rtc-sa1100.c 13.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Real Time Clock interface for StrongARM SA1x00 and XScale PXA2xx
 *
 * Copyright (c) 2000 Nils Faerber
 *
 * Based on rtc.c by Paul Gortmaker
 *
 * Original Driver by Nils Faerber <nils@kernelconcepts.de>
 *
 * Modifications from:
 *   CIH <cih@coventive.com>
12
 *   Nicolas Pitre <nico@fluxnic.net>
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 *   Andrew Christian <andrew.christian@hp.com>
 *
 * Converted to the RTC subsystem and Driver Model
 *   by Richard Purdie <rpurdie@rpsys.net>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#include <linux/platform_device.h>
#include <linux/module.h>
#include <linux/rtc.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/interrupt.h>
#include <linux/string.h>
#include <linux/pm.h>
J
Jiri Slaby 已提交
32
#include <linux/bitops.h>
33

34
#include <mach/hardware.h>
35 36 37
#include <asm/irq.h>

#ifdef CONFIG_ARCH_PXA
38 39
#include <mach/regs-rtc.h>
#include <mach/regs-ost.h>
40 41
#endif

42
#define RTC_DEF_DIVIDER		(32768 - 1)
43 44
#define RTC_DEF_TRIM		0

45
static const unsigned long RTC_FREQ = 1024;
46
static unsigned long timer_freq;
47
static struct rtc_time rtc_alarm;
I
Ingo Molnar 已提交
48
static DEFINE_SPINLOCK(sa1100_rtc_lock);
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63
static inline int rtc_periodic_alarm(struct rtc_time *tm)
{
	return  (tm->tm_year == -1) ||
		((unsigned)tm->tm_mon >= 12) ||
		((unsigned)(tm->tm_mday - 1) >= 31) ||
		((unsigned)tm->tm_hour > 23) ||
		((unsigned)tm->tm_min > 59) ||
		((unsigned)tm->tm_sec > 59);
}

/*
 * Calculate the next alarm time given the requested alarm time mask
 * and the current time.
 */
64 65
static void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now,
	struct rtc_time *alrm)
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
{
	unsigned long next_time;
	unsigned long now_time;

	next->tm_year = now->tm_year;
	next->tm_mon = now->tm_mon;
	next->tm_mday = now->tm_mday;
	next->tm_hour = alrm->tm_hour;
	next->tm_min = alrm->tm_min;
	next->tm_sec = alrm->tm_sec;

	rtc_tm_to_time(now, &now_time);
	rtc_tm_to_time(next, &next_time);

	if (next_time < now_time) {
		/* Advance one day */
		next_time += 60 * 60 * 24;
		rtc_time_to_tm(next_time, next);
	}
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
static int rtc_update_alarm(struct rtc_time *alrm)
{
	struct rtc_time alarm_tm, now_tm;
	unsigned long now, time;
	int ret;

	do {
		now = RCNR;
		rtc_time_to_tm(now, &now_tm);
		rtc_next_alarm_time(&alarm_tm, &now_tm, alrm);
		ret = rtc_tm_to_time(&alarm_tm, &time);
		if (ret != 0)
			break;

		RTSR = RTSR & (RTSR_HZE|RTSR_ALE|RTSR_AL);
		RTAR = time;
	} while (now != RCNR);

	return ret;
}

108
static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
109 110 111 112 113 114 115 116 117 118 119
{
	struct platform_device *pdev = to_platform_device(dev_id);
	struct rtc_device *rtc = platform_get_drvdata(pdev);
	unsigned int rtsr;
	unsigned long events = 0;

	spin_lock(&sa1100_rtc_lock);

	rtsr = RTSR;
	/* clear interrupt sources */
	RTSR = 0;
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
	/* Fix for a nasty initialization problem the in SA11xx RTSR register.
	 * See also the comments in sa1100_rtc_probe(). */
	if (rtsr & (RTSR_ALE | RTSR_HZE)) {
		/* This is the original code, before there was the if test
		 * above. This code does not clear interrupts that were not
		 * enabled. */
		RTSR = (RTSR_AL | RTSR_HZ) & (rtsr >> 2);
	} else {
		/* For some reason, it is possible to enter this routine
		 * without interruptions enabled, it has been tested with
		 * several units (Bug in SA11xx chip?).
		 *
		 * This situation leads to an infinite "loop" of interrupt
		 * routine calling and as a result the processor seems to
		 * lock on its first call to open(). */
		RTSR = RTSR_AL | RTSR_HZ;
	}
137 138 139 140 141 142 143 144 145 146 147 148

	/* clear alarm interrupt if it has occurred */
	if (rtsr & RTSR_AL)
		rtsr &= ~RTSR_ALE;
	RTSR = rtsr & (RTSR_ALE | RTSR_HZE);

