Kconfig 22.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11
#
# IP configuration
#
config IP_MULTICAST
	bool "IP: multicasting"
	help
	  This is code for addressing several networked computers at once,
	  enlarging your kernel by about 2 KB. You need multicasting if you
	  intend to participate in the MBONE, a high bandwidth network on top
	  of the Internet which carries audio and video broadcasts. More
	  information about the MBONE is on the WWW at
12
	  <http://www.savetz.com/mbone/>. Information about the multicast
L
Linus Torvalds 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
	  capabilities of the various network cards is contained in
	  <file:Documentation/networking/multicast.txt>. For most people, it's
	  safe to say N.

config IP_ADVANCED_ROUTER
	bool "IP: advanced router"
	---help---
	  If you intend to run your Linux box mostly as a router, i.e. as a
	  computer that forwards and redistributes network packets, say Y; you
	  will then be presented with several options that allow more precise
	  control about the routing process.

	  The answer to this question won't directly affect the kernel:
	  answering N will just cause the configurator to skip all the
	  questions about advanced routing.

	  Note that your box can only act as a router if you enable IP
	  forwarding in your kernel; you can do that by saying Y to "/proc
	  file system support" and "Sysctl support" below and executing the
	  line

	  echo "1" > /proc/sys/net/ipv4/ip_forward

	  at boot time after the /proc file system has been mounted.

38
	  If you turn on IP forwarding, you should consider the rp_filter, which
L
Linus Torvalds 已提交
39 40 41 42 43 44 45
	  automatically rejects incoming packets if the routing table entry
	  for their source address doesn't match the network interface they're
	  arriving on. This has security advantages because it prevents the
	  so-called IP spoofing, however it can pose problems if you use
	  asymmetric routing (packets from you to a host take a different path
	  than packets from that host to you) or if you operate a non-routing
	  host which has several IP addresses on different interfaces. To turn
46
	  rp_filter on use:
L
Linus Torvalds 已提交
47

48
	  echo 1 > /proc/sys/net/ipv4/conf/<device>/rp_filter
49
	   or
50
	  echo 1 > /proc/sys/net/ipv4/conf/all/rp_filter
L
Linus Torvalds 已提交
51

52
	  Note that some distributions enable it in startup scripts.
53 54
	  For details about rp_filter strict and loose mode read
	  <file:Documentation/networking/ip-sysctl.txt>.
55

L
Linus Torvalds 已提交
56 57
	  If unsure, say N here.

58
choice
59 60
	prompt "Choose IP: FIB lookup algorithm (choose FIB_HASH if unsure)"
	depends on IP_ADVANCED_ROUTER
61
	default ASK_IP_FIB_HASH
62

63
config ASK_IP_FIB_HASH
64 65
	bool "FIB_HASH"
	---help---
66
	  Current FIB is very proven and good enough for most users.
67 68 69 70

config IP_FIB_TRIE
	bool "FIB_TRIE"
	---help---
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
	  Use new experimental LC-trie as FIB lookup algorithm.
	  This improves lookup performance if you have a large
	  number of routes.

	  LC-trie is a longest matching prefix lookup algorithm which
	  performs better than FIB_HASH for large routing tables.
	  But, it consumes more memory and is more complex.

	  LC-trie is described in:

	  IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
	  IEEE Journal on Selected Areas in Communications, 17(6):1083-1092,
	  June 1999

	  An experimental study of compression methods for dynamic tries
	  Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
87
	  <http://www.csc.kth.se/~snilsson/software/dyntrie2/>
88

89 90 91
endchoice

config IP_FIB_HASH
92
	def_bool ASK_IP_FIB_HASH || !IP_ADVANCED_ROUTER
93

94 95 96 97 98 99 100
config IP_FIB_TRIE_STATS
	bool "FIB TRIE statistics"
	depends on IP_FIB_TRIE
	---help---
	  Keep track of statistics on structure of FIB TRIE table.
	  Useful for testing and measuring TRIE performance.

L
Linus Torvalds 已提交
101 102 103
config IP_MULTIPLE_TABLES
	bool "IP: policy routing"
	depends on IP_ADVANCED_ROUTER
104
	select FIB_RULES
L
Linus Torvalds 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
	---help---
	  Normally, a router decides what to do with a received packet based
	  solely on the packet's final destination address. If you say Y here,
	  the Linux router will also be able to take the packet's source
	  address into account. Furthermore, the TOS (Type-Of-Service) field
	  of the packet can be used for routing decisions as well.

