auth.c 23.9 KB
Newer Older
1
/* SCTP kernel implementation
2 3
 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
 *
4
 * This file is part of the SCTP kernel implementation
5
 *
6
 * This SCTP implementation is free software;
7 8 9 10 11
 * you can redistribute it and/or modify it under the terms of
 * the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
12
 * This SCTP implementation is distributed in the hope that it
13 14 15 16 17 18
 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
 *                 ************************
 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
19 20
 * along with GNU CC; see the file COPYING.  If not, see
 * <http://www.gnu.org/licenses/>.
21 22 23
 *
 * Please send any bug reports or fixes you make to the
 * email address(es):
24
 *    lksctp developers <linux-sctp@vger.kernel.org>
25 26 27 28 29
 *
 * Written or modified by:
 *   Vlad Yasevich     <vladislav.yasevich@hp.com>
 */

H
Herbert Xu 已提交
30
#include <crypto/hash.h>
31
#include <linux/slab.h>
32 33 34 35 36 37 38 39 40 41 42 43
#include <linux/types.h>
#include <linux/scatterlist.h>
#include <net/sctp/sctp.h>
#include <net/sctp/auth.h>

static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
	{
		/* id 0 is reserved.  as all 0 */
		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
	},
	{
		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
44
		.hmac_name = "hmac(sha1)",
45 46 47 48 49 50
		.hmac_len = SCTP_SHA1_SIG_SIZE,
	},
	{
		/* id 2 is reserved as well */
		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
	},
51
#if IS_ENABLED(CONFIG_CRYPTO_SHA256)
52 53
	{
		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
54
		.hmac_name = "hmac(sha256)",
55 56
		.hmac_len = SCTP_SHA256_SIG_SIZE,
	}
57
#endif
58 59 60 61 62 63 64 65 66
};


void sctp_auth_key_put(struct sctp_auth_bytes *key)
{
	if (!key)
		return;

	if (atomic_dec_and_test(&key->refcnt)) {
67
		kzfree(key);
68 69 70 71 72 73 74 75 76
		SCTP_DBG_OBJCNT_DEC(keys);
	}
}

/* Create a new key structure of a given length */
static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
{
	struct sctp_auth_bytes *key;

77
	/* Verify that we are not going to overflow INT_MAX */
78
	if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
79 80
		return NULL;

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	/* Allocate the shared key */
	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
	if (!key)
		return NULL;

	key->len = key_len;
	atomic_set(&key->refcnt, 1);
	SCTP_DBG_OBJCNT_INC(keys);

	return key;
}

/* Create a new shared key container with a give key id */
struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
{
	struct sctp_shared_key *new;

	/* Allocate the shared key container */
	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
	if (!new)
		return NULL;

	INIT_LIST_HEAD(&new->key_list);
	new->key_id = key_id;

	return new;
}

L
Lucas De Marchi 已提交
109
/* Free the shared key structure */
110
static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
111 112 113 114 115 116 117
{
	BUG_ON(!list_empty(&sh_key->key_list));
	sctp_auth_key_put(sh_key->key);
	sh_key->key = NULL;
	kfree(sh_key);
}

L
Lucas De Marchi 已提交
118
/* Destroy the entire key list.  This is done during the
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
 * associon and endpoint free process.
 */
void sctp_auth_destroy_keys(struct list_head *keys)
{
	struct sctp_shared_key *ep_key;
	struct sctp_shared_key *tmp;

	if (list_empty(keys))
		return;

	key_for_each_safe(ep_key, tmp, keys) {
		list_del_init(&ep_key->key_list);
		sctp_auth_shkey_free(ep_key);
	}
}

/* Compare two byte vectors as numbers.  Return values
 * are:
 * 	  0 - vectors are equal
138 139
 * 	< 0 - vector 1 is smaller than vector2
 * 	> 0 - vector 1 is greater than vector2
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
 *
 * Algorithm is:
 * 	This is performed by selecting the numerically smaller key vector...
 *	If the key vectors are equal as numbers but differ in length ...
 *	the shorter vector is considered smaller
 *
 * Examples (with small values):
 * 	000123456789 > 123456789 (first number is longer)
 * 	000123456789 < 234567891 (second number is larger numerically)
 * 	123456789 > 2345678 	 (first number is both larger & longer)
 */
static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
			      struct sctp_auth_bytes *vector2)
{
	int diff;
	int i;
	const __u8 *longer;

	diff = vector1->len - vector2->len;
	if (diff) {
		longer = (diff > 0) ? vector1->data : vector2->data;

