cls_rsvp.h 14.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
/*
 * net/sched/cls_rsvp.h	Template file for RSVPv[46] classifiers.
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 */

/*
   Comparing to general packet classification problem,
   RSVP needs only sevaral relatively simple rules:

   * (dst, protocol) are always specified,
     so that we are able to hash them.
   * src may be exact, or may be wildcard, so that
     we can keep a hash table plus one wildcard entry.
   * source port (or flow label) is important only if src is given.

   IMPLEMENTATION.

   We use a two level hash table: The top level is keyed by
   destination address and protocol ID, every bucket contains a list
   of "rsvp sessions", identified by destination address, protocol and
   DPI(="Destination Port ID"): triple (key, mask, offset).

   Every bucket has a smaller hash table keyed by source address
   (cf. RSVP flowspec) and one wildcard entry for wildcard reservations.
   Every bucket is again a list of "RSVP flows", selected by
   source address and SPI(="Source Port ID" here rather than
   "security parameter index"): triple (key, mask, offset).


   NOTE 1. All the packets with IPv6 extension headers (but AH and ESP)
   and all fragmented packets go to the best-effort traffic class.


   NOTE 2. Two "port id"'s seems to be redundant, rfc2207 requires
   only one "Generalized Port Identifier". So that for classic
   ah, esp (and udp,tcp) both *pi should coincide or one of them
   should be wildcard.

   At first sight, this redundancy is just a waste of CPU
   resources. But DPI and SPI add the possibility to assign different
   priorities to GPIs. Look also at note 4 about tunnels below.


   NOTE 3. One complication is the case of tunneled packets.
   We implement it as following: if the first lookup
   matches a special session with "tunnelhdr" value not zero,
   flowid doesn't contain the true flow ID, but the tunnel ID (1...255).
   In this case, we pull tunnelhdr bytes and restart lookup
   with tunnel ID added to the list of keys. Simple and stupid 8)8)
   It's enough for PIMREG and IPIP.


   NOTE 4. Two GPIs make it possible to parse even GRE packets.
   F.e. DPI can select ETH_P_IP (and necessary flags to make
   tunnelhdr correct) in GRE protocol field and SPI matches
   GRE key. Is it not nice? 8)8)


   Well, as result, despite its simplicity, we get a pretty
   powerful classification engine.  */

#include <linux/config.h>

struct rsvp_head
{
	u32			tmap[256/32];
	u32			hgenerator;
	u8			tgenerator;
	struct rsvp_session	*ht[256];
};

struct rsvp_session
{
	struct rsvp_session	*next;
	u32			dst[RSVP_DST_LEN];
	struct tc_rsvp_gpi 	dpi;
	u8			protocol;
	u8			tunnelid;
	/* 16 (src,sport) hash slots, and one wildcard source slot */
	struct rsvp_filter	*ht[16+1];
};


struct rsvp_filter
{
	struct rsvp_filter	*next;
	u32			src[RSVP_DST_LEN];
	struct tc_rsvp_gpi	spi;
	u8			tunnelhdr;

	struct tcf_result	res;
	struct tcf_exts		exts;

	u32			handle;
	struct rsvp_session	*sess;
};

static __inline__ unsigned hash_dst(u32 *dst, u8 protocol, u8 tunnelid)
{
	unsigned h = dst[RSVP_DST_LEN-1];
	h ^= h>>16;
	h ^= h>>8;
	return (h ^ protocol ^ tunnelid) & 0xFF;
}

static __inline__ unsigned hash_src(u32 *src)
{
	unsigned h = src[RSVP_DST_LEN-1];
	h ^= h>>16;
	h ^= h>>8;
	h ^= h>>4;
	return h & 0xF;
}

static struct tcf_ext_map rsvp_ext_map = {
	.police = TCA_RSVP_POLICE,
	.action = TCA_RSVP_ACT
};