	  If you are interested in this, please see the preliminary
	  documentation at <http://www.compendium.com.ar/policy-routing.txt>
	  and <ftp://post.tepkom.ru/pub/vol2/Linux/docs/advanced-routing.tex>.
	  You will need supporting software from
	  <ftp://ftp.tux.org/pub/net/ip-routing/>.

	  If unsure, say N.

config IP_ROUTE_MULTIPATH
	bool "IP: equal cost multipath"
	depends on IP_ADVANCED_ROUTER
	help
	  Normally, the routing tables specify a single action to be taken in
	  a deterministic manner for a given packet. If you say Y here
	  however, it becomes possible to attach several actions to a packet
	  pattern, in effect specifying several alternative paths to travel
	  for those packets. The router considers all these paths to be of
	  equal "cost" and chooses one of them in a non-deterministic fashion
	  if a matching packet arrives.

config IP_ROUTE_VERBOSE
	bool "IP: verbose route monitoring"
	depends on IP_ADVANCED_ROUTER
	help
	  If you say Y here, which is recommended, then the kernel will print
	  verbose messages regarding the routing, for example warnings about
	  received packets which look strange and could be evidence of an
	  attack or a misconfigured system somewhere. The information is
	  handled by the klogd daemon which is responsible for kernel messages
	  ("man klogd").

config IP_PNP
	bool "IP: kernel level autoconfiguration"
	help
	  This enables automatic configuration of IP addresses of devices and
	  of the routing table during kernel boot, based on either information
	  supplied on the kernel command line or by BOOTP or RARP protocols.
	  You need to say Y only for diskless machines requiring network
	  access to boot (in which case you want to say Y to "Root file system
	  on NFS" as well), because all other machines configure the network
	  in their startup scripts.

config IP_PNP_DHCP
	bool "IP: DHCP support"
	depends on IP_PNP
	---help---
	  If you want your Linux box to mount its whole root file system (the
	  one containing the directory /) from some other computer over the
	  net via NFS and you want the IP address of your computer to be
	  discovered automatically at boot time using the DHCP protocol (a
	  special protocol designed for doing this job), say Y here. In case
	  the boot ROM of your network card was designed for booting Linux and
	  does DHCP itself, providing all necessary information on the kernel
	  command line, you can say N here.

	  If unsure, say Y. Note that if you want to use DHCP, a DHCP server
	  must be operating on your network.  Read
169
	  <file:Documentation/filesystems/nfs/nfsroot.txt> for details.
L
Linus Torvalds 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183

config IP_PNP_BOOTP
	bool "IP: BOOTP support"
	depends on IP_PNP
	---help---
	  If you want your Linux box to mount its whole root file system (the
	  one containing the directory /) from some other computer over the
	  net via NFS and you want the IP address of your computer to be
	  discovered automatically at boot time using the BOOTP protocol (a
	  special protocol designed for doing this job), say Y here. In case
	  the boot ROM of your network card was designed for booting Linux and
	  does BOOTP itself, providing all necessary information on the kernel
	  command line, you can say N here. If unsure, say Y. Note that if you
	  want to use BOOTP, a BOOTP server must be operating on your network.
184
	  Read <file:Documentation/filesystems/nfs/nfsroot.txt> for details.
L
Linus Torvalds 已提交
185 186 187 188 189 190 191 192 193 194 195

config IP_PNP_RARP
	bool "IP: RARP support"
	depends on IP_PNP
	help
	  If you want your Linux box to mount its whole root file system (the
	  one containing the directory /) from some other computer over the
	  net via NFS and you want the IP address of your computer to be
	  discovered automatically at boot time using the RARP protocol (an
	  older protocol which is being obsoleted by BOOTP and DHCP), say Y
	  here. Note that if you want to use RARP, a RARP server must be
196
	  operating on your network. Read
197
	  <file:Documentation/filesystems/nfs/nfsroot.txt> for details.
L
Linus Torvalds 已提交
198 199

# not yet ready..
200
#   bool '    IP: ARP support' CONFIG_IP_PNP_ARP
L
Linus Torvalds 已提交
201 202
config NET_IPIP
	tristate "IP: tunneling"
H
Herbert Xu 已提交
203
	select INET_TUNNEL
L
Linus Torvalds 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217
	---help---
	  Tunneling means encapsulating data of one protocol type within
	  another protocol and sending it over a channel that understands the
	  encapsulating protocol. This particular tunneling driver implements
	  encapsulation of IP within IP, which sounds kind of pointless, but
	  can be useful if you want to make your (or some other) machine
	  appear on a different network than it physically is, or to use
	  mobile-IP facilities (allowing laptops to seamlessly move between
	  networks without changing their IP addresses).