		/* Check to see if the longer number is
		 * lead-zero padded.  If it is not, it
		 * is automatically larger numerically.
		 */
166
		for (i = 0; i < abs(diff); i++) {
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
			if (longer[i] != 0)
				return diff;
		}
	}

	/* lengths are the same, compare numbers */
	return memcmp(vector1->data, vector2->data, vector1->len);
}

/*
 * Create a key vector as described in SCTP-AUTH, Section 6.1
 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
 *    parameter sent by each endpoint are concatenated as byte vectors.
 *    These parameters include the parameter type, parameter length, and
 *    the parameter value, but padding is omitted; all padding MUST be
 *    removed from this concatenation before proceeding with further
 *    computation of keys.  Parameters which were not sent are simply
 *    omitted from the concatenation process.  The resulting two vectors
 *    are called the two key vectors.
 */
static struct sctp_auth_bytes *sctp_auth_make_key_vector(
			sctp_random_param_t *random,
			sctp_chunks_param_t *chunks,
			sctp_hmac_algo_param_t *hmacs,
			gfp_t gfp)
{
	struct sctp_auth_bytes *new;
	__u32	len;
	__u32	offset = 0;
196
	__u16	random_len, hmacs_len, chunks_len = 0;
197

198 199 200 201 202 203
	random_len = ntohs(random->param_hdr.length);
	hmacs_len = ntohs(hmacs->param_hdr.length);
	if (chunks)
		chunks_len = ntohs(chunks->param_hdr.length);

	len = random_len + hmacs_len + chunks_len;
204

205
	new = sctp_auth_create_key(len, gfp);
206 207 208
	if (!new)
		return NULL;

209 210
	memcpy(new->data, random, random_len);
	offset += random_len;
211 212

	if (chunks) {
213 214
		memcpy(new->data + offset, chunks, chunks_len);
		offset += chunks_len;
215 216
	}

217
	memcpy(new->data + offset, hmacs, hmacs_len);
218 219 220 221 222 223

	return new;
}


/* Make a key vector based on our local parameters */
224
static struct sctp_auth_bytes *sctp_auth_make_local_vector(
225 226 227 228
				    const struct sctp_association *asoc,
				    gfp_t gfp)
{
	return sctp_auth_make_key_vector(
229 230 231
				    (sctp_random_param_t *)asoc->c.auth_random,
				    (sctp_chunks_param_t *)asoc->c.auth_chunks,
				    (sctp_hmac_algo_param_t *)asoc->c.auth_hmacs,
232 233 234 235
				    gfp);
}

/* Make a key vector based on peer's parameters */
236
static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
				    const struct sctp_association *asoc,
				    gfp_t gfp)
{
	return sctp_auth_make_key_vector(asoc->peer.peer_random,
					 asoc->peer.peer_chunks,
					 asoc->peer.peer_hmacs,
					 gfp);
}


/* Set the value of the association shared key base on the parameters
 * given.  The algorithm is:
 *    From the endpoint pair shared keys and the key vectors the
 *    association shared keys are computed.  This is performed by selecting
 *    the numerically smaller key vector and concatenating it to the
 *    endpoint pair shared key, and then concatenating the numerically
 *    larger key vector to that.  The result of the concatenation is the
 *    association shared key.
 */
static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
			struct sctp_shared_key *ep_key,
			struct sctp_auth_bytes *first_vector,
			struct sctp_auth_bytes *last_vector,
			gfp_t gfp)
{
	struct sctp_auth_bytes *secret;
	__u32 offset = 0;
	__u32 auth_len;

	auth_len = first_vector->len + last_vector->len;
	if (ep_key->key)
		auth_len += ep_key->key->len;

	secret = sctp_auth_create_key(auth_len, gfp);
	if (!secret)
		return NULL;

	if (ep_key->key) {
		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
		offset += ep_key->key->len;
	}

	memcpy(secret->data + offset, first_vector->data, first_vector->len);
	offset += first_vector->len;

	memcpy(secret->data + offset, last_vector->data, last_vector->len);

	return secret;
}

/* Create an association shared key.  Follow the algorithm
 * described in SCTP-AUTH, Section 6.1
 */
static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
				 const struct sctp_association *asoc,
				 struct sctp_shared_key *ep_key,
				 gfp_t gfp)
{
	struct sctp_auth_bytes *local_key_vector;
	struct sctp_auth_bytes *peer_key_vector;
	struct sctp_auth_bytes	*first_vector,
				*last_vector;
	struct sctp_auth_bytes	*secret = NULL;
	int	cmp;