#define RSVP_APPLY_RESULT()				\
{							\
	int r = tcf_exts_exec(skb, &f->exts, res);	\
	if (r < 0)					\
		continue;				\
	else if (r > 0)					\
		return r;				\
}
	
static int rsvp_classify(struct sk_buff *skb, struct tcf_proto *tp,
			 struct tcf_result *res)
{
	struct rsvp_session **sht = ((struct rsvp_head*)tp->root)->ht;
	struct rsvp_session *s;
	struct rsvp_filter *f;
	unsigned h1, h2;
	u32 *dst, *src;
	u8 protocol;
	u8 tunnelid = 0;
	u8 *xprt;
#if RSVP_DST_LEN == 4
	struct ipv6hdr *nhptr = skb->nh.ipv6h;
#else
	struct iphdr *nhptr = skb->nh.iph;
#endif

restart:

#if RSVP_DST_LEN == 4
	src = &nhptr->saddr.s6_addr32[0];
	dst = &nhptr->daddr.s6_addr32[0];
	protocol = nhptr->nexthdr;
	xprt = ((u8*)nhptr) + sizeof(struct ipv6hdr);
#else
	src = &nhptr->saddr;
	dst = &nhptr->daddr;
	protocol = nhptr->protocol;
	xprt = ((u8*)nhptr) + (nhptr->ihl<<2);
	if (nhptr->frag_off&__constant_htons(IP_MF|IP_OFFSET))
		return -1;
#endif

	h1 = hash_dst(dst, protocol, tunnelid);
	h2 = hash_src(src);

	for (s = sht[h1]; s; s = s->next) {
		if (dst[RSVP_DST_LEN-1] == s->dst[RSVP_DST_LEN-1] &&
		    protocol == s->protocol &&
		    !(s->dpi.mask & (*(u32*)(xprt+s->dpi.offset)^s->dpi.key))
#if RSVP_DST_LEN == 4
		    && dst[0] == s->dst[0]
		    && dst[1] == s->dst[1]
		    && dst[2] == s->dst[2]
#endif
		    && tunnelid == s->tunnelid) {

			for (f = s->ht[h2]; f; f = f->next) {
				if (src[RSVP_DST_LEN-1] == f->src[RSVP_DST_LEN-1] &&
				    !(f->spi.mask & (*(u32*)(xprt+f->spi.offset)^f->spi.key))
#if RSVP_DST_LEN == 4
				    && src[0] == f->src[0]
				    && src[1] == f->src[1]
				    && src[2] == f->src[2]
#endif
				    ) {
					*res = f->res;
					RSVP_APPLY_RESULT();

matched:
					if (f->tunnelhdr == 0)
						return 0;

					tunnelid = f->res.classid;
					nhptr = (void*)(xprt + f->tunnelhdr - sizeof(*nhptr));
					goto restart;
				}
			}

			/* And wildcard bucket... */
			for (f = s->ht[16]; f; f = f->next) {
				*res = f->res;
				RSVP_APPLY_RESULT();
				goto matched;
			}
			return -1;
		}
	}
	return -1;
}

static unsigned long rsvp_get(struct tcf_proto *tp, u32 handle)
{
	struct rsvp_session **sht = ((struct rsvp_head*)tp->root)->ht;
	struct rsvp_session *s;
	struct rsvp_filter *f;
	unsigned h1 = handle&0xFF;
	unsigned h2 = (handle>>8)&0xFF;

	if (h2 > 16)
		return 0;

	for (s = sht[h1]; s; s = s->next) {
		for (f = s->ht[h2]; f; f = f->next) {
			if (f->handle == handle)
				return (unsigned long)f;
		}
	}
	return 0;
}

static void rsvp_put(struct tcf_proto *tp, unsigned long f)
{
}

static int rsvp_init(struct tcf_proto *tp)
{
	struct rsvp_head *data;

	data = kmalloc(sizeof(struct rsvp_head), GFP_KERNEL);
	if (data) {
		memset(data, 0, sizeof(struct rsvp_head));
		tp->root = data;
		return 0;
	}
	return -ENOBUFS;
}

static inline void
rsvp_delete_filter(struct tcf_proto *tp, struct rsvp_filter *f)
{
	tcf_unbind_filter(tp, &f->res);
	tcf_exts_destroy(tp, &f->exts);
	kfree(f);
}

static void rsvp_destroy(struct tcf_proto *tp)
{
	struct rsvp_head *data = xchg(&tp->root, NULL);
	struct rsvp_session **sht;
	int h1, h2;

	if (data == NULL)
		return;

