pgtable_64.c 21.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 *  This file contains ioremap and related functions for 64-bit machines.
 *
 *  Derived from arch/ppc64/mm/init.c
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  Modifications by Paul Mackerras (PowerMac) (paulus@samba.org)
 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
 *    Copyright (C) 1996 Paul Mackerras
 *
 *  Derived from "arch/i386/mm/init.c"
 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Dave Engebretsen <engebret@us.ibm.com>
 *      Rework for PPC64 port.
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 *
 */

#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
29
#include <linux/export.h>
30 31 32 33 34 35
#include <linux/types.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/stddef.h>
#include <linux/vmalloc.h>
Y
Yinghai Lu 已提交
36
#include <linux/memblock.h>
37
#include <linux/slab.h>
38
#include <linux/hugetlb.h>
39 40 41 42 43 44 45 46 47 48 49 50 51 52

#include <asm/pgalloc.h>
#include <asm/page.h>
#include <asm/prom.h>
#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/smp.h>
#include <asm/machdep.h>
#include <asm/tlb.h>
#include <asm/processor.h>
#include <asm/cputable.h>
#include <asm/sections.h>
53
#include <asm/firmware.h>
54
#include <asm/dma.h>
D
David Gibson 已提交
55 56

#include "mmu_decl.h"
57

58 59 60
#define CREATE_TRACE_POINTS
#include <trace/events/thp.h>

61 62 63 64 65 66
/* Some sanity checking */
#if TASK_SIZE_USER64 > PGTABLE_RANGE
#error TASK_SIZE_USER64 exceeds pagetable range
#endif

#ifdef CONFIG_PPC_STD_MMU_64
67
#if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
68 69 70
#error TASK_SIZE_USER64 exceeds user VSID range
#endif
#endif
71

72
unsigned long ioremap_bot = IOREMAP_BASE;
73 74

#ifdef CONFIG_PPC_MMU_NOHASH
75
static __ref void *early_alloc_pgtable(unsigned long size)
76 77 78
{
	void *pt;

79
	pt = __va(memblock_alloc_base(size, size, __pa(MAX_DMA_ADDRESS)));
80 81 82 83 84 85
	memset(pt, 0, size);

	return pt;
}
#endif /* CONFIG_PPC_MMU_NOHASH */

86
/*
87 88
 * map_kernel_page currently only called by __ioremap
 * map_kernel_page adds an entry to the ioremap page table
89 90
 * and adds an entry to the HPT, possibly bolting it
 */
91
int map_kernel_page(unsigned long ea, unsigned long pa, int flags)
92 93 94 95 96 97
{
	pgd_t *pgdp;
	pud_t *pudp;
	pmd_t *pmdp;
	pte_t *ptep;

98
	if (slab_is_available()) {
99 100 101 102 103 104 105
		pgdp = pgd_offset_k(ea);
		pudp = pud_alloc(&init_mm, pgdp, ea);
		if (!pudp)
			return -ENOMEM;
		pmdp = pmd_alloc(&init_mm, pudp, ea);
		if (!pmdp)
			return -ENOMEM;
P
Paul Mackerras 已提交
106
		ptep = pte_alloc_kernel(pmdp, ea);
107 108 109 110 111
		if (!ptep)
			return -ENOMEM;
		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
							  __pgprot(flags)));
	} else {
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
#ifdef CONFIG_PPC_MMU_NOHASH
		pgdp = pgd_offset_k(ea);
#ifdef PUD_TABLE_SIZE
		if (pgd_none(*pgdp)) {
			pudp = early_alloc_pgtable(PUD_TABLE_SIZE);
			BUG_ON(pudp == NULL);
			pgd_populate(&init_mm, pgdp, pudp);
		}
#endif /* PUD_TABLE_SIZE */
		pudp = pud_offset(pgdp, ea);
		if (pud_none(*pudp)) {
			pmdp = early_alloc_pgtable(PMD_TABLE_SIZE);
			BUG_ON(pmdp == NULL);
			pud_populate(&init_mm, pudp, pmdp);
		}
		pmdp = pmd_offset(pudp, ea);
		if (!pmd_present(*pmdp)) {
			ptep = early_alloc_pgtable(PAGE_SIZE);
			BUG_ON(ptep == NULL);
			pmd_populate_kernel(&init_mm, pmdp, ptep);
		}
		ptep = pte_offset_kernel(pmdp, ea);
		set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
							  __pgprot(flags)));
#else /* CONFIG_PPC_MMU_NOHASH */
137 138 139 140
		/*
		 * If the mm subsystem is not fully up, we cannot create a
		 * linux page table entry for this mapping.  Simply bolt an
		 * entry in the hardware page table.
141
		 *
142
		 */
P
Paul Mackerras 已提交
143 144
		if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, flags,
				      mmu_io_psize, mmu_kernel_ssize)) {
145 146 147 148
			printk(KERN_ERR "Failed to do bolted mapping IO "
			       "memory at %016lx !\n", pa);
			return -ENOMEM;
		}
149
#endif /* !CONFIG_PPC_MMU_NOHASH */
150
	}
151 152 153 154 155 156 157 158 159 160 161 162