	/* Now we need to build the key vectors
	 * SCTP-AUTH , Section 6.1
	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
	 *    parameter sent by each endpoint are concatenated as byte vectors.
	 *    These parameters include the parameter type, parameter length, and
	 *    the parameter value, but padding is omitted; all padding MUST be
	 *    removed from this concatenation before proceeding with further
	 *    computation of keys.  Parameters which were not sent are simply
	 *    omitted from the concatenation process.  The resulting two vectors
	 *    are called the two key vectors.
	 */

	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);

	if (!peer_key_vector || !local_key_vector)
		goto out;

L
Lucas De Marchi 已提交
321
	/* Figure out the order in which the key_vectors will be
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
	 * added to the endpoint shared key.
	 * SCTP-AUTH, Section 6.1:
	 *   This is performed by selecting the numerically smaller key
	 *   vector and concatenating it to the endpoint pair shared
	 *   key, and then concatenating the numerically larger key
	 *   vector to that.  If the key vectors are equal as numbers
	 *   but differ in length, then the concatenation order is the
	 *   endpoint shared key, followed by the shorter key vector,
	 *   followed by the longer key vector.  Otherwise, the key
	 *   vectors are identical, and may be concatenated to the
	 *   endpoint pair key in any order.
	 */
	cmp = sctp_auth_compare_vectors(local_key_vector,
					peer_key_vector);
	if (cmp < 0) {
		first_vector = local_key_vector;
		last_vector = peer_key_vector;
	} else {
		first_vector = peer_key_vector;
		last_vector = local_key_vector;
	}

	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
					    gfp);
out:
347 348
	sctp_auth_key_put(local_key_vector);
	sctp_auth_key_put(peer_key_vector);
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383

	return secret;
}

/*
 * Populate the association overlay list with the list
 * from the endpoint.
 */
int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
				struct sctp_association *asoc,
				gfp_t gfp)
{
	struct sctp_shared_key *sh_key;
	struct sctp_shared_key *new;

	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));

	key_for_each(sh_key, &ep->endpoint_shared_keys) {
		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
		if (!new)
			goto nomem;

		new->key = sh_key->key;
		sctp_auth_key_hold(new->key);
		list_add(&new->key_list, &asoc->endpoint_shared_keys);
	}

	return 0;

nomem:
	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
	return -ENOMEM;
}


384
/* Public interface to create the association shared key.
385 386 387 388 389 390
 * See code above for the algorithm.
 */
int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
{
	struct sctp_auth_bytes	*secret;
	struct sctp_shared_key *ep_key;
391
	struct sctp_chunk *chunk;
392 393 394 395

	/* If we don't support AUTH, or peer is not capable
	 * we don't need to do anything.
	 */
396
	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
		return 0;

	/* If the key_id is non-zero and we couldn't find an
	 * endpoint pair shared key, we can't compute the
	 * secret.
	 * For key_id 0, endpoint pair shared key is a NULL key.
	 */
	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
	BUG_ON(!ep_key);

	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
	if (!secret)
		return -ENOMEM;

	sctp_auth_key_put(asoc->asoc_shared_key);
	asoc->asoc_shared_key = secret;

414 415 416 417 418 419 420 421
	/* Update send queue in case any chunk already in there now
	 * needs authenticating
	 */
	list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) {
		if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc))
			chunk->auth = 1;
	}

422 423 424 425 426 427 428 429 430
	return 0;
}


/* Find the endpoint pair shared key based on the key_id */
struct sctp_shared_key *sctp_auth_get_shkey(
				const struct sctp_association *asoc,
				__u16 key_id)
{
431
	struct sctp_shared_key *key;
432 433 434 435

	/* First search associations set of endpoint pair shared keys */
	key_for_each(key, &asoc->endpoint_shared_keys) {
		if (key->key_id == key_id)
436
			return key;
437 438
	}

439
	return NULL;
440 441 442 443 444 445 446 447 448 449 450
}

/*
 * Initialize all the possible digest transforms that we can use.  Right now
 * now, the supported digests are SHA1 and SHA256.  We do this here once
 * because of the restrictiong that transforms may only be allocated in
 * user context.  This forces us to pre-allocated all possible transforms
 * at the endpoint init time.
 */
int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
{
H
Herbert Xu 已提交
451
	struct crypto_shash *tfm = NULL;
452 453
	__u16   id;