	  Saying Y to this option will produce two modules ( = code which can
	  be inserted in and removed from the running kernel whenever you
	  want). Most people won't need this and can say N.

218 219 220 221 222 223
config NET_IPGRE_DEMUX
	tristate "IP: GRE demultiplexer"
	help
	 This is helper module to demultiplex GRE packets on GRE version field criteria.
	 Required by ip_gre and pptp modules.

L
Linus Torvalds 已提交
224 225
config NET_IPGRE
	tristate "IP: GRE tunnels over IP"
226
	depends on (IPV6 || IPV6=n) && NET_IPGRE_DEMUX
L
Linus Torvalds 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
	help
	  Tunneling means encapsulating data of one protocol type within
	  another protocol and sending it over a channel that understands the
	  encapsulating protocol. This particular tunneling driver implements
	  GRE (Generic Routing Encapsulation) and at this time allows
	  encapsulating of IPv4 or IPv6 over existing IPv4 infrastructure.
	  This driver is useful if the other endpoint is a Cisco router: Cisco
	  likes GRE much better than the other Linux tunneling driver ("IP
	  tunneling" above). In addition, GRE allows multicast redistribution
	  through the tunnel.

config NET_IPGRE_BROADCAST
	bool "IP: broadcast GRE over IP"
	depends on IP_MULTICAST && NET_IPGRE
	help
	  One application of GRE/IP is to construct a broadcast WAN (Wide Area
	  Network), which looks like a normal Ethernet LAN (Local Area
	  Network), but can be distributed all over the Internet. If you want
	  to do that, say Y here and to "IP multicast routing" below.

config IP_MROUTE
	bool "IP: multicast routing"
	depends on IP_MULTICAST
	help
	  This is used if you want your machine to act as a router for IP
	  packets that have several destination addresses. It is needed on the
	  MBONE, a high bandwidth network on top of the Internet which carries
	  audio and video broadcasts. In order to do that, you would most
	  likely run the program mrouted. Information about the multicast
	  capabilities of the various network cards is contained in
	  <file:Documentation/networking/multicast.txt>. If you haven't heard
	  about it, you don't need it.

260 261
config IP_MROUTE_MULTIPLE_TABLES
	bool "IP: multicast policy routing"
262
	depends on IP_MROUTE && IP_ADVANCED_ROUTER
263 264 265 266 267 268 269 270 271 272 273
	select FIB_RULES
	help
	  Normally, a multicast router runs a userspace daemon and decides
	  what to do with a multicast packet based on the source and
	  destination addresses. If you say Y here, the multicast router
	  will also be able to take interfaces and packet marks into
	  account and run multiple instances of userspace daemons
	  simultaneously, each one handling a single table.

	  If unsure, say N.

L
Linus Torvalds 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
config IP_PIMSM_V1
	bool "IP: PIM-SM version 1 support"
	depends on IP_MROUTE
	help
	  Kernel side support for Sparse Mode PIM (Protocol Independent
	  Multicast) version 1. This multicast routing protocol is used widely
	  because Cisco supports it. You need special software to use it
	  (pimd-v1). Please see <http://netweb.usc.edu/pim/> for more
	  information about PIM.

	  Say Y if you want to use PIM-SM v1. Note that you can say N here if
	  you just want to use Dense Mode PIM.

config IP_PIMSM_V2
	bool "IP: PIM-SM version 2 support"
	depends on IP_MROUTE
	help
	  Kernel side support for Sparse Mode PIM version 2. In order to use
	  this, you need an experimental routing daemon supporting it (pimd or
	  gated-5). This routing protocol is not used widely, so say N unless
	  you want to play with it.

config ARPD
T
Timo Teräs 已提交
297
	bool "IP: ARP daemon support"
L
Linus Torvalds 已提交
298
	---help---
T
Timo Teräs 已提交
299 300 301 302 303 304 305 306 307 308 309 310
	  The kernel maintains an internal cache which maps IP addresses to
	  hardware addresses on the local network, so that Ethernet/Token Ring/
	  etc. frames are sent to the proper address on the physical networking
	  layer. Normally, kernel uses the ARP protocol to resolve these
	  mappings.

	  Saying Y here adds support to have an user space daemon to do this
	  resolution instead. This is useful for implementing an alternate
	  address resolution protocol (e.g. NHRP on mGRE tunnels) and also for
	  testing purposes.