	sht = data->ht;

	for (h1=0; h1<256; h1++) {
		struct rsvp_session *s;

		while ((s = sht[h1]) != NULL) {
			sht[h1] = s->next;

			for (h2=0; h2<=16; h2++) {
				struct rsvp_filter *f;

				while ((f = s->ht[h2]) != NULL) {
					s->ht[h2] = f->next;
					rsvp_delete_filter(tp, f);
				}
			}
			kfree(s);
		}
	}
	kfree(data);
}

static int rsvp_delete(struct tcf_proto *tp, unsigned long arg)
{
	struct rsvp_filter **fp, *f = (struct rsvp_filter*)arg;
	unsigned h = f->handle;
	struct rsvp_session **sp;
	struct rsvp_session *s = f->sess;
	int i;

	for (fp = &s->ht[(h>>8)&0xFF]; *fp; fp = &(*fp)->next) {
		if (*fp == f) {
			tcf_tree_lock(tp);
			*fp = f->next;
			tcf_tree_unlock(tp);
			rsvp_delete_filter(tp, f);

			/* Strip tree */

			for (i=0; i<=16; i++)
				if (s->ht[i])
					return 0;

			/* OK, session has no flows */
			for (sp = &((struct rsvp_head*)tp->root)->ht[h&0xFF];
			     *sp; sp = &(*sp)->next) {
				if (*sp == s) {
					tcf_tree_lock(tp);
					*sp = s->next;
					tcf_tree_unlock(tp);

					kfree(s);
					return 0;
				}
			}

			return 0;
		}
	}
	return 0;
}

static unsigned gen_handle(struct tcf_proto *tp, unsigned salt)
{
	struct rsvp_head *data = tp->root;
	int i = 0xFFFF;

	while (i-- > 0) {
		u32 h;
		if ((data->hgenerator += 0x10000) == 0)
			data->hgenerator = 0x10000;
		h = data->hgenerator|salt;
		if (rsvp_get(tp, h) == 0)
			return h;
	}
	return 0;
}

static int tunnel_bts(struct rsvp_head *data)
{
	int n = data->tgenerator>>5;
	u32 b = 1<<(data->tgenerator&0x1F);
	
	if (data->tmap[n]&b)
		return 0;
	data->tmap[n] |= b;
	return 1;
}

static void tunnel_recycle(struct rsvp_head *data)
{
	struct rsvp_session **sht = data->ht;
	u32 tmap[256/32];
	int h1, h2;

	memset(tmap, 0, sizeof(tmap));

	for (h1=0; h1<256; h1++) {
		struct rsvp_session *s;
		for (s = sht[h1]; s; s = s->next) {
			for (h2=0; h2<=16; h2++) {
				struct rsvp_filter *f;

				for (f = s->ht[h2]; f; f = f->next) {
					if (f->tunnelhdr == 0)
						continue;
					data->tgenerator = f->res.classid;
					tunnel_bts(data);
				}
			}
		}
	}

	memcpy(data->tmap, tmap, sizeof(tmap));
}

static u32 gen_tunnel(struct rsvp_head *data)
{
	int i, k;

	for (k=0; k<2; k++) {
		for (i=255; i>0; i--) {
			if (++data->tgenerator == 0)
				data->tgenerator = 1;
			if (tunnel_bts(data))
				return data->tgenerator;
		}
		tunnel_recycle(data);
	}
	return 0;
}

static int rsvp_change(struct tcf_proto *tp, unsigned long base,
		       u32 handle,
		       struct rtattr **tca,
		       unsigned long *arg)
{
	struct rsvp_head *data = tp->root;
	struct rsvp_filter *f, **fp;
	struct rsvp_session *s, **sp;
	struct tc_rsvp_pinfo *pinfo = NULL;
	struct rtattr *opt = tca[TCA_OPTIONS-1];
	struct rtattr *tb[TCA_RSVP_MAX];
	struct tcf_exts e;
	unsigned h1, h2;
	u32 *dst;
	int err;

	if (opt == NULL)
		return handle ? -EINVAL : 0;

	if (rtattr_parse_nested(tb, TCA_RSVP_MAX, opt) < 0)
		return -EINVAL;