454 455
	/* If AUTH extension is disabled, we are done */
	if (!ep->auth_enable) {
456 457 458 459
		ep->auth_hmacs = NULL;
		return 0;
	}

460
	/* If the transforms are already allocated, we are done */
461 462 463 464
	if (ep->auth_hmacs)
		return 0;

	/* Allocated the array of pointers to transorms */
H
Herbert Xu 已提交
465 466
	ep->auth_hmacs = kzalloc(sizeof(struct crypto_shash *) *
				 SCTP_AUTH_NUM_HMACS, gfp);
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	if (!ep->auth_hmacs)
		return -ENOMEM;

	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {

		/* See is we support the id.  Supported IDs have name and
		 * length fields set, so that we can allocated and use
		 * them.  We can safely just check for name, for without the
		 * name, we can't allocate the TFM.
		 */
		if (!sctp_hmac_list[id].hmac_name)
			continue;

		/* If this TFM has been allocated, we are all set */
		if (ep->auth_hmacs[id])
			continue;

		/* Allocate the ID */
H
Herbert Xu 已提交
485
		tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0);
486 487 488 489 490 491 492 493 494
		if (IS_ERR(tfm))
			goto out_err;

		ep->auth_hmacs[id] = tfm;
	}

	return 0;

out_err:
C
Coly Li 已提交
495
	/* Clean up any successful allocations */
496 497 498 499 500
	sctp_auth_destroy_hmacs(ep->auth_hmacs);
	return -ENOMEM;
}

/* Destroy the hmac tfm array */
H
Herbert Xu 已提交
501
void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[])
502 503 504 505 506 507
{
	int i;

	if (!auth_hmacs)
		return;

508
	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) {
H
Herbert Xu 已提交
509
		crypto_free_shash(auth_hmacs[i]);
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
	}
	kfree(auth_hmacs);
}


struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
{
	return &sctp_hmac_list[hmac_id];
}

/* Get an hmac description information that we can use to build
 * the AUTH chunk
 */
struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
{
	struct sctp_hmac_algo_param *hmacs;
	__u16 n_elt;
	__u16 id = 0;
	int i;

	/* If we have a default entry, use it */
	if (asoc->default_hmac_id)
		return &sctp_hmac_list[asoc->default_hmac_id];

	/* Since we do not have a default entry, find the first entry
	 * we support and return that.  Do not cache that id.
	 */
	hmacs = asoc->peer.peer_hmacs;
	if (!hmacs)
		return NULL;

	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
	for (i = 0; i < n_elt; i++) {
		id = ntohs(hmacs->hmac_ids[i]);

W
wangweidong 已提交
545 546 547
		/* Check the id is in the supported range. And
		 * see if we support the id.  Supported IDs have name and
		 * length fields set, so that we can allocate and use
548 549 550
		 * them.  We can safely just check for name, for without the
		 * name, we can't allocate the TFM.
		 */
W
wangweidong 已提交
551 552
		if (id > SCTP_AUTH_HMAC_ID_MAX ||
		    !sctp_hmac_list[id].hmac_name) {
553
			id = 0;
554
			continue;
555
		}
556 557 558 559 560 561 562 563 564 565

		break;
	}

	if (id == 0)
		return NULL;

	return &sctp_hmac_list[id];
}

A
Al Viro 已提交
566
static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
{
	int  found = 0;
	int  i;

	for (i = 0; i < n_elts; i++) {
		if (hmac_id == hmacs[i]) {
			found = 1;
			break;
		}
	}

	return found;
}

/* See if the HMAC_ID is one that we claim as supported */
int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
A
Al Viro 已提交
583
				    __be16 hmac_id)
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
{
	struct sctp_hmac_algo_param *hmacs;
	__u16 n_elt;

	if (!asoc)
		return 0;

	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;

	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
}


/* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
 * Section 6.1:
 *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
 *   algorithm it supports.
 */
void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
				     struct sctp_hmac_algo_param *hmacs)
{
	struct sctp_endpoint *ep;
	__u16   id;
	int	i;
	int	n_params;

	/* if the default id is already set, use it */
	if (asoc->default_hmac_id)
		return;

	n_params = (ntohs(hmacs->param_hdr.length)
				- sizeof(sctp_paramhdr_t)) >> 1;
	ep = asoc->ep;
	for (i = 0; i < n_params; i++) {
		id = ntohs(hmacs->hmac_ids[i]);