	/* update irq data & counter */
	if (rtsr & RTSR_AL)
		events |= RTC_AF | RTC_IRQF;
	if (rtsr & RTSR_HZ)
		events |= RTC_UF | RTC_IRQF;

149
	rtc_update_irq(rtc, 1, events);
150 151 152 153 154 155 156 157 158

	if (rtsr & RTSR_AL && rtc_periodic_alarm(&rtc_alarm))
		rtc_update_alarm(&rtc_alarm);

	spin_unlock(&sa1100_rtc_lock);

	return IRQ_HANDLED;
}

159 160 161 162 163 164 165 166 167 168 169 170 171
static int sa1100_irq_set_freq(struct device *dev, int freq)
{
	if (freq < 1 || freq > timer_freq) {
		return -EINVAL;
	} else {
		struct rtc_device *rtc = (struct rtc_device *)dev;

		rtc->irq_freq = freq;

		return 0;
	}
}

172 173
static int rtc_timer1_count;

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
static int sa1100_irq_set_state(struct device *dev, int enabled)
{
	spin_lock_irq(&sa1100_rtc_lock);
	if (enabled) {
		struct rtc_device *rtc = (struct rtc_device *)dev;

		OSMR1 = timer_freq / rtc->irq_freq + OSCR;
		OIER |= OIER_E1;
		rtc_timer1_count = 1;
	} else {
		OIER &= ~OIER_E1;
	}
	spin_unlock_irq(&sa1100_rtc_lock);

	return 0;
}

static inline int sa1100_timer1_retrigger(struct rtc_device *rtc)
{
	unsigned long diff;
	unsigned long period = timer_freq / rtc->irq_freq;

	spin_lock_irq(&sa1100_rtc_lock);

	do {
		OSMR1 += period;
		diff = OSMR1 - OSCR;
		/* If OSCR > OSMR1, diff is a very large number (unsigned
		 * math). This means we have a lost interrupt. */
	} while (diff > period);
	OIER |= OIER_E1;

	spin_unlock_irq(&sa1100_rtc_lock);

	return 0;
}

211
static irqreturn_t timer1_interrupt(int irq, void *dev_id)
212 213 214 215 216 217 218 219 220 221 222 223 224
{
	struct platform_device *pdev = to_platform_device(dev_id);
	struct rtc_device *rtc = platform_get_drvdata(pdev);

	/*
	 * If we match for the first time, rtc_timer1_count will be 1.
	 * Otherwise, we wrapped around (very unlikely but
	 * still possible) so compute the amount of missed periods.
	 * The match reg is updated only when the data is actually retrieved
	 * to avoid unnecessary interrupts.
	 */
	OSSR = OSSR_M1;	/* clear match on timer1 */

225
	rtc_update_irq(rtc, rtc_timer1_count, RTC_PF | RTC_IRQF);
226 227

	if (rtc_timer1_count == 1)
228 229 230 231 232
		rtc_timer1_count =
			(rtc->irq_freq * ((1 << 30) / (timer_freq >> 2)));

	/* retrigger. */
	sa1100_timer1_retrigger(rtc);
233 234 235 236 237 238 239

	return IRQ_HANDLED;
}

static int sa1100_rtc_read_callback(struct device *dev, int data)
{
	if (data & RTC_PF) {
240 241
		struct rtc_device *rtc = (struct rtc_device *)dev;

242
		/* interpolate missed periods and set match for the next */
243
		unsigned long period = timer_freq / rtc->irq_freq;
244 245 246 247 248 249 250 251 252 253
		unsigned long oscr = OSCR;
		unsigned long osmr1 = OSMR1;
		unsigned long missed = (oscr - osmr1)/period;
		data += missed << 8;
		OSSR = OSSR_M1;	/* clear match on timer 1 */
		OSMR1 = osmr1 + (missed + 1)*period;
		/* Ensure we didn't miss another match in the mean time.
		 * Here we compare (match - OSCR) 8 instead of 0 --
		 * see comment in pxa_timer_interrupt() for explanation.
		 */
254
		while ((signed long)((osmr1 = OSMR1) - OSCR) <= 8) {
255 256 257 258 259 260 261 262 263 264 265
			data += 0x100;
			OSSR = OSSR_M1;	/* clear match on timer 1 */
			OSMR1 = osmr1 + period;
		}
	}
	return data;
}

static int sa1100_rtc_open(struct device *dev)
{
	int ret;
266
	struct rtc_device *rtc = (struct rtc_device *)dev;
267

