PM
	.suspend = stmmac_suspend,
	.resume = stmmac_resume,
#endif

};

/**
 * stmmac_init_module - Entry point for the driver
 * Description: This function is the entry point for the driver.
 */
static int __init stmmac_init_module(void)
{
	int ret;

	if (platform_driver_register(&stmmacphy_driver)) {
		pr_err("No PHY devices registered!\n");
		return -ENODEV;
	}

	ret = platform_driver_register(&stmmac_driver);
	return ret;
}

/**
 * stmmac_cleanup_module - Cleanup routine for the driver
 * Description: This function is the cleanup routine for the driver.
 */
static void __exit stmmac_cleanup_module(void)
{
	platform_driver_unregister(&stmmacphy_driver);
	platform_driver_unregister(&stmmac_driver);
}

#ifndef MODULE
static int __init stmmac_cmdline_opt(char *str)
{
	char *opt;

	if (!str || !*str)
		return -EINVAL;
	while ((opt = strsep(&str, ",")) != NULL) {
		if (!strncmp(opt, "debug:", 6))
			strict_strtoul(opt + 6, 0, (unsigned long *)&debug);
		else if (!strncmp(opt, "phyaddr:", 8))
			strict_strtoul(opt + 8, 0, (unsigned long *)&phyaddr);
		else if (!strncmp(opt, "dma_txsize:", 11))
			strict_strtoul(opt + 11, 0,
				       (unsigned long *)&dma_txsize);
		else if (!strncmp(opt, "dma_rxsize:", 11))
			strict_strtoul(opt + 11, 0,
				       (unsigned long *)&dma_rxsize);
		else if (!strncmp(opt, "buf_sz:", 7))
			strict_strtoul(opt + 7, 0, (unsigned long *)&buf_sz);
		else if (!strncmp(opt, "tc:", 3))
			strict_strtoul(opt + 3, 0, (unsigned long *)&tc);
		else if (!strncmp(opt, "tx_coe:", 7))
			strict_strtoul(opt + 7, 0, (unsigned long *)&tx_coe);
		else if (!strncmp(opt, "watchdog:", 9))
			strict_strtoul(opt + 9, 0, (unsigned long *)&watchdog);
		else if (!strncmp(opt, "flow_ctrl:", 10))
			strict_strtoul(opt + 10, 0,
				       (unsigned long *)&flow_ctrl);
		else if (!strncmp(opt, "pause:", 6))
			strict_strtoul(opt + 6, 0, (unsigned long *)&pause);
#ifdef CONFIG_STMMAC_TIMER
		else if (!strncmp(opt, "tmrate:", 7))
			strict_strtoul(opt + 7, 0, (unsigned long *)&tmrate);
#endif
	}
	return 0;
}

__setup("stmmaceth=", stmmac_cmdline_opt);
#endif

module_init(stmmac_init_module);
module_exit(stmmac_cleanup_module);

MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet driver");
MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
MODULE_LICENSE("GPL");