configfs.txt 20.4 KB
Newer Older
1

2
configfs - Userspace-driven kernel object configuration.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

Joel Becker <joel.becker@oracle.com>

Updated: 31 March 2005

Copyright (c) 2005 Oracle Corporation,
	Joel Becker <joel.becker@oracle.com>


[What is configfs?]

configfs is a ram-based filesystem that provides the converse of
sysfs's functionality.  Where sysfs is a filesystem-based view of
kernel objects, configfs is a filesystem-based manager of kernel
objects, or config_items.

With sysfs, an object is created in kernel (for example, when a device
is discovered) and it is registered with sysfs.  Its attributes then
appear in sysfs, allowing userspace to read the attributes via
readdir(3)/read(2).  It may allow some attributes to be modified via
write(2).  The important point is that the object is created and
destroyed in kernel, the kernel controls the lifecycle of the sysfs
representation, and sysfs is merely a window on all this.

A configfs config_item is created via an explicit userspace operation:
mkdir(2).  It is destroyed via rmdir(2).  The attributes appear at
mkdir(2) time, and can be read or modified via read(2) and write(2).
As with sysfs, readdir(3) queries the list of items and/or attributes.
symlink(2) can be used to group items together.  Unlike sysfs, the
lifetime of the representation is completely driven by userspace.  The
kernel modules backing the items must respond to this.

Both sysfs and configfs can and should exist together on the same
system.  One is not a replacement for the other.

[Using configfs]

configfs can be compiled as a module or into the kernel.  You can access
it by doing

	mount -t configfs none /config

The configfs tree will be empty unless client modules are also loaded.
These are modules that register their item types with configfs as
subsystems.  Once a client subsystem is loaded, it will appear as a
subdirectory (or more than one) under /config.  Like sysfs, the
configfs tree is always there, whether mounted on /config or not.

An item is created via mkdir(2).  The item's attributes will also
appear at this time.  readdir(3) can determine what the attributes are,
read(2) can query their default values, and write(2) can store new
values.  Like sysfs, attributes should be ASCII text files, preferably
with only one value per file.  The same efficiency caveats from sysfs
apply.  Don't mix more than one attribute in one attribute file.

Like sysfs, configfs expects write(2) to store the entire buffer at
once.  When writing to configfs attributes, userspace processes should
first read the entire file, modify the portions they wish to change, and
then write the entire buffer back.  Attribute files have a maximum size
of one page (PAGE_SIZE, 4096 on i386).

When an item needs to be destroyed, remove it with rmdir(2).  An
item cannot be destroyed if any other item has a link to it (via
symlink(2)).  Links can be removed via unlink(2).

[Configuring FakeNBD: an Example]

Imagine there's a Network Block Device (NBD) driver that allows you to
access remote block devices.  Call it FakeNBD.  FakeNBD uses configfs
for its configuration.  Obviously, there will be a nice program that
sysadmins use to configure FakeNBD, but somehow that program has to tell
the driver about it.  Here's where configfs comes in.

When the FakeNBD driver is loaded, it registers itself with configfs.
readdir(3) sees this just fine:

	# ls /config
	fakenbd

A fakenbd connection can be created with mkdir(2).  The name is
arbitrary, but likely the tool will make some use of the name.  Perhaps
it is a uuid or a disk name:

	# mkdir /config/fakenbd/disk1
	# ls /config/fakenbd/disk1
	target device rw

The target attribute contains the IP address of the server FakeNBD will
connect to.  The device attribute is the device on the server.
Predictably, the rw attribute determines whether the connection is
read-only or read-write.

	# echo 10.0.0.1 > /config/fakenbd/disk1/target
	# echo /dev/sda1 > /config/fakenbd/disk1/device
	# echo 1 > /config/fakenbd/disk1/rw

That's it.  That's all there is.  Now the device is configured, via the
shell no less.

[Coding With configfs]

Every object in configfs is a config_item.  A config_item reflects an
object in the subsystem.  It has attributes that match values on that
object.  configfs handles the filesystem representation of that object
and its attributes, allowing the subsystem to ignore all but the
basic show/store interaction.

Items are created and destroyed inside a config_group.  A group is a
collection of items that share the same attributes and operations.
Items are created by mkdir(2) and removed by rmdir(2), but configfs
handles that.  The group has a set of operations to perform these tasks

A subsystem is the top level of a client module.  During initialization,
the client module registers the subsystem with configfs, the subsystem
appears as a directory at the top of the configfs filesystem.  A
subsystem is also a config_group, and can do everything a config_group
can.