268
	ret = request_irq(IRQ_RTC1Hz, sa1100_rtc_interrupt, IRQF_DISABLED,
269
		"rtc 1Hz", dev);
270
	if (ret) {
271
		dev_err(dev, "IRQ %d already in use.\n", IRQ_RTC1Hz);
272 273
		goto fail_ui;
	}
274
	ret = request_irq(IRQ_RTCAlrm, sa1100_rtc_interrupt, IRQF_DISABLED,
275
		"rtc Alrm", dev);
276
	if (ret) {
277
		dev_err(dev, "IRQ %d already in use.\n", IRQ_RTCAlrm);
278 279
		goto fail_ai;
	}
280
	ret = request_irq(IRQ_OST1, timer1_interrupt, IRQF_DISABLED,
281
		"rtc timer", dev);
282
	if (ret) {
283
		dev_err(dev, "IRQ %d already in use.\n", IRQ_OST1);
284 285
		goto fail_pi;
	}
286 287 288
	rtc->max_user_freq = RTC_FREQ;
	sa1100_irq_set_freq(dev, RTC_FREQ);

289 290 291
	return 0;

 fail_pi:
292
	free_irq(IRQ_RTCAlrm, dev);
293
 fail_ai:
294
	free_irq(IRQ_RTC1Hz, dev);
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
 fail_ui:
	return ret;
}

static void sa1100_rtc_release(struct device *dev)
{
	spin_lock_irq(&sa1100_rtc_lock);
	RTSR = 0;
	OIER &= ~OIER_E1;
	OSSR = OSSR_M1;
	spin_unlock_irq(&sa1100_rtc_lock);

	free_irq(IRQ_OST1, dev);
	free_irq(IRQ_RTCAlrm, dev);
	free_irq(IRQ_RTC1Hz, dev);
}


static int sa1100_rtc_ioctl(struct device *dev, unsigned int cmd,
		unsigned long arg)
{
316
	switch (cmd) {
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
	case RTC_AIE_OFF:
		spin_lock_irq(&sa1100_rtc_lock);
		RTSR &= ~RTSR_ALE;
		spin_unlock_irq(&sa1100_rtc_lock);
		return 0;
	case RTC_AIE_ON:
		spin_lock_irq(&sa1100_rtc_lock);
		RTSR |= RTSR_ALE;
		spin_unlock_irq(&sa1100_rtc_lock);
		return 0;
	case RTC_UIE_OFF:
		spin_lock_irq(&sa1100_rtc_lock);
		RTSR &= ~RTSR_HZE;
		spin_unlock_irq(&sa1100_rtc_lock);
		return 0;
	case RTC_UIE_ON:
		spin_lock_irq(&sa1100_rtc_lock);
		RTSR |= RTSR_HZE;
		spin_unlock_irq(&sa1100_rtc_lock);
		return 0;
	}
338
	return -ENOIOCTLCMD;
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
}

static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
	rtc_time_to_tm(RCNR, tm);
	return 0;
}

static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
	unsigned long time;
	int ret;

	ret = rtc_tm_to_time(tm, &time);
	if (ret == 0)
		RCNR = time;
	return ret;
}

static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
360 361
	u32	rtsr;

362
	memcpy(&alrm->time, &rtc_alarm, sizeof(struct rtc_time));
363 364 365
	rtsr = RTSR;
	alrm->enabled = (rtsr & RTSR_ALE) ? 1 : 0;
	alrm->pending = (rtsr & RTSR_AL) ? 1 : 0;
366 367 368 369 370 371 372 373 374 375 376
	return 0;
}

static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	int ret;

	spin_lock_irq(&sa1100_rtc_lock);
	ret = rtc_update_alarm(&alrm->time);
	if (ret == 0) {
		if (alrm->enabled)
377
			RTSR |= RTSR_ALE;
378
		else
379
			RTSR &= ~RTSR_ALE;
380 381 382 383 384 385 386 387
	}
	spin_unlock_irq(&sa1100_rtc_lock);

	return ret;
}

static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq)
{
388 389
	struct rtc_device *rtc = (struct rtc_device *)dev;

390
	seq_printf(seq, "trim/divider\t: 0x%08x\n", (u32) RTTR);
391 392 393 394
	seq_printf(seq, "update_IRQ\t: %s\n",
			(RTSR & RTSR_HZE) ? "yes" : "no");
	seq_printf(seq, "periodic_IRQ\t: %s\n",
			(OIER & OIER_E1) ? "yes" : "no");
395
	seq_printf(seq, "periodic_freq\t: %d\n", rtc->irq_freq);
396
	seq_printf(seq, "RTSR\t\t: 0x%08x\n", (u32)RTSR);
397 398 399 400

	return 0;
}

401
static const struct rtc_class_ops sa1100_rtc_ops = {
402 403 404 405 406 407 408 409 410
	.open = sa1100_rtc_open,
	.read_callback = sa1100_rtc_read_callback,
	.release = sa1100_rtc_release,
	.ioctl = sa1100_rtc_ioctl,
	.read_time = sa1100_rtc_read_time,
	.set_time = sa1100_rtc_set_time,
	.read_alarm = sa1100_rtc_read_alarm,
	.set_alarm = sa1100_rtc_set_alarm,
	.proc = sa1100_rtc_proc,
411 412
	.irq_set_freq = sa1100_irq_set_freq,
	.irq_set_state = sa1100_irq_set_state,
413 414 415 416 417 418
};

static int sa1100_rtc_probe(struct platform_device *pdev)
{
	struct rtc_device *rtc;