#ifdef CONFIG_PPC_BOOK3E_64
	/*
	 * With hardware tablewalk, a sync is needed to ensure that
	 * subsequent accesses see the PTE we just wrote.  Unlike userspace
	 * mappings, we can't tolerate spurious faults, so make sure
	 * the new PTE will be seen the first time.
	 */
	mb();
#else
	smp_wmb();
#endif
163 164 165 166
	return 0;
}


167 168 169 170 171
/**
 * __ioremap_at - Low level function to establish the page tables
 *                for an IO mapping
 */
void __iomem * __ioremap_at(phys_addr_t pa, void *ea, unsigned long size,
172 173 174 175
			    unsigned long flags)
{
	unsigned long i;

B
Benjamin Herrenschmidt 已提交
176
	/* Make sure we have the base flags */
177 178 179
	if ((flags & _PAGE_PRESENT) == 0)
		flags |= pgprot_val(PAGE_KERNEL);

B
Benjamin Herrenschmidt 已提交
180 181 182 183 184 185 186 187
	/* Non-cacheable page cannot be coherent */
	if (flags & _PAGE_NO_CACHE)
		flags &= ~_PAGE_COHERENT;

	/* We don't support the 4K PFN hack with ioremap */
	if (flags & _PAGE_4K_PFN)
		return NULL;

188 189 190 191
	WARN_ON(pa & ~PAGE_MASK);
	WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
	WARN_ON(size & ~PAGE_MASK);

192
	for (i = 0; i < size; i += PAGE_SIZE)
193
		if (map_kernel_page((unsigned long)ea+i, pa+i, flags))
194 195
			return NULL;

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	return (void __iomem *)ea;
}

/**
 * __iounmap_from - Low level function to tear down the page tables
 *                  for an IO mapping. This is used for mappings that
 *                  are manipulated manually, like partial unmapping of
 *                  PCI IOs or ISA space.
 */
void __iounmap_at(void *ea, unsigned long size)
{
	WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
	WARN_ON(size & ~PAGE_MASK);

	unmap_kernel_range((unsigned long)ea, size);
211 212
}

213 214
void __iomem * __ioremap_caller(phys_addr_t addr, unsigned long size,
				unsigned long flags, void *caller)
215
{
216
	phys_addr_t paligned;
217 218 219 220 221 222 223 224 225 226 227
	void __iomem *ret;

	/*
	 * Choose an address to map it to.
	 * Once the imalloc system is running, we use it.
	 * Before that, we map using addresses going
	 * up from ioremap_bot.  imalloc will use
	 * the addresses from ioremap_bot through
	 * IMALLOC_END
	 * 
	 */
228 229
	paligned = addr & PAGE_MASK;
	size = PAGE_ALIGN(addr + size) - paligned;
230