	err = tcf_exts_validate(tp, tb, tca[TCA_RATE-1], &e, &rsvp_ext_map);
	if (err < 0)
		return err;

	if ((f = (struct rsvp_filter*)*arg) != NULL) {
		/* Node exists: adjust only classid */

		if (f->handle != handle && handle)
			goto errout2;
		if (tb[TCA_RSVP_CLASSID-1]) {
			f->res.classid = *(u32*)RTA_DATA(tb[TCA_RSVP_CLASSID-1]);
			tcf_bind_filter(tp, &f->res, base);
		}

		tcf_exts_change(tp, &f->exts, &e);
		return 0;
	}

	/* Now more serious part... */
	err = -EINVAL;
	if (handle)
		goto errout2;
	if (tb[TCA_RSVP_DST-1] == NULL)
		goto errout2;

	err = -ENOBUFS;
	f = kmalloc(sizeof(struct rsvp_filter), GFP_KERNEL);
	if (f == NULL)
		goto errout2;

	memset(f, 0, sizeof(*f));
	h2 = 16;
	if (tb[TCA_RSVP_SRC-1]) {
		err = -EINVAL;
		if (RTA_PAYLOAD(tb[TCA_RSVP_SRC-1]) != sizeof(f->src))
			goto errout;
		memcpy(f->src, RTA_DATA(tb[TCA_RSVP_SRC-1]), sizeof(f->src));
		h2 = hash_src(f->src);
	}
	if (tb[TCA_RSVP_PINFO-1]) {
		err = -EINVAL;
		if (RTA_PAYLOAD(tb[TCA_RSVP_PINFO-1]) < sizeof(struct tc_rsvp_pinfo))
			goto errout;
		pinfo = RTA_DATA(tb[TCA_RSVP_PINFO-1]);
		f->spi = pinfo->spi;
		f->tunnelhdr = pinfo->tunnelhdr;
	}
	if (tb[TCA_RSVP_CLASSID-1]) {
		err = -EINVAL;
		if (RTA_PAYLOAD(tb[TCA_RSVP_CLASSID-1]) != 4)
			goto errout;
		f->res.classid = *(u32*)RTA_DATA(tb[TCA_RSVP_CLASSID-1]);
	}

	err = -EINVAL;
	if (RTA_PAYLOAD(tb[TCA_RSVP_DST-1]) != sizeof(f->src))
		goto errout;
	dst = RTA_DATA(tb[TCA_RSVP_DST-1]);
	h1 = hash_dst(dst, pinfo ? pinfo->protocol : 0, pinfo ? pinfo->tunnelid : 0);

	err = -ENOMEM;
	if ((f->handle = gen_handle(tp, h1 | (h2<<8))) == 0)
		goto errout;

	if (f->tunnelhdr) {
		err = -EINVAL;
		if (f->res.classid > 255)
			goto errout;

		err = -ENOMEM;
		if (f->res.classid == 0 &&
		    (f->res.classid = gen_tunnel(data)) == 0)
			goto errout;
	}

	for (sp = &data->ht[h1]; (s=*sp) != NULL; sp = &s->next) {
		if (dst[RSVP_DST_LEN-1] == s->dst[RSVP_DST_LEN-1] &&
		    pinfo && pinfo->protocol == s->protocol &&
		    memcmp(&pinfo->dpi, &s->dpi, sizeof(s->dpi)) == 0
#if RSVP_DST_LEN == 4
		    && dst[0] == s->dst[0]
		    && dst[1] == s->dst[1]
		    && dst[2] == s->dst[2]
#endif
		    && pinfo->tunnelid == s->tunnelid) {

insert:
			/* OK, we found appropriate session */

			fp = &s->ht[h2];

			f->sess = s;
			if (f->tunnelhdr == 0)
				tcf_bind_filter(tp, &f->res, base);

			tcf_exts_change(tp, &f->exts, &e);

			for (fp = &s->ht[h2]; *fp; fp = &(*fp)->next)
				if (((*fp)->spi.mask&f->spi.mask) != f->spi.mask)
					break;
			f->next = *fp;
			wmb();
			*fp = f;