	  If unsure, say N.
L
Linus Torvalds 已提交
311 312

config SYN_COOKIES
313
	bool "IP: TCP syncookie support"
L
Linus Torvalds 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
	---help---
	  Normal TCP/IP networking is open to an attack known as "SYN
	  flooding". This denial-of-service attack prevents legitimate remote
	  users from being able to connect to your computer during an ongoing
	  attack and requires very little work from the attacker, who can
	  operate from anywhere on the Internet.

	  SYN cookies provide protection against this type of attack. If you
	  say Y here, the TCP/IP stack will use a cryptographic challenge
	  protocol known as "SYN cookies" to enable legitimate users to
	  continue to connect, even when your machine is under attack. There
	  is no need for the legitimate users to change their TCP/IP software;
	  SYN cookies work transparently to them. For technical information
	  about SYN cookies, check out <http://cr.yp.to/syncookies.html>.

	  If you are SYN flooded, the source address reported by the kernel is
	  likely to have been forged by the attacker; it is only reported as
	  an aid in tracing the packets to their actual source and should not
	  be taken as absolute truth.

	  SYN cookies may prevent correct error reporting on clients when the
	  server is really overloaded. If this happens frequently better turn
	  them off.

338 339
	  If you say Y here, you can disable SYN cookies at run time by
	  saying Y to "/proc file system support" and
L
Linus Torvalds 已提交
340 341
	  "Sysctl support" below and executing the command

342
	  echo 0 > /proc/sys/net/ipv4/tcp_syncookies
L
Linus Torvalds 已提交
343

344
	  after the /proc file system has been mounted.
L
Linus Torvalds 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363

	  If unsure, say N.

config INET_AH
	tristate "IP: AH transformation"
	select XFRM
	select CRYPTO
	select CRYPTO_HMAC
	select CRYPTO_MD5
	select CRYPTO_SHA1
	---help---
	  Support for IPsec AH.

	  If unsure, say Y.

config INET_ESP
	tristate "IP: ESP transformation"
	select XFRM
	select CRYPTO
H
Herbert Xu 已提交
364
	select CRYPTO_AUTHENC
L
Linus Torvalds 已提交
365 366
	select CRYPTO_HMAC
	select CRYPTO_MD5
367
	select CRYPTO_CBC
L
Linus Torvalds 已提交
368 369 370 371 372 373 374 375 376
	select CRYPTO_SHA1
	select CRYPTO_DES
	---help---
	  Support for IPsec ESP.

	  If unsure, say Y.

config INET_IPCOMP
	tristate "IP: IPComp transformation"
H
Herbert Xu 已提交
377
	select INET_XFRM_TUNNEL
378
	select XFRM_IPCOMP
L
Linus Torvalds 已提交
379 380 381
	---help---
	  Support for IP Payload Compression Protocol (IPComp) (RFC3173),
	  typically needed for IPsec.
382

L
Linus Torvalds 已提交
383 384
	  If unsure, say Y.

H
Herbert Xu 已提交
385 386 387 388 389
config INET_XFRM_TUNNEL
	tristate
	select INET_TUNNEL
	default n

L
Linus Torvalds 已提交
390
config INET_TUNNEL
H
Herbert Xu 已提交
391 392
	tristate
	default n
L
Linus Torvalds 已提交
393

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
config INET_XFRM_MODE_TRANSPORT
	tristate "IP: IPsec transport mode"
	default y
	select XFRM
	---help---
	  Support for IPsec transport mode.

	  If unsure, say Y.

config INET_XFRM_MODE_TUNNEL
	tristate "IP: IPsec tunnel mode"
	default y
	select XFRM
	---help---
	  Support for IPsec tunnel mode.

	  If unsure, say Y.

D
Diego Beltrami 已提交
412 413 414 415 416 417 418 419 420
config INET_XFRM_MODE_BEET
	tristate "IP: IPsec BEET mode"
	default y
	select XFRM
	---help---
	  Support for IPsec BEET mode.

	  If unsure, say Y.

421
config INET_LRO
422
	tristate "Large Receive Offload (ipv4/tcp)"
423
	default y
424 425 426 427 428
	---help---
	  Support for Large Receive Offload (ipv4/tcp).

	  If unsure, say Y.

429 430
config INET_DIAG
	tristate "INET: socket monitoring interface"
L
Linus Torvalds 已提交
431 432
	default y
	---help---
433 434
	  Support for INET (TCP, DCCP, etc) socket monitoring interface used by
	  native Linux tools such as ss. ss is included in iproute2, currently
435
	  downloadable at <http://linux-net.osdl.org/index.php/Iproute2>.
436

L
Linus Torvalds 已提交
437 438
	  If unsure, say Y.