231
	if ((size == 0) || (paligned == 0))
232 233 234 235
		return NULL;

	if (mem_init_done) {
		struct vm_struct *area;
236

237 238 239
		area = __get_vm_area_caller(size, VM_IOREMAP,
					    ioremap_bot, IOREMAP_END,
					    caller);
240 241
		if (area == NULL)
			return NULL;
242 243

		area->phys_addr = paligned;
244
		ret = __ioremap_at(paligned, area->addr, size, flags);
245
		if (!ret)
246
			vunmap(area->addr);
247
	} else {
248
		ret = __ioremap_at(paligned, (void *)ioremap_bot, size, flags);
249 250 251
		if (ret)
			ioremap_bot += size;
	}
252 253 254

	if (ret)
		ret += addr & ~PAGE_MASK;
255 256 257
	return ret;
}

258 259 260 261 262
void __iomem * __ioremap(phys_addr_t addr, unsigned long size,
			 unsigned long flags)
{
	return __ioremap_caller(addr, size, flags, __builtin_return_address(0));
}
263

264
void __iomem * ioremap(phys_addr_t addr, unsigned long size)
265 266
{
	unsigned long flags = _PAGE_NO_CACHE | _PAGE_GUARDED;
267
	void *caller = __builtin_return_address(0);
268 269

	if (ppc_md.ioremap)
270 271
		return ppc_md.ioremap(addr, size, flags, caller);
	return __ioremap_caller(addr, size, flags, caller);
272 273
}

A
Anton Blanchard 已提交
274 275 276 277 278 279 280 281 282 283
void __iomem * ioremap_wc(phys_addr_t addr, unsigned long size)
{
	unsigned long flags = _PAGE_NO_CACHE;
	void *caller = __builtin_return_address(0);

	if (ppc_md.ioremap)
		return ppc_md.ioremap(addr, size, flags, caller);
	return __ioremap_caller(addr, size, flags, caller);
}

A
Anton Blanchard 已提交
284
void __iomem * ioremap_prot(phys_addr_t addr, unsigned long size,
285 286
			     unsigned long flags)
{
287 288
	void *caller = __builtin_return_address(0);

B
Benjamin Herrenschmidt 已提交
289 290 291 292 293 294 295
	/* writeable implies dirty for kernel addresses */
	if (flags & _PAGE_RW)
		flags |= _PAGE_DIRTY;

	/* we don't want to let _PAGE_USER and _PAGE_EXEC leak out */
	flags &= ~(_PAGE_USER | _PAGE_EXEC);

296 297 298 299 300 301 302 303
#ifdef _PAGE_BAP_SR
	/* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format
	 * which means that we just cleared supervisor access... oops ;-) This
	 * restores it
	 */
	flags |= _PAGE_BAP_SR;
#endif

304
	if (ppc_md.ioremap)
305 306
		return ppc_md.ioremap(addr, size, flags, caller);
	return __ioremap_caller(addr, size, flags, caller);
307 308 309
}


310 311 312 313
/*  
 * Unmap an IO region and remove it from imalloc'd list.
 * Access to IO memory should be serialized by driver.
 */
314
void __iounmap(volatile void __iomem *token)
315 316 317 318 319 320
{
	void *addr;

	if (!mem_init_done)
		return;
	
321 322 323 324 325 326 327 328
	addr = (void *) ((unsigned long __force)
			 PCI_FIX_ADDR(token) & PAGE_MASK);
	if ((unsigned long)addr < ioremap_bot) {
		printk(KERN_WARNING "Attempt to iounmap early bolted mapping"
		       " at 0x%p\n", addr);
		return;
	}
	vunmap(addr);
329 330
}

331
void iounmap(volatile void __iomem *token)
332 333 334 335 336 337 338
{
	if (ppc_md.iounmap)
		ppc_md.iounmap(token);
	else
		__iounmap(token);
}