[struct config_item]

	struct config_item {
		char                    *ci_name;
		char                    ci_namebuf[UOBJ_NAME_LEN];
		struct kref             ci_kref;
		struct list_head        ci_entry;
		struct config_item      *ci_parent;
		struct config_group     *ci_group;
		struct config_item_type *ci_type;
		struct dentry           *ci_dentry;
	};

	void config_item_init(struct config_item *);
	void config_item_init_type_name(struct config_item *,
					const char *name,
					struct config_item_type *type);
	struct config_item *config_item_get(struct config_item *);
	void config_item_put(struct config_item *);

Generally, struct config_item is embedded in a container structure, a
structure that actually represents what the subsystem is doing.  The
config_item portion of that structure is how the object interacts with
configfs.

Whether statically defined in a source file or created by a parent
config_group, a config_item must have one of the _init() functions
called on it.  This initializes the reference count and sets up the
appropriate fields.

All users of a config_item should have a reference on it via
config_item_get(), and drop the reference when they are done via
config_item_put().

By itself, a config_item cannot do much more than appear in configfs.
Usually a subsystem wants the item to display and/or store attributes,
among other things.  For that, it needs a type.

[struct config_item_type]

	struct configfs_item_operations {
		void (*release)(struct config_item *);
		ssize_t (*show_attribute)(struct config_item *,
					  struct configfs_attribute *,
					  char *);
		ssize_t (*store_attribute)(struct config_item *,
					   struct configfs_attribute *,
					   const char *, size_t);
		int (*allow_link)(struct config_item *src,
				  struct config_item *target);
		int (*drop_link)(struct config_item *src,
				 struct config_item *target);
	};

	struct config_item_type {
		struct module                           *ct_owner;
		struct configfs_item_operations         *ct_item_ops;
		struct configfs_group_operations        *ct_group_ops;
		struct configfs_attribute               **ct_attrs;
	};

The most basic function of a config_item_type is to define what
operations can be performed on a config_item.  All items that have been
allocated dynamically will need to provide the ct_item_ops->release()
method.  This method is called when the config_item's reference count
reaches zero.  Items that wish to display an attribute need to provide
the ct_item_ops->show_attribute() method.  Similarly, storing a new
attribute value uses the store_attribute() method.

[struct configfs_attribute]

	struct configfs_attribute {
		char                    *ca_name;
		struct module           *ca_owner;
		mode_t                  ca_mode;
	};

When a config_item wants an attribute to appear as a file in the item's
configfs directory, it must define a configfs_attribute describing it.
It then adds the attribute to the NULL-terminated array
config_item_type->ct_attrs.  When the item appears in configfs, the
attribute file will appear with the configfs_attribute->ca_name
filename.  configfs_attribute->ca_mode specifies the file permissions.

If an attribute is readable and the config_item provides a
ct_item_ops->show_attribute() method, that method will be called
whenever userspace asks for a read(2) on the attribute.  The converse
will happen for write(2).

[struct config_group]

212
A config_item cannot live in a vacuum.  The only way one can be created
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
is via mkdir(2) on a config_group.  This will trigger creation of a
child item.

	struct config_group {
		struct config_item		cg_item;
		struct list_head		cg_children;
		struct configfs_subsystem 	*cg_subsys;
		struct config_group		**default_groups;
	};

	void config_group_init(struct config_group *group);
	void config_group_init_type_name(struct config_group *group,
					 const char *name,
					 struct config_item_type *type);


The config_group structure contains a config_item.  Properly configuring
that item means that a group can behave as an item in its own right.
However, it can do more: it can create child items or groups.  This is
accomplished via the group operations specified on the group's
config_item_type.

	struct configfs_group_operations {
		struct config_item *(*make_item)(struct config_group *group,
						 const char *name);
		struct config_group *(*make_group)(struct config_group *group,
						   const char *name);
		int (*commit_item)(struct config_item *item);
241 242
		void (*disconnect_notify)(struct config_group *group,
					  struct config_item *item);
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
		void (*drop_item)(struct config_group *group,
				  struct config_item *item);
	};

A group creates child items by providing the
ct_group_ops->make_item() method.  If provided, this method is called from mkdir(2) in the group's directory.  The subsystem allocates a new
config_item (or more likely, its container structure), initializes it,
and returns it to configfs.  Configfs will then populate the filesystem
tree to reflect the new item.

If the subsystem wants the child to be a group itself, the subsystem
provides ct_group_ops->make_group().  Everything else behaves the same,
using the group _init() functions on the group.

Finally, when userspace calls rmdir(2) on the item or group,
ct_group_ops->drop_item() is called.  As a config_group is also a
M
Matt LaPlante 已提交
259
config_item, it is not necessary for a separate drop_group() method.
260 261 262 263 264 265 266 267 268 269 270 271 272
The subsystem must config_item_put() the reference that was initialized
upon item allocation.  If a subsystem has no work to do, it may omit
the ct_group_ops->drop_item() method, and configfs will call
config_item_put() on the item on behalf of the subsystem.