439 440 441 442
config INET_TCP_DIAG
	depends on INET_DIAG
	def_tristate INET_DIAG

443
menuconfig TCP_CONG_ADVANCED
444 445 446 447 448 449
	bool "TCP: advanced congestion control"
	---help---
	  Support for selection of various TCP congestion control
	  modules.

	  Nearly all users can safely say no here, and a safe default
450
	  selection will be made (CUBIC with new Reno as a fallback).
451 452 453

	  If unsure, say N.

454
if TCP_CONG_ADVANCED
455 456 457

config TCP_CONG_BIC
	tristate "Binary Increase Congestion (BIC) control"
458
	default m
459 460 461 462 463 464 465 466 467 468 469
	---help---
	BIC-TCP is a sender-side only change that ensures a linear RTT
	fairness under large windows while offering both scalability and
	bounded TCP-friendliness. The protocol combines two schemes
	called additive increase and binary search increase. When the
	congestion window is large, additive increase with a large
	increment ensures linear RTT fairness as well as good
	scalability. Under small congestion windows, binary search
	increase provides TCP friendliness.
	See http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/

470 471
config TCP_CONG_CUBIC
	tristate "CUBIC TCP"
472
	default y
473 474 475 476 477
	---help---
	This is version 2.0 of BIC-TCP which uses a cubic growth function
	among other techniques.
	See http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/cubic-paper.pdf

478 479 480 481 482 483 484 485 486 487 488 489 490 491
config TCP_CONG_WESTWOOD
	tristate "TCP Westwood+"
	default m
	---help---
	TCP Westwood+ is a sender-side only modification of the TCP Reno
	protocol stack that optimizes the performance of TCP congestion
	control. It is based on end-to-end bandwidth estimation to set
	congestion window and slow start threshold after a congestion
	episode. Using this estimation, TCP Westwood+ adaptively sets a
	slow start threshold and a congestion window which takes into
	account the bandwidth used  at the time congestion is experienced.
	TCP Westwood+ significantly increases fairness wrt TCP Reno in
	wired networks and throughput over wireless links.

492 493 494 495 496 497 498 499 500 501 502
config TCP_CONG_HTCP
        tristate "H-TCP"
        default m
	---help---
	H-TCP is a send-side only modifications of the TCP Reno
	protocol stack that optimizes the performance of TCP
	congestion control for high speed network links. It uses a
	modeswitch to change the alpha and beta parameters of TCP Reno
	based on network conditions and in a way so as to be fair with
	other Reno and H-TCP flows.

503 504
config TCP_CONG_HSTCP
	tristate "High Speed TCP"
505
	depends on EXPERIMENTAL
506 507 508 509 510 511 512 513
	default n
	---help---
	Sally Floyd's High Speed TCP (RFC 3649) congestion control.
	A modification to TCP's congestion control mechanism for use
	with large congestion windows. A table indicates how much to
	increase the congestion window by when an ACK is received.
 	For more detail	see http://www.icir.org/floyd/hstcp.html

514 515
config TCP_CONG_HYBLA
	tristate "TCP-Hybla congestion control algorithm"
516
	depends on EXPERIMENTAL
517 518 519 520
	default n
	---help---
	TCP-Hybla is a sender-side only change that eliminates penalization of
	long-RTT, large-bandwidth connections, like when satellite legs are
M
Matt LaPlante 已提交
521
	involved, especially when sharing a common bottleneck with normal
522 523
	terrestrial connections.

524 525
config TCP_CONG_VEGAS
	tristate "TCP Vegas"
526
	depends on EXPERIMENTAL
527 528 529 530 531 532 533 534
	default n
	---help---
	TCP Vegas is a sender-side only change to TCP that anticipates
	the onset of congestion by estimating the bandwidth. TCP Vegas
	adjusts the sending rate by modifying the congestion
	window. TCP Vegas should provide less packet loss, but it is
	not as aggressive as TCP Reno.