419 420
	timer_freq = get_clock_tick_rate();

421 422 423 424 425 426 427 428 429
	/*
	 * According to the manual we should be able to let RTTR be zero
	 * and then a default diviser for a 32.768KHz clock is used.
	 * Apparently this doesn't work, at least for my SA1110 rev 5.
	 * If the clock divider is uninitialized then reset it to the
	 * default value to get the 1Hz clock.
	 */
	if (RTTR == 0) {
		RTTR = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
430 431
		dev_warn(&pdev->dev, "warning: "
			"initializing default clock divider/trim value\n");
432 433 434 435
		/* The current RTC value probably doesn't make sense either */
		RCNR = 0;
	}

436 437
	device_init_wakeup(&pdev->dev, 1);

438
	rtc = rtc_device_register(pdev->name, &pdev->dev, &sa1100_rtc_ops,
439
		THIS_MODULE);
440

441
	if (IS_ERR(rtc))
442 443 444 445
		return PTR_ERR(rtc);

	platform_set_drvdata(pdev, rtc);

446 447 448 449 450
	/* Set the irq_freq */
	/*TODO: Find out who is messing with this value after we initialize
	 * it here.*/
	rtc->irq_freq = RTC_FREQ;

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
	/* Fix for a nasty initialization problem the in SA11xx RTSR register.
	 * See also the comments in sa1100_rtc_interrupt().
	 *
	 * Sometimes bit 1 of the RTSR (RTSR_HZ) will wake up 1, which means an
	 * interrupt pending, even though interrupts were never enabled.
	 * In this case, this bit it must be reset before enabling
	 * interruptions to avoid a nonexistent interrupt to occur.
	 *
	 * In principle, the same problem would apply to bit 0, although it has
	 * never been observed to happen.
	 *
	 * This issue is addressed both here and in sa1100_rtc_interrupt().
	 * If the issue is not addressed here, in the times when the processor
	 * wakes up with the bit set there will be one spurious interrupt.
	 *
	 * The issue is also dealt with in sa1100_rtc_interrupt() to be on the
	 * safe side, once the condition that lead to this strange
	 * initialization is unknown and could in principle happen during
	 * normal processing.
	 *
	 * Notice that clearing bit 1 and 0 is accomplished by writting ONES to
	 * the corresponding bits in RTSR. */
	RTSR = RTSR_AL | RTSR_HZ;

475 476 477 478 479 480 481
	return 0;
}

static int sa1100_rtc_remove(struct platform_device *pdev)
{
	struct rtc_device *rtc = platform_get_drvdata(pdev);

482
	if (rtc)
483 484 485 486 487
		rtc_device_unregister(rtc);

	return 0;
}

488
#ifdef CONFIG_PM
489
static int sa1100_rtc_suspend(struct device *dev)
490
{
491
	if (device_may_wakeup(dev))
492
		enable_irq_wake(IRQ_RTCAlrm);
493 494 495
	return 0;
}

496
static int sa1100_rtc_resume(struct device *dev)
497
{
498
	if (device_may_wakeup(dev))
499
		disable_irq_wake(IRQ_RTCAlrm);
500 501
	return 0;
}
502

503
static const struct dev_pm_ops sa1100_rtc_pm_ops = {
504 505 506
	.suspend	= sa1100_rtc_suspend,
	.resume		= sa1100_rtc_resume,
};
507 508
#endif

509 510 511 512
static struct platform_driver sa1100_rtc_driver = {
	.probe		= sa1100_rtc_probe,
	.remove		= sa1100_rtc_remove,
	.driver		= {
513 514 515 516
		.name	= "sa1100-rtc",
#ifdef CONFIG_PM
		.pm	= &sa1100_rtc_pm_ops,
#endif
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
	},
};

static int __init sa1100_rtc_init(void)
{
	return platform_driver_register(&sa1100_rtc_driver);
}

static void __exit sa1100_rtc_exit(void)
{
	platform_driver_unregister(&sa1100_rtc_driver);
}

module_init(sa1100_rtc_init);
module_exit(sa1100_rtc_exit);

MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>");
MODULE_DESCRIPTION("SA11x0/PXA2xx Realtime Clock Driver (RTC)");
MODULE_LICENSE("GPL");
536
MODULE_ALIAS("platform:sa1100-rtc");