IMPORTANT: drop_item() is void, and as such cannot fail.  When rmdir(2)
is called, configfs WILL remove the item from the filesystem tree
(assuming that it has no children to keep it busy).  The subsystem is
responsible for responding to this.  If the subsystem has references to
the item in other threads, the memory is safe.  It may take some time
for the item to actually disappear from the subsystem's usage.  But it
is gone from configfs.

273 274 275 276 277 278 279 280 281 282
When drop_item() is called, the item's linkage has already been torn
down.  It no longer has a reference on its parent and has no place in
the item hierarchy.  If a client needs to do some cleanup before this
teardown happens, the subsystem can implement the
ct_group_ops->disconnect_notify() method.  The method is called after
configfs has removed the item from the filesystem view but before the
item is removed from its parent group.  Like drop_item(),
disconnect_notify() is void and cannot fail.  Client subsystems should
not drop any references here, as they still must do it in drop_item().

283 284 285 286 287 288 289
A config_group cannot be removed while it still has child items.  This
is implemented in the configfs rmdir(2) code.  ->drop_item() will not be
called, as the item has not been dropped.  rmdir(2) will fail, as the
directory is not empty.

[struct configfs_subsystem]

290
A subsystem must register itself, usually at module_init time.  This
291 292 293 294
tells configfs to make the subsystem appear in the file tree.

	struct configfs_subsystem {
		struct config_group	su_group;
295
		struct mutex		su_mutex;
296 297 298 299 300
	};

	int configfs_register_subsystem(struct configfs_subsystem *subsys);
	void configfs_unregister_subsystem(struct configfs_subsystem *subsys);

301
	A subsystem consists of a toplevel config_group and a mutex.
302 303 304 305
The group is where child config_items are created.  For a subsystem,
this group is usually defined statically.  Before calling
configfs_register_subsystem(), the subsystem must have initialized the
group via the usual group _init() functions, and it must also have
306
initialized the mutex.
307 308 309 310 311 312 313 314 315 316 317
	When the register call returns, the subsystem is live, and it
will be visible via configfs.  At that point, mkdir(2) can be called and
the subsystem must be ready for it.

[An Example]

The best example of these basic concepts is the simple_children
subsystem/group and the simple_child item in configfs_example.c  It
shows a trivial object displaying and storing an attribute, and a simple
group creating and destroying these children.

318
[Hierarchy Navigation and the Subsystem Mutex]
319 320 321 322 323 324 325 326 327 328

There is an extra bonus that configfs provides.  The config_groups and
config_items are arranged in a hierarchy due to the fact that they
appear in a filesystem.  A subsystem is NEVER to touch the filesystem
parts, but the subsystem might be interested in this hierarchy.  For
this reason, the hierarchy is mirrored via the config_group->cg_children
and config_item->ci_parent structure members.

A subsystem can navigate the cg_children list and the ci_parent pointer
to see the tree created by the subsystem.  This can race with configfs'
329
management of the hierarchy, so configfs uses the subsystem mutex to
330 331
protect modifications.  Whenever a subsystem wants to navigate the
hierarchy, it must do so under the protection of the subsystem
332
mutex.
333

334
A subsystem will be prevented from acquiring the mutex while a newly
335
allocated item has not been linked into this hierarchy.   Similarly, it
336
will not be able to acquire the mutex while a dropping item has not
337 338 339 340
yet been unlinked.  This means that an item's ci_parent pointer will
never be NULL while the item is in configfs, and that an item will only
be in its parent's cg_children list for the same duration.  This allows
a subsystem to trust ci_parent and cg_children while they hold the
341
mutex.
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400

[Item Aggregation Via symlink(2)]

configfs provides a simple group via the group->item parent/child
relationship.  Often, however, a larger environment requires aggregation
outside of the parent/child connection.  This is implemented via
symlink(2).

A config_item may provide the ct_item_ops->allow_link() and
ct_item_ops->drop_link() methods.  If the ->allow_link() method exists,
symlink(2) may be called with the config_item as the source of the link.
These links are only allowed between configfs config_items.  Any
symlink(2) attempt outside the configfs filesystem will be denied.

When symlink(2) is called, the source config_item's ->allow_link()
method is called with itself and a target item.  If the source item
allows linking to target item, it returns 0.  A source item may wish to
reject a link if it only wants links to a certain type of object (say,
in its own subsystem).