535 536
config TCP_CONG_SCALABLE
	tristate "Scalable TCP"
537
	depends on EXPERIMENTAL
538 539 540 541 542
	default n
	---help---
	Scalable TCP is a sender-side only change to TCP which uses a
	MIMD congestion control algorithm which has some nice scaling
	properties, though is known to have fairness issues.
543
	See http://www.deneholme.net/tom/scalable/
544

545 546 547 548 549 550
config TCP_CONG_LP
	tristate "TCP Low Priority"
	depends on EXPERIMENTAL
	default n
	---help---
	TCP Low Priority (TCP-LP), a distributed algorithm whose goal is
M
Matt LaPlante 已提交
551
	to utilize only the excess network bandwidth as compared to the
552 553 554
	``fair share`` of bandwidth as targeted by TCP.
	See http://www-ece.rice.edu/networks/TCP-LP/

B
Bin Zhou 已提交
555 556 557 558 559 560 561 562 563 564
config TCP_CONG_VENO
	tristate "TCP Veno"
	depends on EXPERIMENTAL
	default n
	---help---
	TCP Veno is a sender-side only enhancement of TCP to obtain better
	throughput over wireless networks. TCP Veno makes use of state
	distinguishing to circumvent the difficult judgment of the packet loss
	type. TCP Veno cuts down less congestion window in response to random
	loss packets.
565
	See <http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1177186> 
B
Bin Zhou 已提交
566

567 568 569
config TCP_CONG_YEAH
	tristate "YeAH TCP"
	depends on EXPERIMENTAL
570
	select TCP_CONG_VEGAS
571 572 573 574 575 576 577 578 579 580 581
	default n
	---help---
	YeAH-TCP is a sender-side high-speed enabled TCP congestion control
	algorithm, which uses a mixed loss/delay approach to compute the
	congestion window. It's design goals target high efficiency,
	internal, RTT and Reno fairness, resilience to link loss while
	keeping network elements load as low as possible.

	For further details look here:
	  http://wil.cs.caltech.edu/pfldnet2007/paper/YeAH_TCP.pdf

582 583 584 585 586
config TCP_CONG_ILLINOIS
	tristate "TCP Illinois"
	depends on EXPERIMENTAL
	default n
	---help---
M
Matt LaPlante 已提交
587
	TCP-Illinois is a sender-side modification of TCP Reno for
588 589 590 591 592 593 594
	high speed long delay links. It uses round-trip-time to
	adjust the alpha and beta parameters to achieve a higher average
	throughput and maintain fairness.

	For further details see:
	  http://www.ews.uiuc.edu/~shaoliu/tcpillinois/index.html

595 596
choice
	prompt "Default TCP congestion control"
597
	default DEFAULT_CUBIC
598 599 600 601 602 603 604 605 606 607 608 609 610
	help
	  Select the TCP congestion control that will be used by default
	  for all connections.

	config DEFAULT_BIC
		bool "Bic" if TCP_CONG_BIC=y

	config DEFAULT_CUBIC
		bool "Cubic" if TCP_CONG_CUBIC=y

	config DEFAULT_HTCP
		bool "Htcp" if TCP_CONG_HTCP=y

611 612 613
	config DEFAULT_HYBLA
		bool "Hybla" if TCP_CONG_HYBLA=y

614 615 616
	config DEFAULT_VEGAS
		bool "Vegas" if TCP_CONG_VEGAS=y

617 618 619
	config DEFAULT_VENO
		bool "Veno" if TCP_CONG_VENO=y

620 621 622 623 624 625 626 627 628
	config DEFAULT_WESTWOOD
		bool "Westwood" if TCP_CONG_WESTWOOD=y

	config DEFAULT_RENO
		bool "Reno"

endchoice

endif
629

630
config TCP_CONG_CUBIC
631
	tristate
632 633 634
	depends on !TCP_CONG_ADVANCED
	default y

635 636 637 638 639
config DEFAULT_TCP_CONG
	string
	default "bic" if DEFAULT_BIC
	default "cubic" if DEFAULT_CUBIC
	default "htcp" if DEFAULT_HTCP
640
	default "hybla" if DEFAULT_HYBLA
641 642
	default "vegas" if DEFAULT_VEGAS
	default "westwood" if DEFAULT_WESTWOOD
643
	default "veno" if DEFAULT_VENO
644
	default "reno" if DEFAULT_RENO
645
	default "cubic"
646

647 648 649 650 651 652
config TCP_MD5SIG
	bool "TCP: MD5 Signature Option support (RFC2385) (EXPERIMENTAL)"
	depends on EXPERIMENTAL
	select CRYPTO
	select CRYPTO_MD5
	---help---
653
	  RFC2385 specifies a method of giving MD5 protection to TCP sessions.
654 655 656 657 658
	  Its main (only?) use is to protect BGP sessions between core routers
	  on the Internet.

	  If unsure, say N.