		/* Check the id is in the supported range */
		if (id > SCTP_AUTH_HMAC_ID_MAX)
			continue;

		/* If this TFM has been allocated, use this id */
		if (ep->auth_hmacs[id]) {
			asoc->default_hmac_id = id;
			break;
		}
	}
}


/* Check to see if the given chunk is supposed to be authenticated */
static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
{
	unsigned short len;
	int found = 0;
	int i;

641
	if (!param || param->param_hdr.length == 0)
642 643 644 645 646 647 648 649 650 651 652 653
		return 0;

	len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);

	/* SCTP-AUTH, Section 3.2
	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
	 */
	for (i = 0; !found && i < len; i++) {
		switch (param->chunks[i]) {
654 655 656 657
		case SCTP_CID_INIT:
		case SCTP_CID_INIT_ACK:
		case SCTP_CID_SHUTDOWN_COMPLETE:
		case SCTP_CID_AUTH:
658 659
			break;

660
		default:
661
			if (param->chunks[i] == chunk)
662
				found = 1;
663 664 665 666 667 668 669 670 671 672
			break;
		}
	}

	return found;
}

/* Check if peer requested that this chunk is authenticated */
int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
{
673 674 675
	if (!asoc)
		return 0;

676
	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
677 678 679 680 681 682 683 684
		return 0;

	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
}

/* Check if we requested that peer authenticate this chunk. */
int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
{
685 686 687
	if (!asoc)
		return 0;

688
	if (!asoc->ep->auth_enable)
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
		return 0;

	return __sctp_auth_cid(chunk,
			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
}

/* SCTP-AUTH: Section 6.2:
 *    The sender MUST calculate the MAC as described in RFC2104 [2] using
 *    the hash function H as described by the MAC Identifier and the shared
 *    association key K based on the endpoint pair shared key described by
 *    the shared key identifier.  The 'data' used for the computation of
 *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
 *    zero (as shown in Figure 6) followed by all chunks that are placed
 *    after the AUTH chunk in the SCTP packet.
 */
void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
			      struct sk_buff *skb,
			      struct sctp_auth_chunk *auth,
			      gfp_t gfp)
{
H
Herbert Xu 已提交
709
	struct crypto_shash *tfm;
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
	struct sctp_auth_bytes *asoc_key;
	__u16 key_id, hmac_id;
	__u8 *digest;
	unsigned char *end;
	int free_key = 0;

	/* Extract the info we need:
	 * - hmac id
	 * - key id
	 */
	key_id = ntohs(auth->auth_hdr.shkey_id);
	hmac_id = ntohs(auth->auth_hdr.hmac_id);

	if (key_id == asoc->active_key_id)
		asoc_key = asoc->asoc_shared_key;
	else {
		struct sctp_shared_key *ep_key;

		ep_key = sctp_auth_get_shkey(asoc, key_id);
		if (!ep_key)
			return;

		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
		if (!asoc_key)
			return;

		free_key = 1;
	}

	/* set up scatter list */
	end = skb_tail_pointer(skb);

H
Herbert Xu 已提交
742
	tfm = asoc->ep->auth_hmacs[hmac_id];
743 744

	digest = auth->auth_hdr.hmac;
H
Herbert Xu 已提交
745
	if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len))
746 747
		goto free;

H
Herbert Xu 已提交
748 749 750 751 752 753 754 755 756
	{
		SHASH_DESC_ON_STACK(desc, tfm);

		desc->tfm = tfm;
		desc->flags = 0;
		crypto_shash_digest(desc, (u8 *)auth,
				    end - (unsigned char *)auth, digest);
		shash_desc_zero(desc);
	}
757 758 759 760 761

free:
	if (free_key)
		sctp_auth_key_put(asoc_key);
}
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800

/* API Helpers */

/* Add a chunk to the endpoint authenticated chunk list */
int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
{
	struct sctp_chunks_param *p = ep->auth_chunk_list;
	__u16 nchunks;
	__u16 param_len;

	/* If this chunk is already specified, we are done */
	if (__sctp_auth_cid(chunk_id, p))
		return 0;

	/* Check if we can add this chunk to the array */
	param_len = ntohs(p->param_hdr.length);
	nchunks = param_len - sizeof(sctp_paramhdr_t);
	if (nchunks == SCTP_NUM_CHUNK_TYPES)
		return -EINVAL;

	p->chunks[nchunks] = chunk_id;
	p->param_hdr.length = htons(param_len + 1);
	return 0;
}