339
EXPORT_SYMBOL(ioremap);
A
Anton Blanchard 已提交
340
EXPORT_SYMBOL(ioremap_wc);
A
Anton Blanchard 已提交
341
EXPORT_SYMBOL(ioremap_prot);
342
EXPORT_SYMBOL(__ioremap);
343
EXPORT_SYMBOL(__ioremap_at);
344
EXPORT_SYMBOL(iounmap);
345
EXPORT_SYMBOL(__iounmap);
346
EXPORT_SYMBOL(__iounmap_at);
347

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
#ifndef __PAGETABLE_PUD_FOLDED
/* 4 level page table */
struct page *pgd_page(pgd_t pgd)
{
	if (pgd_huge(pgd))
		return pte_page(pgd_pte(pgd));
	return virt_to_page(pgd_page_vaddr(pgd));
}
#endif

struct page *pud_page(pud_t pud)
{
	if (pud_huge(pud))
		return pte_page(pud_pte(pud));
	return virt_to_page(pud_page_vaddr(pud));
}

365 366 367 368 369 370
/*
 * For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
 * For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
 */
struct page *pmd_page(pmd_t pmd)
{
371
	if (pmd_trans_huge(pmd) || pmd_huge(pmd))
372 373 374 375
		return pfn_to_page(pmd_pfn(pmd));
	return virt_to_page(pmd_page_vaddr(pmd));
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
#ifdef CONFIG_PPC_64K_PAGES
static pte_t *get_from_cache(struct mm_struct *mm)
{
	void *pte_frag, *ret;

	spin_lock(&mm->page_table_lock);
	ret = mm->context.pte_frag;
	if (ret) {
		pte_frag = ret + PTE_FRAG_SIZE;
		/*
		 * If we have taken up all the fragments mark PTE page NULL
		 */
		if (((unsigned long)pte_frag & ~PAGE_MASK) == 0)
			pte_frag = NULL;
		mm->context.pte_frag = pte_frag;
	}
	spin_unlock(&mm->page_table_lock);
	return (pte_t *)ret;
}

static pte_t *__alloc_for_cache(struct mm_struct *mm, int kernel)
{
	void *ret = NULL;
	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
				       __GFP_REPEAT | __GFP_ZERO);
	if (!page)
		return NULL;
403 404 405 406
	if (!kernel && !pgtable_page_ctor(page)) {
		__free_page(page);
		return NULL;
	}
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493

	ret = page_address(page);
	spin_lock(&mm->page_table_lock);
	/*
	 * If we find pgtable_page set, we return
	 * the allocated page with single fragement
	 * count.
	 */
	if (likely(!mm->context.pte_frag)) {
		atomic_set(&page->_count, PTE_FRAG_NR);
		mm->context.pte_frag = ret + PTE_FRAG_SIZE;
	}
	spin_unlock(&mm->page_table_lock);

	return (pte_t *)ret;
}

pte_t *page_table_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel)
{
	pte_t *pte;

	pte = get_from_cache(mm);
	if (pte)
		return pte;

	return __alloc_for_cache(mm, kernel);
}

void page_table_free(struct mm_struct *mm, unsigned long *table, int kernel)
{
	struct page *page = virt_to_page(table);
	if (put_page_testzero(page)) {
		if (!kernel)
			pgtable_page_dtor(page);
		free_hot_cold_page(page, 0);
	}
}

#ifdef CONFIG_SMP
static void page_table_free_rcu(void *table)
{
	struct page *page = virt_to_page(table);
	if (put_page_testzero(page)) {
		pgtable_page_dtor(page);
		free_hot_cold_page(page, 0);
	}
}

void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
{
	unsigned long pgf = (unsigned long)table;

	BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
	pgf |= shift;
	tlb_remove_table(tlb, (void *)pgf);
}

void __tlb_remove_table(void *_table)
{
	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
	unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;

	if (!shift)
		/* PTE page needs special handling */
		page_table_free_rcu(table);
	else {
		BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
		kmem_cache_free(PGT_CACHE(shift), table);
	}
}
#else
void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
{
	if (!shift) {
		/* PTE page needs special handling */
		struct page *page = virt_to_page(table);
		if (put_page_testzero(page)) {
			pgtable_page_dtor(page);
			free_hot_cold_page(page, 0);
		}
	} else {
		BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
		kmem_cache_free(PGT_CACHE(shift), table);
	}
}
#endif
#endif /* CONFIG_PPC_64K_PAGES */
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * This is called when relaxing access to a hugepage. It's also called in the page
 * fault path when we don't hit any of the major fault cases, ie, a minor
 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
 * handled those two for us, we additionally deal with missing execute
 * permission here on some processors
 */
int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
			  pmd_t *pmdp, pmd_t entry, int dirty)
{
	int changed;
#ifdef CONFIG_DEBUG_VM
	WARN_ON(!pmd_trans_huge(*pmdp));
	assert_spin_locked(&vma->vm_mm->page_table_lock);
#endif
	changed = !pmd_same(*(pmdp), entry);
	if (changed) {
		__ptep_set_access_flags(pmdp_ptep(pmdp), pmd_pte(entry));
		/*
		 * Since we are not supporting SW TLB systems, we don't
		 * have any thing similar to flush_tlb_page_nohash()
		 */
	}
	return changed;
}

unsigned long pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
524 525
				  pmd_t *pmdp, unsigned long clr,
				  unsigned long set)
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
{

	unsigned long old, tmp;

#ifdef CONFIG_DEBUG_VM
	WARN_ON(!pmd_trans_huge(*pmdp));
	assert_spin_locked(&mm->page_table_lock);
#endif

#ifdef PTE_ATOMIC_UPDATES
	__asm__ __volatile__(
	"1:	ldarx	%0,0,%3\n\
		andi.	%1,%0,%6\n\
		bne-	1b \n\
		andc	%1,%0,%4 \n\
541
		or	%1,%1,%7\n\
542 543 544
		stdcx.	%1,0,%3 \n\
		bne-	1b"
	: "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
545
	: "r" (pmdp), "r" (clr), "m" (*pmdp), "i" (_PAGE_BUSY), "r" (set)
546 547 548
	: "cc" );
#else
	old = pmd_val(*pmdp);
549
	*pmdp = __pmd((old & ~clr) | set);
550
#endif
551
	trace_hugepage_update(addr, old, clr, set);
552
	if (old & _PAGE_HASHPTE)
553
		hpte_do_hugepage_flush(mm, addr, pmdp, old);
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
	return old;
}

pmd_t pmdp_clear_flush(struct vm_area_struct *vma, unsigned long address,
		       pmd_t *pmdp)
{
	pmd_t pmd;

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
	if (pmd_trans_huge(*pmdp)) {
		pmd = pmdp_get_and_clear(vma->vm_mm, address, pmdp);
	} else {
		/*
		 * khugepaged calls this for normal pmd
		 */
		pmd = *pmdp;
		pmd_clear(pmdp);
		/*
		 * Wait for all pending hash_page to finish. This is needed
		 * in case of subpage collapse. When we collapse normal pages
		 * to hugepage, we first clear the pmd, then invalidate all
		 * the PTE entries. The assumption here is that any low level
		 * page fault will see a none pmd and take the slow path that
		 * will wait on mmap_sem. But we could very well be in a
		 * hash_page with local ptep pointer value. Such a hash page
		 * can result in adding new HPTE entries for normal subpages.
		 * That means we could be modifying the page content as we
		 * copy them to a huge page. So wait for parallel hash_page
		 * to finish before invalidating HPTE entries. We can do this
		 * by sending an IPI to all the cpus and executing a dummy
		 * function there.
		 */
		kick_all_cpus_sync();
		/*
		 * Now invalidate the hpte entries in the range
		 * covered by pmd. This make sure we take a
		 * fault and will find the pmd as none, which will
		 * result in a major fault which takes mmap_sem and
		 * hence wait for collapse to complete. Without this
		 * the __collapse_huge_page_copy can result in copying
		 * the old content.
		 */
		flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
	}
	return pmd;
}

int pmdp_test_and_clear_young(struct vm_area_struct *vma,
			      unsigned long address, pmd_t *pmdp)
{
	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
}