When unlink(2) is called on the symbolic link, the source item is
notified via the ->drop_link() method.  Like the ->drop_item() method,
this is a void function and cannot return failure.  The subsystem is
responsible for responding to the change.

A config_item cannot be removed while it links to any other item, nor
can it be removed while an item links to it.  Dangling symlinks are not
allowed in configfs.

[Automatically Created Subgroups]

A new config_group may want to have two types of child config_items.
While this could be codified by magic names in ->make_item(), it is much
more explicit to have a method whereby userspace sees this divergence.

Rather than have a group where some items behave differently than
others, configfs provides a method whereby one or many subgroups are
automatically created inside the parent at its creation.  Thus,
mkdir("parent) results in "parent", "parent/subgroup1", up through
"parent/subgroupN".  Items of type 1 can now be created in
"parent/subgroup1", and items of type N can be created in
"parent/subgroupN".

These automatic subgroups, or default groups, do not preclude other
children of the parent group.  If ct_group_ops->make_group() exists,
other child groups can be created on the parent group directly.

A configfs subsystem specifies default groups by filling in the
NULL-terminated array default_groups on the config_group structure.
Each group in that array is populated in the configfs tree at the same
time as the parent group.  Similarly, they are removed at the same time
as the parent.  No extra notification is provided.  When a ->drop_item()
method call notifies the subsystem the parent group is going away, it
also means every default group child associated with that parent group.

As a consequence of this, default_groups cannot be removed directly via
rmdir(2).  They also are not considered when rmdir(2) on the parent
group is checking for children.

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
[Dependant Subsystems]

Sometimes other drivers depend on particular configfs items.  For
example, ocfs2 mounts depend on a heartbeat region item.  If that
region item is removed with rmdir(2), the ocfs2 mount must BUG or go
readonly.  Not happy.

configfs provides two additional API calls: configfs_depend_item() and
configfs_undepend_item().  A client driver can call
configfs_depend_item() on an existing item to tell configfs that it is
depended on.  configfs will then return -EBUSY from rmdir(2) for that
item.  When the item is no longer depended on, the client driver calls
configfs_undepend_item() on it.

These API cannot be called underneath any configfs callbacks, as
they will conflict.  They can block and allocate.  A client driver
probably shouldn't calling them of its own gumption.  Rather it should
be providing an API that external subsystems call.

How does this work?  Imagine the ocfs2 mount process.  When it mounts,
it asks for a heartbeat region item.  This is done via a call into the
heartbeat code.  Inside the heartbeat code, the region item is looked
up.  Here, the heartbeat code calls configfs_depend_item().  If it
succeeds, then heartbeat knows the region is safe to give to ocfs2.
If it fails, it was being torn down anyway, and heartbeat can gracefully
pass up an error.

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
[Committable Items]

NOTE: Committable items are currently unimplemented.

Some config_items cannot have a valid initial state.  That is, no
default values can be specified for the item's attributes such that the
item can do its work.  Userspace must configure one or more attributes,
after which the subsystem can start whatever entity this item
represents.

Consider the FakeNBD device from above.  Without a target address *and*
a target device, the subsystem has no idea what block device to import.
The simple example assumes that the subsystem merely waits until all the
appropriate attributes are configured, and then connects.  This will,
indeed, work, but now every attribute store must check if the attributes
are initialized.  Every attribute store must fire off the connection if
that condition is met.

Far better would be an explicit action notifying the subsystem that the
config_item is ready to go.  More importantly, an explicit action allows
448
the subsystem to provide feedback as to whether the attributes are
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
initialized in a way that makes sense.  configfs provides this as
committable items.

configfs still uses only normal filesystem operations.  An item is
committed via rename(2).  The item is moved from a directory where it
can be modified to a directory where it cannot.

Any group that provides the ct_group_ops->commit_item() method has
committable items.  When this group appears in configfs, mkdir(2) will
not work directly in the group.  Instead, the group will have two
subdirectories: "live" and "pending".  The "live" directory does not
support mkdir(2) or rmdir(2) either.  It only allows rename(2).  The
"pending" directory does allow mkdir(2) and rmdir(2).  An item is
created in the "pending" directory.  Its attributes can be modified at
will.  Userspace commits the item by renaming it into the "live"
464
directory.  At this point, the subsystem receives the ->commit_item()
465 466 467 468 469 470 471 472 473
callback.  If all required attributes are filled to satisfaction, the
method returns zero and the item is moved to the "live" directory.

As rmdir(2) does not work in the "live" directory, an item must be
shutdown, or "uncommitted".  Again, this is done via rename(2), this
time from the "live" directory back to the "pending" one.  The subsystem
is notified by the ct_group_ops->uncommit_object() method.