/* Add hmac identifires to the endpoint list of supported hmac ids */
int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
			   struct sctp_hmacalgo *hmacs)
{
	int has_sha1 = 0;
	__u16 id;
	int i;

	/* Scan the list looking for unsupported id.  Also make sure that
	 * SHA1 is specified.
	 */
	for (i = 0; i < hmacs->shmac_num_idents; i++) {
		id = hmacs->shmac_idents[i];

801 802 803
		if (id > SCTP_AUTH_HMAC_ID_MAX)
			return -EOPNOTSUPP;

804 805 806 807 808 809 810 811 812 813
		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
			has_sha1 = 1;

		if (!sctp_hmac_list[id].hmac_name)
			return -EOPNOTSUPP;
	}

	if (!has_sha1)
		return -EINVAL;

814 815
	for (i = 0; i < hmacs->shmac_num_idents; i++)
		ep->auth_hmacs_list->hmac_ids[i] = htons(hmacs->shmac_idents[i]);
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
	ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
				hmacs->shmac_num_idents * sizeof(__u16));
	return 0;
}

/* Set a new shared key on either endpoint or association.  If the
 * the key with a same ID already exists, replace the key (remove the
 * old key and add a new one).
 */
int sctp_auth_set_key(struct sctp_endpoint *ep,
		      struct sctp_association *asoc,
		      struct sctp_authkey *auth_key)
{
	struct sctp_shared_key *cur_key = NULL;
	struct sctp_auth_bytes *key;
	struct list_head *sh_keys;
	int replace = 0;

	/* Try to find the given key id to see if
	 * we are doing a replace, or adding a new key
	 */
	if (asoc)
		sh_keys = &asoc->endpoint_shared_keys;
	else
		sh_keys = &ep->endpoint_shared_keys;

	key_for_each(cur_key, sh_keys) {
		if (cur_key->key_id == auth_key->sca_keynumber) {
			replace = 1;
			break;
		}
	}

	/* If we are not replacing a key id, we need to allocate
	 * a shared key.
	 */
	if (!replace) {
		cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
						 GFP_KERNEL);
		if (!cur_key)
			return -ENOMEM;
	}

	/* Create a new key data based on the info passed in */
860
	key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
861 862 863
	if (!key)
		goto nomem;

864
	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955

	/* If we are replacing, remove the old keys data from the
	 * key id.  If we are adding new key id, add it to the
	 * list.
	 */
	if (replace)
		sctp_auth_key_put(cur_key->key);
	else
		list_add(&cur_key->key_list, sh_keys);

	cur_key->key = key;
	return 0;
nomem:
	if (!replace)
		sctp_auth_shkey_free(cur_key);

	return -ENOMEM;
}

int sctp_auth_set_active_key(struct sctp_endpoint *ep,
			     struct sctp_association *asoc,
			     __u16  key_id)
{
	struct sctp_shared_key *key;
	struct list_head *sh_keys;
	int found = 0;

	/* The key identifier MUST correst to an existing key */
	if (asoc)
		sh_keys = &asoc->endpoint_shared_keys;
	else
		sh_keys = &ep->endpoint_shared_keys;

	key_for_each(key, sh_keys) {
		if (key->key_id == key_id) {
			found = 1;
			break;
		}
	}

	if (!found)
		return -EINVAL;

	if (asoc) {
		asoc->active_key_id = key_id;
		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
	} else
		ep->active_key_id = key_id;

	return 0;
}

int sctp_auth_del_key_id(struct sctp_endpoint *ep,
			 struct sctp_association *asoc,
			 __u16  key_id)
{
	struct sctp_shared_key *key;
	struct list_head *sh_keys;
	int found = 0;

	/* The key identifier MUST NOT be the current active key
	 * The key identifier MUST correst to an existing key
	 */
	if (asoc) {
		if (asoc->active_key_id == key_id)
			return -EINVAL;

		sh_keys = &asoc->endpoint_shared_keys;
	} else {
		if (ep->active_key_id == key_id)
			return -EINVAL;

		sh_keys = &ep->endpoint_shared_keys;
	}

	key_for_each(key, sh_keys) {
		if (key->key_id == key_id) {
			found = 1;
			break;
		}
	}

	if (!found)
		return -EINVAL;

	/* Delete the shared key */
	list_del_init(&key->key_list);
	sctp_auth_shkey_free(key);

	return 0;
}