/*
 * We currently remove entries from the hashtable regardless of whether
 * the entry was young or dirty. The generic routines only flush if the
 * entry was young or dirty which is not good enough.
 *
 * We should be more intelligent about this but for the moment we override
 * these functions and force a tlb flush unconditionally
 */
int pmdp_clear_flush_young(struct vm_area_struct *vma,
				  unsigned long address, pmd_t *pmdp)
{
	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
}

/*
 * We mark the pmd splitting and invalidate all the hpte
 * entries for this hugepage.
 */
void pmdp_splitting_flush(struct vm_area_struct *vma,
			  unsigned long address, pmd_t *pmdp)
{
	unsigned long old, tmp;

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);

#ifdef CONFIG_DEBUG_VM
	WARN_ON(!pmd_trans_huge(*pmdp));
	assert_spin_locked(&vma->vm_mm->page_table_lock);
#endif

#ifdef PTE_ATOMIC_UPDATES

	__asm__ __volatile__(
	"1:	ldarx	%0,0,%3\n\
		andi.	%1,%0,%6\n\
		bne-	1b \n\
		ori	%1,%0,%4 \n\
		stdcx.	%1,0,%3 \n\
		bne-	1b"
	: "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
	: "r" (pmdp), "i" (_PAGE_SPLITTING), "m" (*pmdp), "i" (_PAGE_BUSY)
	: "cc" );
#else
	old = pmd_val(*pmdp);
	*pmdp = __pmd(old | _PAGE_SPLITTING);
#endif
	/*
	 * If we didn't had the splitting flag set, go and flush the
	 * HPTE entries.
	 */
657
	trace_hugepage_splitting(address, old);
658 659 660
	if (!(old & _PAGE_SPLITTING)) {
		/* We need to flush the hpte */
		if (old & _PAGE_HASHPTE)
661
			hpte_do_hugepage_flush(vma->vm_mm, address, pmdp, old);
662
	}
663 664 665 666 667
	/*
	 * This ensures that generic code that rely on IRQ disabling
	 * to prevent a parallel THP split work as expected.
	 */
	kick_all_cpus_sync();
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
}

/*
 * We want to put the pgtable in pmd and use pgtable for tracking
 * the base page size hptes
 */
void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
				pgtable_t pgtable)
{
	pgtable_t *pgtable_slot;
	assert_spin_locked(&mm->page_table_lock);
	/*
	 * we store the pgtable in the second half of PMD
	 */
	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
	*pgtable_slot = pgtable;
	/*
	 * expose the deposited pgtable to other cpus.
	 * before we set the hugepage PTE at pmd level
	 * hash fault code looks at the deposted pgtable
	 * to store hash index values.
	 */
	smp_wmb();
}

pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
{
	pgtable_t pgtable;
	pgtable_t *pgtable_slot;

	assert_spin_locked(&mm->page_table_lock);
	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
	pgtable = *pgtable_slot;
	/*
	 * Once we withdraw, mark the entry NULL.
	 */
	*pgtable_slot = NULL;
	/*
	 * We store HPTE information in the deposited PTE fragment.
	 * zero out the content on withdraw.
	 */
	memset(pgtable, 0, PTE_FRAG_SIZE);
	return pgtable;
}

/*
 * set a new huge pmd. We should not be called for updating
 * an existing pmd entry. That should go via pmd_hugepage_update.
 */
void set_pmd_at(struct mm_struct *mm, unsigned long addr,
		pmd_t *pmdp, pmd_t pmd)
{
#ifdef CONFIG_DEBUG_VM
721
	WARN_ON(pmd_val(*pmdp) & _PAGE_PRESENT);
722 723 724
	assert_spin_locked(&mm->page_table_lock);
	WARN_ON(!pmd_trans_huge(pmd));
#endif
725
	trace_hugepage_set_pmd(addr, pmd);
726 727 728 729 730 731
	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
}

void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
		     pmd_t *pmdp)
{
732
	pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, 0);
733 734 735 736 737 738 739
}