			*arg = (unsigned long)f;
			return 0;
		}
	}

	/* No session found. Create new one. */

	err = -ENOBUFS;
	s = kmalloc(sizeof(struct rsvp_session), GFP_KERNEL);
	if (s == NULL)
		goto errout;
	memset(s, 0, sizeof(*s));
	memcpy(s->dst, dst, sizeof(s->dst));

	if (pinfo) {
		s->dpi = pinfo->dpi;
		s->protocol = pinfo->protocol;
		s->tunnelid = pinfo->tunnelid;
	}
	for (sp = &data->ht[h1]; *sp; sp = &(*sp)->next) {
		if (((*sp)->dpi.mask&s->dpi.mask) != s->dpi.mask)
			break;
	}
	s->next = *sp;
	wmb();
	*sp = s;
	
	goto insert;

errout:
	if (f)
		kfree(f);
errout2:
	tcf_exts_destroy(tp, &e);
	return err;
}

static void rsvp_walk(struct tcf_proto *tp, struct tcf_walker *arg)
{
	struct rsvp_head *head = tp->root;
	unsigned h, h1;

	if (arg->stop)
		return;

	for (h = 0; h < 256; h++) {
		struct rsvp_session *s;

		for (s = head->ht[h]; s; s = s->next) {
			for (h1 = 0; h1 <= 16; h1++) {
				struct rsvp_filter *f;

				for (f = s->ht[h1]; f; f = f->next) {
					if (arg->count < arg->skip) {
						arg->count++;
						continue;
					}
					if (arg->fn(tp, (unsigned long)f, arg) < 0) {
						arg->stop = 1;
						return;
					}
					arg->count++;
				}
			}
		}
	}
}

static int rsvp_dump(struct tcf_proto *tp, unsigned long fh,
		     struct sk_buff *skb, struct tcmsg *t)
{
	struct rsvp_filter *f = (struct rsvp_filter*)fh;
	struct rsvp_session *s;
	unsigned char	 *b = skb->tail;
	struct rtattr *rta;
	struct tc_rsvp_pinfo pinfo;

	if (f == NULL)
		return skb->len;
	s = f->sess;

	t->tcm_handle = f->handle;


	rta = (struct rtattr*)b;
	RTA_PUT(skb, TCA_OPTIONS, 0, NULL);

	RTA_PUT(skb, TCA_RSVP_DST, sizeof(s->dst), &s->dst);
	pinfo.dpi = s->dpi;
	pinfo.spi = f->spi;
	pinfo.protocol = s->protocol;
	pinfo.tunnelid = s->tunnelid;
	pinfo.tunnelhdr = f->tunnelhdr;
621
	pinfo.pad = 0;
L
Linus Torvalds 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
	RTA_PUT(skb, TCA_RSVP_PINFO, sizeof(pinfo), &pinfo);
	if (f->res.classid)
		RTA_PUT(skb, TCA_RSVP_CLASSID, 4, &f->res.classid);
	if (((f->handle>>8)&0xFF) != 16)
		RTA_PUT(skb, TCA_RSVP_SRC, sizeof(f->src), f->src);

	if (tcf_exts_dump(skb, &f->exts, &rsvp_ext_map) < 0)
		goto rtattr_failure;

	rta->rta_len = skb->tail - b;

	if (tcf_exts_dump_stats(skb, &f->exts, &rsvp_ext_map) < 0)
		goto rtattr_failure;
	return skb->len;

rtattr_failure:
	skb_trim(skb, b - skb->data);
	return -1;
}

static struct tcf_proto_ops RSVP_OPS = {
	.next		=	NULL,
	.kind		=	RSVP_ID,
	.classify	=	rsvp_classify,
	.init		=	rsvp_init,
	.destroy	=	rsvp_destroy,
	.get		=	rsvp_get,
	.put		=	rsvp_put,
	.change		=	rsvp_change,
	.delete		=	rsvp_delete,
	.walk		=	rsvp_walk,
	.dump		=	rsvp_dump,
	.owner		=	THIS_MODULE,
};

static int __init init_rsvp(void)
{
	return register_tcf_proto_ops(&RSVP_OPS);
}

static void __exit exit_rsvp(void) 
{
	unregister_tcf_proto_ops(&RSVP_OPS);
}

module_init(init_rsvp)
module_exit(exit_rsvp)