/*
 * A linux hugepage PMD was changed and the corresponding hash table entries
 * neesd to be flushed.
 */
void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
740
			    pmd_t *pmdp, unsigned long old_pmd)
741
{
742
	int ssize, local = 0;
743 744
	unsigned int psize;
	unsigned long vsid;
745
	const struct cpumask *tmp;
746

747
	/* get the base page size,vsid and segment size */
748
#ifdef CONFIG_DEBUG_VM
749
	psize = get_slice_psize(mm, addr);
750 751 752 753 754 755 756
	BUG_ON(psize == MMU_PAGE_16M);
#endif
	if (old_pmd & _PAGE_COMBO)
		psize = MMU_PAGE_4K;
	else
		psize = MMU_PAGE_64K;

757 758 759
	if (!is_kernel_addr(addr)) {
		ssize = user_segment_size(addr);
		vsid = get_vsid(mm->context.id, addr, ssize);
760 761
		WARN_ON(vsid == 0);
	} else {
762
		vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
763 764
		ssize = mmu_kernel_ssize;
	}
765

766 767 768 769 770
	tmp = cpumask_of(smp_processor_id());
	if (cpumask_equal(mm_cpumask(mm), tmp))
		local = 1;

	return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, local);
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
}

static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
{
	pmd_val(pmd) |= pgprot_val(pgprot);
	return pmd;
}

pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
{
	pmd_t pmd;
	/*
	 * For a valid pte, we would have _PAGE_PRESENT or _PAGE_FILE always
	 * set. We use this to check THP page at pmd level.
	 * leaf pte for huge page, bottom two bits != 00
	 */
	pmd_val(pmd) = pfn << PTE_RPN_SHIFT;
	pmd_val(pmd) |= _PAGE_THP_HUGE;
	pmd = pmd_set_protbits(pmd, pgprot);
	return pmd;
}

pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
{
	return pfn_pmd(page_to_pfn(page), pgprot);
}

pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
{

	pmd_val(pmd) &= _HPAGE_CHG_MASK;
	pmd = pmd_set_protbits(pmd, newprot);
	return pmd;
}

/*
 * This is called at the end of handling a user page fault, when the
 * fault has been handled by updating a HUGE PMD entry in the linux page tables.
 * We use it to preload an HPTE into the hash table corresponding to
 * the updated linux HUGE PMD entry.
 */
void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
			  pmd_t *pmd)
{
	return;
}

pmd_t pmdp_get_and_clear(struct mm_struct *mm,
			 unsigned long addr, pmd_t *pmdp)
{
	pmd_t old_pmd;
	pgtable_t pgtable;
	unsigned long old;
	pgtable_t *pgtable_slot;

826
	old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
	old_pmd = __pmd(old);
	/*
	 * We have pmd == none and we are holding page_table_lock.
	 * So we can safely go and clear the pgtable hash
	 * index info.
	 */
	pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
	pgtable = *pgtable_slot;
	/*
	 * Let's zero out old valid and hash index details
	 * hash fault look at them.
	 */
	memset(pgtable, 0, PTE_FRAG_SIZE);
	return old_pmd;
}
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870

int has_transparent_hugepage(void)
{
	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
		return 0;
	/*
	 * We support THP only if PMD_SIZE is 16MB.
	 */
	if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
		return 0;
	/*
	 * We need to make sure that we support 16MB hugepage in a segement
	 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
	 * of 64K.
	 */
	/*
	 * If we have 64K HPTE, we will be using that by default
	 */
	if (mmu_psize_defs[MMU_PAGE_64K].shift &&
	    (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
		return 0;
	/*
	 * Ok we only have 4K HPTE
	 */
	if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
		return 0;

	return 1;
}
871
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */