futex.c 43.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
11 12 13 14
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
15 16 17 18
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/jhash.h>
#include <linux/init.h>
#include <linux/futex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
50
#include <linux/signal.h>
51
#include <asm/futex.h>
L
Linus Torvalds 已提交
52

53 54
#include "rtmutex_common.h"

L
Linus Torvalds 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)

/*
 * Futexes are matched on equal values of this key.
 * The key type depends on whether it's a shared or private mapping.
 * Don't rearrange members without looking at hash_futex().
 *
 * offset is aligned to a multiple of sizeof(u32) (== 4) by definition.
 * We set bit 0 to indicate if it's an inode-based key.
 */
union futex_key {
	struct {
		unsigned long pgoff;
		struct inode *inode;
		int offset;
	} shared;
	struct {
72
		unsigned long address;
L
Linus Torvalds 已提交
73 74 75 76 77 78 79 80 81 82
		struct mm_struct *mm;
		int offset;
	} private;
	struct {
		unsigned long word;
		void *ptr;
		int offset;
	} both;
};

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	atomic_t refcount;

	union futex_key key;
};

L
Linus Torvalds 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116
/*
 * We use this hashed waitqueue instead of a normal wait_queue_t, so
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0.
 * The order of wakup is always to make the first condition true, then
 * wake up q->waiters, then make the second condition true.
 */
struct futex_q {
	struct list_head list;
	wait_queue_head_t waiters;

117
	/* Which hash list lock to use: */
L
Linus Torvalds 已提交
118 119
	spinlock_t *lock_ptr;

120
	/* Key which the futex is hashed on: */
L
Linus Torvalds 已提交
121 122
	union futex_key key;

123
	/* For fd, sigio sent using these: */
L
Linus Torvalds 已提交
124 125
	int fd;
	struct file *filp;
126 127 128 129

	/* Optional priority inheritance state: */
	struct futex_pi_state *pi_state;
	struct task_struct *task;
L
Linus Torvalds 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
};

/*
 * Split the global futex_lock into every hash list lock.
 */
struct futex_hash_bucket {
       spinlock_t              lock;
       struct list_head       chain;
};

static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];

/* Futex-fs vfsmount entry: */
static struct vfsmount *futex_mnt;

/*
 * We hash on the keys returned from get_futex_key (see below).
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32*)&key->both.word,
			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
			  key->both.offset);
	return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
}

/*
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
	return (key1->both.word == key2->both.word
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

/*
 * Get parameters which are the keys for a futex.
 *
 * For shared mappings, it's (page->index, vma->vm_file->f_dentry->d_inode,
 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 * We can usually work out the index without swapping in the page.
 *
 * Returns: 0, or negative error code.
 * The key words are stored in *key on success.
 *
 * Should be called with &current->mm->mmap_sem but NOT any spinlocks.
 */
178
static int get_futex_key(u32 __user *uaddr, union futex_key *key)
L
Linus Torvalds 已提交
179
{
180
	unsigned long address = (unsigned long)uaddr;
L
Linus Torvalds 已提交
181 182 183 184 185 186 187 188
	struct mm_struct *mm = current->mm;
	struct vm_area_struct *vma;
	struct page *page;
	int err;

	/*
	 * The futex address must be "naturally" aligned.
	 */
189
	key->both.offset = address % PAGE_SIZE;
L
Linus Torvalds 已提交
190 191
	if (unlikely((key->both.offset % sizeof(u32)) != 0))
		return -EINVAL;
192
	address -= key->both.offset;
L
Linus Torvalds 已提交
193 194 195 196 197

	/*
	 * The futex is hashed differently depending on whether
	 * it's in a shared or private mapping.  So check vma first.
	 */
198
	vma = find_extend_vma(mm, address);
L
Linus Torvalds 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
	if (unlikely(!vma))
		return -EFAULT;

	/*
	 * Permissions.
	 */
	if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
		return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;

	/*
	 * Private mappings are handled in a simple way.
	 *
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
	 * the object not the particular process.  Therefore we use
	 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
	 * mappings of _writable_ handles.
	 */
	if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
		key->private.mm = mm;
219
		key->private.address = address;
L
Linus Torvalds 已提交
220 221 222 223 224 225 226 227 228
		return 0;
	}

	/*
	 * Linear file mappings are also simple.
	 */
	key->shared.inode = vma->vm_file->f_dentry->d_inode;
	key->both.offset++; /* Bit 0 of offset indicates inode-based key. */
	if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
229
		key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
L
Linus Torvalds 已提交
230 231 232 233 234 235 236 237 238 239
				     + vma->vm_pgoff);
		return 0;
	}

	/*
	 * We could walk the page table to read the non-linear
	 * pte, and get the page index without fetching the page
	 * from swap.  But that's a lot of code to duplicate here
	 * for a rare case, so we simply fetch the page.
	 */
240
	err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
L
Linus Torvalds 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
	if (err >= 0) {
		key->shared.pgoff =
			page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
		put_page(page);
		return 0;
	}
	return err;
}

/*
 * Take a reference to the resource addressed by a key.
 * Can be called while holding spinlocks.
 *
 * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
 * function, if it is called at all.  mmap_sem keeps key->shared.inode valid.
 */
static inline void get_key_refs(union futex_key *key)
{
	if (key->both.ptr != 0) {
		if (key->both.offset & 1)
			atomic_inc(&key->shared.inode->i_count);
		else
			atomic_inc(&key->private.mm->mm_count);
	}
}

/*
 * Drop a reference to the resource addressed by a key.
 * The hash bucket spinlock must not be held.
 */
static void drop_key_refs(union futex_key *key)
{
	if (key->both.ptr != 0) {
		if (key->both.offset & 1)
			iput(key->shared.inode);
		else
			mmdrop(key->private.mm);
	}
}

281
static inline int get_futex_value_locked(u32 *dest, u32 __user *from)
L
Linus Torvalds 已提交
282 283 284 285
{
	int ret;

	inc_preempt_count();
286
	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
L
Linus Torvalds 已提交
287 288 289 290 291
	dec_preempt_count();

	return ret ? -EFAULT : 0;
}

292 293 294 295 296 297 298 299
/*
 * Fault handling. Called with current->mm->mmap_sem held.
 */
static int futex_handle_fault(unsigned long address, int attempt)
{
	struct vm_area_struct * vma;
	struct mm_struct *mm = current->mm;

300
	if (attempt > 2 || !(vma = find_vma(mm, address)) ||
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
	    vma->vm_start > address || !(vma->vm_flags & VM_WRITE))
		return -EFAULT;

	switch (handle_mm_fault(mm, vma, address, 1)) {
	case VM_FAULT_MINOR:
		current->min_flt++;
		break;
	case VM_FAULT_MAJOR:
		current->maj_flt++;
		break;
	default:
		return -EFAULT;
	}
	return 0;
}

/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

	pi_state = kmalloc(sizeof(*pi_state), GFP_KERNEL);

	if (!pi_state)
		return -ENOMEM;

	memset(pi_state, 0, sizeof(*pi_state));
	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	atomic_set(&pi_state->refcount, 1);

	current->pi_state_cache = pi_state;

	return 0;
}

static struct futex_pi_state * alloc_pi_state(void)
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

static void free_pi_state(struct futex_pi_state *pi_state)
{
	if (!atomic_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
		spin_lock_irq(&pi_state->owner->pi_lock);
		list_del_init(&pi_state->list);
		spin_unlock_irq(&pi_state->owner->pi_lock);

		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
	}

	if (current->pi_state_cache)
		kfree(pi_state);
	else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		atomic_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

/*
 * Look up the task based on what TID userspace gave us.
 * We dont trust it.
 */
static struct task_struct * futex_find_get_task(pid_t pid)
{
	struct task_struct *p;

392
	rcu_read_lock();
393 394 395 396 397 398 399
	p = find_task_by_pid(pid);
	if (!p)
		goto out_unlock;
	if ((current->euid != p->euid) && (current->euid != p->uid)) {
		p = NULL;
		goto out_unlock;
	}
400
	if (p->exit_state != 0) {
401 402 403 404 405
		p = NULL;
		goto out_unlock;
	}
	get_task_struct(p);
out_unlock:
406
	rcu_read_unlock();
407 408 409 410 411 412 413 414 415 416 417 418 419

	return p;
}

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
420
	struct futex_hash_bucket *hb;
421 422 423 424 425
	union futex_key key;

	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
426
	 * versus waiters unqueueing themselves:
427 428 429 430 431 432 433
	 */
	spin_lock_irq(&curr->pi_lock);
	while (!list_empty(head)) {

		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
434
		hb = hash_futex(&key);
435 436 437 438 439
		spin_unlock_irq(&curr->pi_lock);

		spin_lock(&hb->lock);

		spin_lock_irq(&curr->pi_lock);
440 441 442 443
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
444 445 446 447 448 449
		if (head->next != next) {
			spin_unlock(&hb->lock);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
450 451
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
		pi_state->owner = NULL;
		spin_unlock_irq(&curr->pi_lock);

		rt_mutex_unlock(&pi_state->pi_mutex);

		spin_unlock(&hb->lock);

		spin_lock_irq(&curr->pi_lock);
	}
	spin_unlock_irq(&curr->pi_lock);
}

static int
lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, struct futex_q *me)
{
	struct futex_pi_state *pi_state = NULL;
	struct futex_q *this, *next;
	struct list_head *head;
	struct task_struct *p;
	pid_t pid;

	head = &hb->chain;

	list_for_each_entry_safe(this, next, head, list) {
476
		if (match_futex(&this->key, &me->key)) {
477 478 479 480 481
			/*
			 * Another waiter already exists - bump up
			 * the refcount and return its pi_state:
			 */
			pi_state = this->pi_state;
482 483 484 485 486 487
			/*
			 * Userspace might have messed up non PI and PI futexes
			 */
			if (unlikely(!pi_state))
				return -EINVAL;

488 489
			WARN_ON(!atomic_read(&pi_state->refcount));

490 491 492 493 494 495 496 497
			atomic_inc(&pi_state->refcount);
			me->pi_state = pi_state;

			return 0;
		}
	}

	/*
498 499 500
	 * We are the first waiter - try to look up the real owner and attach
	 * the new pi_state to it, but bail out when the owner died bit is set
	 * and TID = 0:
501 502
	 */
	pid = uval & FUTEX_TID_MASK;
503 504
	if (!pid && (uval & FUTEX_OWNER_DIED))
		return -ESRCH;
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
	p = futex_find_get_task(pid);
	if (!p)
		return -ESRCH;

	pi_state = alloc_pi_state();

	/*
	 * Initialize the pi_mutex in locked state and make 'p'
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
	pi_state->key = me->key;

	spin_lock_irq(&p->pi_lock);
521
	WARN_ON(!list_empty(&pi_state->list));
522 523 524 525 526 527 528 529 530 531 532
	list_add(&pi_state->list, &p->pi_state_list);
	pi_state->owner = p;
	spin_unlock_irq(&p->pi_lock);

	put_task_struct(p);

	me->pi_state = pi_state;

	return 0;
}

L
Linus Torvalds 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
/*
 * The hash bucket lock must be held when this is called.
 * Afterwards, the futex_q must not be accessed.
 */
static void wake_futex(struct futex_q *q)
{
	list_del_init(&q->list);
	if (q->filp)
		send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
	/*
	 * The lock in wake_up_all() is a crucial memory barrier after the
	 * list_del_init() and also before assigning to q->lock_ptr.
	 */
	wake_up_all(&q->waiters);
	/*
	 * The waiting task can free the futex_q as soon as this is written,
	 * without taking any locks.  This must come last.
550 551 552 553 554
	 *
	 * A memory barrier is required here to prevent the following store
	 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
	 * at the end of wake_up_all() does not prevent this store from
	 * moving.
L
Linus Torvalds 已提交
555
	 */
556
	wmb();
L
Linus Torvalds 已提交
557 558 559
	q->lock_ptr = NULL;
}

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
{
	struct task_struct *new_owner;
	struct futex_pi_state *pi_state = this->pi_state;
	u32 curval, newval;

	if (!pi_state)
		return -EINVAL;

	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);

	/*
	 * This happens when we have stolen the lock and the original
	 * pending owner did not enqueue itself back on the rt_mutex.
	 * Thats not a tragedy. We know that way, that a lock waiter
	 * is on the fly. We make the futex_q waiter the pending owner.
	 */
	if (!new_owner)
		new_owner = this->task;

	/*
	 * We pass it to the next owner. (The WAITERS bit is always
	 * kept enabled while there is PI state around. We must also
	 * preserve the owner died bit.)
	 */
585 586 587 588 589 590 591 592 593 594 595
	if (!(uval & FUTEX_OWNER_DIED)) {
		newval = FUTEX_WAITERS | new_owner->pid;

		inc_preempt_count();
		curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
		dec_preempt_count();
		if (curval == -EFAULT)
			return -EFAULT;
		if (curval != uval)
			return -EINVAL;
	}
596

597 598 599 600 601 602 603
	spin_lock_irq(&pi_state->owner->pi_lock);
	WARN_ON(list_empty(&pi_state->list));
	list_del_init(&pi_state->list);
	spin_unlock_irq(&pi_state->owner->pi_lock);

	spin_lock_irq(&new_owner->pi_lock);
	WARN_ON(!list_empty(&pi_state->list));
604 605
	list_add(&pi_state->list, &new_owner->pi_state_list);
	pi_state->owner = new_owner;
606 607
	spin_unlock_irq(&new_owner->pi_lock);

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
	rt_mutex_unlock(&pi_state->pi_mutex);

	return 0;
}

static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
{
	u32 oldval;

	/*
	 * There is no waiter, so we unlock the futex. The owner died
	 * bit has not to be preserved here. We are the owner:
	 */
	inc_preempt_count();
	oldval = futex_atomic_cmpxchg_inatomic(uaddr, uval, 0);
	dec_preempt_count();

	if (oldval == -EFAULT)
		return oldval;
	if (oldval != uval)
		return -EAGAIN;

	return 0;
}

I
Ingo Molnar 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

L
Linus Torvalds 已提交
649 650 651 652
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
653
static int futex_wake(u32 __user *uaddr, int nr_wake)
L
Linus Torvalds 已提交
654
{
655
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
656
	struct futex_q *this, *next;
657 658
	struct list_head *head;
	union futex_key key;
L
Linus Torvalds 已提交
659 660 661 662 663 664 665 666
	int ret;

	down_read(&current->mm->mmap_sem);

	ret = get_futex_key(uaddr, &key);
	if (unlikely(ret != 0))
		goto out;

667 668 669
	hb = hash_futex(&key);
	spin_lock(&hb->lock);
	head = &hb->chain;
L
Linus Torvalds 已提交
670 671 672

	list_for_each_entry_safe(this, next, head, list) {
		if (match_futex (&this->key, &key)) {
673 674 675 676
			if (this->pi_state) {
				ret = -EINVAL;
				break;
			}
L
Linus Torvalds 已提交
677 678 679 680 681 682
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

683
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
684 685 686 687 688
out:
	up_read(&current->mm->mmap_sem);
	return ret;
}

689 690 691 692
/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
693 694 695
static int
futex_wake_op(u32 __user *uaddr1, u32 __user *uaddr2,
	      int nr_wake, int nr_wake2, int op)
696 697
{
	union futex_key key1, key2;
698
	struct futex_hash_bucket *hb1, *hb2;
699 700 701 702 703 704 705 706 707 708 709 710 711 712
	struct list_head *head;
	struct futex_q *this, *next;
	int ret, op_ret, attempt = 0;

retryfull:
	down_read(&current->mm->mmap_sem);

	ret = get_futex_key(uaddr1, &key1);
	if (unlikely(ret != 0))
		goto out;
	ret = get_futex_key(uaddr2, &key2);
	if (unlikely(ret != 0))
		goto out;

713 714
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
715 716

retry:
I
Ingo Molnar 已提交
717
	double_lock_hb(hb1, hb2);
718

719
	op_ret = futex_atomic_op_inuser(op, uaddr2);
720
	if (unlikely(op_ret < 0)) {
721
		u32 dummy;
722

723 724 725
		spin_unlock(&hb1->lock);
		if (hb1 != hb2)
			spin_unlock(&hb2->lock);
726

727
#ifndef CONFIG_MMU
728 729 730 731
		/*
		 * we don't get EFAULT from MMU faults if we don't have an MMU,
		 * but we might get them from range checking
		 */
732 733 734 735
		ret = op_ret;
		goto out;
#endif

736 737 738 739 740
		if (unlikely(op_ret != -EFAULT)) {
			ret = op_ret;
			goto out;
		}

741 742
		/*
		 * futex_atomic_op_inuser needs to both read and write
743 744 745
		 * *(int __user *)uaddr2, but we can't modify it
		 * non-atomically.  Therefore, if get_user below is not
		 * enough, we need to handle the fault ourselves, while
746 747
		 * still holding the mmap_sem.
		 */
748
		if (attempt++) {
749
			if (futex_handle_fault((unsigned long)uaddr2,
750 751
						attempt)) {
				ret = -EFAULT;
752
				goto out;
753
			}
754 755 756
			goto retry;
		}

757 758 759 760
		/*
		 * If we would have faulted, release mmap_sem,
		 * fault it in and start all over again.
		 */
761 762
		up_read(&current->mm->mmap_sem);

763
		ret = get_user(dummy, uaddr2);
764 765 766 767 768 769
		if (ret)
			return ret;

		goto retryfull;
	}

770
	head = &hb1->chain;
771 772 773 774 775 776 777 778 779 780

	list_for_each_entry_safe(this, next, head, list) {
		if (match_futex (&this->key, &key1)) {
			wake_futex(this);
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
781
		head = &hb2->chain;
782 783 784 785 786 787 788 789 790 791 792 793

		op_ret = 0;
		list_for_each_entry_safe(this, next, head, list) {
			if (match_futex (&this->key, &key2)) {
				wake_futex(this);
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

794 795 796
	spin_unlock(&hb1->lock);
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
797 798 799 800 801
out:
	up_read(&current->mm->mmap_sem);
	return ret;
}

L
Linus Torvalds 已提交
802 803 804 805
/*
 * Requeue all waiters hashed on one physical page to another
 * physical page.
 */
806 807
static int futex_requeue(u32 __user *uaddr1, u32 __user *uaddr2,
			 int nr_wake, int nr_requeue, u32 *cmpval)
L
Linus Torvalds 已提交
808 809
{
	union futex_key key1, key2;
810
	struct futex_hash_bucket *hb1, *hb2;
L
Linus Torvalds 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824
	struct list_head *head1;
	struct futex_q *this, *next;
	int ret, drop_count = 0;

 retry:
	down_read(&current->mm->mmap_sem);

	ret = get_futex_key(uaddr1, &key1);
	if (unlikely(ret != 0))
		goto out;
	ret = get_futex_key(uaddr2, &key2);
	if (unlikely(ret != 0))
		goto out;

825 826
	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);
L
Linus Torvalds 已提交
827

I
Ingo Molnar 已提交
828
	double_lock_hb(hb1, hb2);
L
Linus Torvalds 已提交
829

830 831
	if (likely(cmpval != NULL)) {
		u32 curval;
L
Linus Torvalds 已提交
832

833
		ret = get_futex_value_locked(&curval, uaddr1);
L
Linus Torvalds 已提交
834 835

		if (unlikely(ret)) {
836 837 838
			spin_unlock(&hb1->lock);
			if (hb1 != hb2)
				spin_unlock(&hb2->lock);
L
Linus Torvalds 已提交
839

840 841
			/*
			 * If we would have faulted, release mmap_sem, fault
L
Linus Torvalds 已提交
842 843 844 845
			 * it in and start all over again.
			 */
			up_read(&current->mm->mmap_sem);

846
			ret = get_user(curval, uaddr1);
L
Linus Torvalds 已提交
847 848 849 850 851 852

			if (!ret)
				goto retry;

			return ret;
		}
853
		if (curval != *cmpval) {
L
Linus Torvalds 已提交
854 855 856 857 858
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

859
	head1 = &hb1->chain;
L
Linus Torvalds 已提交
860 861 862 863 864 865
	list_for_each_entry_safe(this, next, head1, list) {
		if (!match_futex (&this->key, &key1))
			continue;
		if (++ret <= nr_wake) {
			wake_futex(this);
		} else {
866 867 868 869 870 871 872 873
			/*
			 * If key1 and key2 hash to the same bucket, no need to
			 * requeue.
			 */
			if (likely(head1 != &hb2->chain)) {
				list_move_tail(&this->list, &hb2->chain);
				this->lock_ptr = &hb2->lock;
			}
L
Linus Torvalds 已提交
874 875 876 877 878 879 880 881 882 883
			this->key = key2;
			get_key_refs(&key2);
			drop_count++;

			if (ret - nr_wake >= nr_requeue)
				break;
		}
	}

out_unlock:
884 885 886
	spin_unlock(&hb1->lock);
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
L
Linus Torvalds 已提交
887 888 889 890 891 892 893 894 895 896 897 898 899 900

	/* drop_key_refs() must be called outside the spinlocks. */
	while (--drop_count >= 0)
		drop_key_refs(&key1);

out:
	up_read(&current->mm->mmap_sem);
	return ret;
}

/* The key must be already stored in q->key. */
static inline struct futex_hash_bucket *
queue_lock(struct futex_q *q, int fd, struct file *filp)
{
901
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
902 903 904 905 906 907 908

	q->fd = fd;
	q->filp = filp;

	init_waitqueue_head(&q->waiters);

	get_key_refs(&q->key);
909 910
	hb = hash_futex(&q->key);
	q->lock_ptr = &hb->lock;
L
Linus Torvalds 已提交
911

912 913
	spin_lock(&hb->lock);
	return hb;
L
Linus Torvalds 已提交
914 915
}

916
static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
L
Linus Torvalds 已提交
917
{
918
	list_add_tail(&q->list, &hb->chain);
919
	q->task = current;
920
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
921 922 923
}

static inline void
924
queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
L
Linus Torvalds 已提交
925
{
926
	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
927 928 929 930 931 932 933 934 935 936 937
	drop_key_refs(&q->key);
}

/*
 * queue_me and unqueue_me must be called as a pair, each
 * exactly once.  They are called with the hashed spinlock held.
 */

/* The key must be already stored in q->key. */
static void queue_me(struct futex_q *q, int fd, struct file *filp)
{
938 939 940 941
	struct futex_hash_bucket *hb;

	hb = queue_lock(q, fd, filp);
	__queue_me(q, hb);
L
Linus Torvalds 已提交
942 943 944 945 946 947
}

/* Return 1 if we were still queued (ie. 0 means we were woken) */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
948
	int ret = 0;
L
Linus Torvalds 已提交
949 950 951 952

	/* In the common case we don't take the spinlock, which is nice. */
 retry:
	lock_ptr = q->lock_ptr;
953
	barrier();
L
Linus Torvalds 已提交
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
	if (lock_ptr != 0) {
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
		WARN_ON(list_empty(&q->list));
		list_del(&q->list);
975 976 977

		BUG_ON(q->pi_state);

L
Linus Torvalds 已提交
978 979 980 981 982 983 984 985
		spin_unlock(lock_ptr);
		ret = 1;
	}

	drop_key_refs(&q->key);
	return ret;
}

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
/*
 * PI futexes can not be requeued and must remove themself from the
 * hash bucket. The hash bucket lock is held on entry and dropped here.
 */
static void unqueue_me_pi(struct futex_q *q, struct futex_hash_bucket *hb)
{
	WARN_ON(list_empty(&q->list));
	list_del(&q->list);

	BUG_ON(!q->pi_state);
	free_pi_state(q->pi_state);
	q->pi_state = NULL;

	spin_unlock(&hb->lock);

	drop_key_refs(&q->key);
}

1004
static int futex_wait(u32 __user *uaddr, u32 val, unsigned long time)
L
Linus Torvalds 已提交
1005
{
1006 1007
	struct task_struct *curr = current;
	DECLARE_WAITQUEUE(wait, curr);
1008
	struct futex_hash_bucket *hb;
L
Linus Torvalds 已提交
1009
	struct futex_q q;
1010 1011
	u32 uval;
	int ret;
L
Linus Torvalds 已提交
1012

1013
	q.pi_state = NULL;
L
Linus Torvalds 已提交
1014
 retry:
1015
	down_read(&curr->mm->mmap_sem);
L
Linus Torvalds 已提交
1016 1017 1018 1019 1020

	ret = get_futex_key(uaddr, &q.key);
	if (unlikely(ret != 0))
		goto out_release_sem;

1021
	hb = queue_lock(&q, -1, NULL);
L
Linus Torvalds 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

	/*
	 * Access the page AFTER the futex is queued.
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
	 * any cond.  If we queued after testing *uaddr, that would open
	 * a race condition where we could block indefinitely with
	 * cond(var) false, which would violate the guarantee.
	 *
	 * A consequence is that futex_wait() can return zero and absorb
	 * a wakeup when *uaddr != val on entry to the syscall.  This is
	 * rare, but normal.
	 *
	 * We hold the mmap semaphore, so the mapping cannot have changed
	 * since we looked it up in get_futex_key.
	 */
1043
	ret = get_futex_value_locked(&uval, uaddr);
L
Linus Torvalds 已提交
1044 1045

	if (unlikely(ret)) {
1046
		queue_unlock(&q, hb);
L
Linus Torvalds 已提交
1047

1048 1049
		/*
		 * If we would have faulted, release mmap_sem, fault it in and
L
Linus Torvalds 已提交
1050 1051
		 * start all over again.
		 */
1052
		up_read(&curr->mm->mmap_sem);
L
Linus Torvalds 已提交
1053

1054
		ret = get_user(uval, uaddr);
L
Linus Torvalds 已提交
1055 1056 1057 1058 1059

		if (!ret)
			goto retry;
		return ret;
	}
1060 1061 1062
	ret = -EWOULDBLOCK;
	if (uval != val)
		goto out_unlock_release_sem;
L
Linus Torvalds 已提交
1063 1064

	/* Only actually queue if *uaddr contained val.  */
1065
	__queue_me(&q, hb);
L
Linus Torvalds 已提交
1066 1067 1068 1069

	/*
	 * Now the futex is queued and we have checked the data, we
	 * don't want to hold mmap_sem while we sleep.
1070 1071
	 */
	up_read(&curr->mm->mmap_sem);
L
Linus Torvalds 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

	/*
	 * There might have been scheduling since the queue_me(), as we
	 * cannot hold a spinlock across the get_user() in case it
	 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
	 * queueing ourselves into the futex hash.  This code thus has to
	 * rely on the futex_wake() code removing us from hash when it
	 * wakes us up.
	 */

	/* add_wait_queue is the barrier after __set_current_state. */
	__set_current_state(TASK_INTERRUPTIBLE);
	add_wait_queue(&q.waiters, &wait);
	/*
	 * !list_empty() is safe here without any lock.
	 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
	 */
	if (likely(!list_empty(&q.list)))
		time = schedule_timeout(time);
	__set_current_state(TASK_RUNNING);

	/*
	 * NOTE: we don't remove ourselves from the waitqueue because
	 * we are the only user of it.
	 */

	/* If we were woken (and unqueued), we succeeded, whatever. */
	if (!unqueue_me(&q))
		return 0;
	if (time == 0)
		return -ETIMEDOUT;
1103 1104 1105 1106
	/*
	 * We expect signal_pending(current), but another thread may
	 * have handled it for us already.
	 */
L
Linus Torvalds 已提交
1107 1108
	return -EINTR;

1109 1110 1111
 out_unlock_release_sem:
	queue_unlock(&q, hb);

L
Linus Torvalds 已提交
1112
 out_release_sem:
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	up_read(&curr->mm->mmap_sem);
	return ret;
}

/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
 * if there are waiters then it will block, it does PI, etc. (Due to
 * races the kernel might see a 0 value of the futex too.)
 */
1123 1124
static int futex_lock_pi(u32 __user *uaddr, int detect, unsigned long sec,
			 long nsec, int trylock)
1125
{
1126
	struct hrtimer_sleeper timeout, *to = NULL;
1127 1128 1129 1130 1131 1132 1133 1134 1135
	struct task_struct *curr = current;
	struct futex_hash_bucket *hb;
	u32 uval, newval, curval;
	struct futex_q q;
	int ret, attempt = 0;

	if (refill_pi_state_cache())
		return -ENOMEM;

1136 1137 1138 1139 1140 1141 1142
	if (sec != MAX_SCHEDULE_TIMEOUT) {
		to = &timeout;
		hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_ABS);
		hrtimer_init_sleeper(to, current);
		to->timer.expires = ktime_set(sec, nsec);
	}

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	q.pi_state = NULL;
 retry:
	down_read(&curr->mm->mmap_sem);

	ret = get_futex_key(uaddr, &q.key);
	if (unlikely(ret != 0))
		goto out_release_sem;

	hb = queue_lock(&q, -1, NULL);

 retry_locked:
	/*
	 * To avoid races, we attempt to take the lock here again
	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
	 * the locks. It will most likely not succeed.
	 */
	newval = current->pid;

	inc_preempt_count();
	curval = futex_atomic_cmpxchg_inatomic(uaddr, 0, newval);
	dec_preempt_count();

	if (unlikely(curval == -EFAULT))
		goto uaddr_faulted;

	/* We own the lock already */
	if (unlikely((curval & FUTEX_TID_MASK) == current->pid)) {
		if (!detect && 0)
			force_sig(SIGKILL, current);
		ret = -EDEADLK;
		goto out_unlock_release_sem;
	}

	/*
	 * Surprise - we got the lock. Just return
	 * to userspace:
	 */
	if (unlikely(!curval))
		goto out_unlock_release_sem;

	uval = curval;
	newval = uval | FUTEX_WAITERS;

	inc_preempt_count();
	curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
	dec_preempt_count();

	if (unlikely(curval == -EFAULT))
		goto uaddr_faulted;
	if (unlikely(curval != uval))
		goto retry_locked;

	/*
	 * We dont have the lock. Look up the PI state (or create it if
	 * we are the first waiter):
	 */
	ret = lookup_pi_state(uval, hb, &q);

	if (unlikely(ret)) {
		/*
		 * There were no waiters and the owner task lookup
		 * failed. When the OWNER_DIED bit is set, then we
		 * know that this is a robust futex and we actually
		 * take the lock. This is safe as we are protected by
		 * the hash bucket lock. We also set the waiters bit
		 * unconditionally here, to simplify glibc handling of
		 * multiple tasks racing to acquire the lock and
		 * cleanup the problems which were left by the dead
		 * owner.
		 */
		if (curval & FUTEX_OWNER_DIED) {
			uval = newval;
			newval = current->pid |
				FUTEX_OWNER_DIED | FUTEX_WAITERS;

			inc_preempt_count();
			curval = futex_atomic_cmpxchg_inatomic(uaddr,
							       uval, newval);
			dec_preempt_count();

			if (unlikely(curval == -EFAULT))
				goto uaddr_faulted;
			if (unlikely(curval != uval))
				goto retry_locked;
			ret = 0;
		}
		goto out_unlock_release_sem;
	}

	/*
	 * Only actually queue now that the atomic ops are done:
	 */
	__queue_me(&q, hb);

	/*
	 * Now the futex is queued and we have checked the data, we
	 * don't want to hold mmap_sem while we sleep.
	 */
	up_read(&curr->mm->mmap_sem);

	WARN_ON(!q.pi_state);
	/*
	 * Block on the PI mutex:
	 */
	if (!trylock)
		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
	else {
		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
	}

	down_read(&curr->mm->mmap_sem);
1256
	spin_lock(q.lock_ptr);
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267

	/*
	 * Got the lock. We might not be the anticipated owner if we
	 * did a lock-steal - fix up the PI-state in that case.
	 */
	if (!ret && q.pi_state->owner != curr) {
		u32 newtid = current->pid | FUTEX_WAITERS;

		/* Owner died? */
		if (q.pi_state->owner != NULL) {
			spin_lock_irq(&q.pi_state->owner->pi_lock);
1268
			WARN_ON(list_empty(&q.pi_state->list));
1269 1270 1271 1272 1273 1274 1275 1276
			list_del_init(&q.pi_state->list);
			spin_unlock_irq(&q.pi_state->owner->pi_lock);
		} else
			newtid |= FUTEX_OWNER_DIED;

		q.pi_state->owner = current;

		spin_lock_irq(&current->pi_lock);
1277
		WARN_ON(!list_empty(&q.pi_state->list));
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
		list_add(&q.pi_state->list, &current->pi_state_list);
		spin_unlock_irq(&current->pi_lock);

		/* Unqueue and drop the lock */
		unqueue_me_pi(&q, hb);
		up_read(&curr->mm->mmap_sem);
		/*
		 * We own it, so we have to replace the pending owner
		 * TID. This must be atomic as we have preserve the
		 * owner died bit here.
		 */
		ret = get_user(uval, uaddr);
		while (!ret) {
			newval = (uval & FUTEX_OWNER_DIED) | newtid;
			curval = futex_atomic_cmpxchg_inatomic(uaddr,
							       uval, newval);
			if (curval == -EFAULT)
				ret = -EFAULT;
			if (curval == uval)
				break;
			uval = curval;
		}
	} else {
		/*
		 * Catch the rare case, where the lock was released
		 * when we were on the way back before we locked
		 * the hash bucket.
		 */
		if (ret && q.pi_state->owner == curr) {
			if (rt_mutex_trylock(&q.pi_state->pi_mutex))
				ret = 0;
		}
		/* Unqueue and drop the lock */
		unqueue_me_pi(&q, hb);
		up_read(&curr->mm->mmap_sem);
	}

	if (!detect && ret == -EDEADLK && 0)
		force_sig(SIGKILL, current);

1318
	return ret != -EINTR ? ret : -ERESTARTNOINTR;
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334

 out_unlock_release_sem:
	queue_unlock(&q, hb);

 out_release_sem:
	up_read(&curr->mm->mmap_sem);
	return ret;

 uaddr_faulted:
	/*
	 * We have to r/w  *(int __user *)uaddr, but we can't modify it
	 * non-atomically.  Therefore, if get_user below is not
	 * enough, we need to handle the fault ourselves, while
	 * still holding the mmap_sem.
	 */
	if (attempt++) {
1335 1336
		if (futex_handle_fault((unsigned long)uaddr, attempt)) {
			ret = -EFAULT;
1337
			goto out_unlock_release_sem;
1338
		}
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
		goto retry_locked;
	}

	queue_unlock(&q, hb);
	up_read(&curr->mm->mmap_sem);

	ret = get_user(uval, uaddr);
	if (!ret && (uval != -EFAULT))
		goto retry;

	return ret;
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
static int futex_unlock_pi(u32 __user *uaddr)
{
	struct futex_hash_bucket *hb;
	struct futex_q *this, *next;
	u32 uval;
	struct list_head *head;
	union futex_key key;
	int ret, attempt = 0;

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
	if ((uval & FUTEX_TID_MASK) != current->pid)
		return -EPERM;
	/*
	 * First take all the futex related locks:
	 */
	down_read(&current->mm->mmap_sem);

	ret = get_futex_key(uaddr, &key);
	if (unlikely(ret != 0))
		goto out;

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

retry_locked:
	/*
	 * To avoid races, try to do the TID -> 0 atomic transition
	 * again. If it succeeds then we can return without waking
	 * anyone else up:
	 */
1392 1393 1394 1395 1396
	if (!(uval & FUTEX_OWNER_DIED)) {
		inc_preempt_count();
		uval = futex_atomic_cmpxchg_inatomic(uaddr, current->pid, 0);
		dec_preempt_count();
	}
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428

	if (unlikely(uval == -EFAULT))
		goto pi_faulted;
	/*
	 * Rare case: we managed to release the lock atomically,
	 * no need to wake anyone else up:
	 */
	if (unlikely(uval == current->pid))
		goto out_unlock;

	/*
	 * Ok, other tasks may need to be woken up - check waiters
	 * and do the wakeup if necessary:
	 */
	head = &hb->chain;

	list_for_each_entry_safe(this, next, head, list) {
		if (!match_futex (&this->key, &key))
			continue;
		ret = wake_futex_pi(uaddr, uval, this);
		/*
		 * The atomic access to the futex value
		 * generated a pagefault, so retry the
		 * user-access and the wakeup:
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
		goto out_unlock;
	}
	/*
	 * No waiters - kernel unlocks the futex:
	 */
1429 1430 1431 1432 1433
	if (!(uval & FUTEX_OWNER_DIED)) {
		ret = unlock_futex_pi(uaddr, uval);
		if (ret == -EFAULT)
			goto pi_faulted;
	}
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449

out_unlock:
	spin_unlock(&hb->lock);
out:
	up_read(&current->mm->mmap_sem);

	return ret;

pi_faulted:
	/*
	 * We have to r/w  *(int __user *)uaddr, but we can't modify it
	 * non-atomically.  Therefore, if get_user below is not
	 * enough, we need to handle the fault ourselves, while
	 * still holding the mmap_sem.
	 */
	if (attempt++) {
1450 1451
		if (futex_handle_fault((unsigned long)uaddr, attempt)) {
			ret = -EFAULT;
1452
			goto out_unlock;
1453
		}
1454 1455 1456 1457
		goto retry_locked;
	}

	spin_unlock(&hb->lock);
L
Linus Torvalds 已提交
1458
	up_read(&current->mm->mmap_sem);
1459 1460 1461 1462 1463

	ret = get_user(uval, uaddr);
	if (!ret && (uval != -EFAULT))
		goto retry;

L
Linus Torvalds 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472
	return ret;
}

static int futex_close(struct inode *inode, struct file *filp)
{
	struct futex_q *q = filp->private_data;

	unqueue_me(q);
	kfree(q);
1473

L
Linus Torvalds 已提交
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
	return 0;
}

/* This is one-shot: once it's gone off you need a new fd */
static unsigned int futex_poll(struct file *filp,
			       struct poll_table_struct *wait)
{
	struct futex_q *q = filp->private_data;
	int ret = 0;

	poll_wait(filp, &q->waiters, wait);

	/*
	 * list_empty() is safe here without any lock.
	 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
	 */
	if (list_empty(&q->list))
		ret = POLLIN | POLLRDNORM;

	return ret;
}

static struct file_operations futex_fops = {
	.release	= futex_close,
	.poll		= futex_poll,
};

/*
 * Signal allows caller to avoid the race which would occur if they
 * set the sigio stuff up afterwards.
 */
1505
static int futex_fd(u32 __user *uaddr, int signal)
L
Linus Torvalds 已提交
1506 1507 1508 1509 1510 1511
{
	struct futex_q *q;
	struct file *filp;
	int ret, err;

	ret = -EINVAL;
1512
	if (!valid_signal(signal))
L
Linus Torvalds 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
		goto out;

	ret = get_unused_fd();
	if (ret < 0)
		goto out;
	filp = get_empty_filp();
	if (!filp) {
		put_unused_fd(ret);
		ret = -ENFILE;
		goto out;
	}
	filp->f_op = &futex_fops;
	filp->f_vfsmnt = mntget(futex_mnt);
	filp->f_dentry = dget(futex_mnt->mnt_root);
	filp->f_mapping = filp->f_dentry->d_inode->i_mapping;

	if (signal) {
		err = f_setown(filp, current->pid, 1);
		if (err < 0) {
1532
			goto error;
L
Linus Torvalds 已提交
1533 1534 1535 1536 1537 1538
		}
		filp->f_owner.signum = signal;
	}

	q = kmalloc(sizeof(*q), GFP_KERNEL);
	if (!q) {
1539 1540
		err = -ENOMEM;
		goto error;
L
Linus Torvalds 已提交
1541
	}
1542
	q->pi_state = NULL;
L
Linus Torvalds 已提交
1543 1544 1545 1546 1547 1548 1549

	down_read(&current->mm->mmap_sem);
	err = get_futex_key(uaddr, &q->key);

	if (unlikely(err != 0)) {
		up_read(&current->mm->mmap_sem);
		kfree(q);
1550
		goto error;
L
Linus Torvalds 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
	}

	/*
	 * queue_me() must be called before releasing mmap_sem, because
	 * key->shared.inode needs to be referenced while holding it.
	 */
	filp->private_data = q;

	queue_me(q, ret, filp);
	up_read(&current->mm->mmap_sem);

	/* Now we map fd to filp, so userspace can access it */
	fd_install(ret, filp);
out:
	return ret;
1566 1567 1568 1569 1570
error:
	put_unused_fd(ret);
	put_filp(filp);
	ret = err;
	goto out;
L
Linus Torvalds 已提交
1571 1572
}

1573 1574 1575 1576 1577 1578 1579
/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
1580
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
 * sys_set_robust_list - set the robust-futex list head of a task
 * @head: pointer to the list-head
 * @len: length of the list-head, as userspace expects
 */
asmlinkage long
sys_set_robust_list(struct robust_list_head __user *head,
		    size_t len)
{
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
 * sys_get_robust_list - get the robust-futex list head of a task
 * @pid: pid of the process [zero for current task]
 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
 * @len_ptr: pointer to a length field, the kernel fills in the header size
 */
asmlinkage long
sys_get_robust_list(int pid, struct robust_list_head __user **head_ptr,
		    size_t __user *len_ptr)
{
	struct robust_list_head *head;
	unsigned long ret;

	if (!pid)
		head = current->robust_list;
	else {
		struct task_struct *p;

		ret = -ESRCH;
1627
		rcu_read_lock();
1628 1629 1630 1631 1632 1633 1634 1635
		p = find_task_by_pid(pid);
		if (!p)
			goto err_unlock;
		ret = -EPERM;
		if ((current->euid != p->euid) && (current->euid != p->uid) &&
				!capable(CAP_SYS_PTRACE))
			goto err_unlock;
		head = p->robust_list;
1636
		rcu_read_unlock();
1637 1638 1639 1640 1641 1642 1643
	}

	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
1644
	rcu_read_unlock();
1645 1646 1647 1648 1649 1650 1651 1652

	return ret;
}

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
1653
int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1654
{
1655
	u32 uval, nval, mval;
1656

1657 1658
retry:
	if (get_user(uval, uaddr))
1659 1660
		return -1;

1661
	if ((uval & FUTEX_TID_MASK) == curr->pid) {
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
		/*
		 * Ok, this dying thread is truly holding a futex
		 * of interest. Set the OWNER_DIED bit atomically
		 * via cmpxchg, and if the value had FUTEX_WAITERS
		 * set, wake up a waiter (if any). (We have to do a
		 * futex_wake() even if OWNER_DIED is already set -
		 * to handle the rare but possible case of recursive
		 * thread-death.) The rest of the cleanup is done in
		 * userspace.
		 */
1672 1673 1674
		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
		nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);

1675 1676 1677 1678
		if (nval == -EFAULT)
			return -1;

		if (nval != uval)
1679
			goto retry;
1680

1681 1682 1683 1684 1685 1686 1687 1688
		/*
		 * Wake robust non-PI futexes here. The wakeup of
		 * PI futexes happens in exit_pi_state():
		 */
		if (!pi) {
			if (uval & FUTEX_WAITERS)
				futex_wake(uaddr, 1);
		}
1689 1690 1691 1692
	}
	return 0;
}

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
				     struct robust_list __user **head, int *pi)
{
	unsigned long uentry;

	if (get_user(uentry, (unsigned long *)head))
		return -EFAULT;

	*entry = (void *)(uentry & ~1UL);
	*pi = uentry & 1;

	return 0;
}

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
	struct robust_list __user *entry, *pending;
1720
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
1721 1722 1723 1724 1725 1726
	unsigned long futex_offset;

	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
1727
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
1738
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1739
		return;
1740

1741
	if (pending)
1742
		handle_futex_death((void *)pending + futex_offset, curr, pip);
1743 1744 1745 1746

	while (entry != &head->list) {
		/*
		 * A pending lock might already be on the list, so
1747
		 * don't process it twice:
1748 1749 1750
		 */
		if (entry != pending)
			if (handle_futex_death((void *)entry + futex_offset,
1751
						curr, pi))
1752 1753 1754 1755
				return;
		/*
		 * Fetch the next entry in the list:
		 */
1756
		if (fetch_robust_entry(&entry, &entry->next, &pi))
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
			return;
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
}

1768 1769
long do_futex(u32 __user *uaddr, int op, u32 val, unsigned long timeout,
		u32 __user *uaddr2, u32 val2, u32 val3)
L
Linus Torvalds 已提交
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
{
	int ret;

	switch (op) {
	case FUTEX_WAIT:
		ret = futex_wait(uaddr, val, timeout);
		break;
	case FUTEX_WAKE:
		ret = futex_wake(uaddr, val);
		break;
	case FUTEX_FD:
		/* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
		ret = futex_fd(uaddr, val);
		break;
	case FUTEX_REQUEUE:
		ret = futex_requeue(uaddr, uaddr2, val, val2, NULL);
		break;
	case FUTEX_CMP_REQUEUE:
		ret = futex_requeue(uaddr, uaddr2, val, val2, &val3);
		break;
1790 1791 1792
	case FUTEX_WAKE_OP:
		ret = futex_wake_op(uaddr, uaddr2, val, val2, val3);
		break;
1793 1794 1795 1796 1797 1798 1799 1800 1801
	case FUTEX_LOCK_PI:
		ret = futex_lock_pi(uaddr, val, timeout, val2, 0);
		break;
	case FUTEX_UNLOCK_PI:
		ret = futex_unlock_pi(uaddr);
		break;
	case FUTEX_TRYLOCK_PI:
		ret = futex_lock_pi(uaddr, 0, timeout, val2, 1);
		break;
L
Linus Torvalds 已提交
1802 1803 1804 1805 1806 1807 1808
	default:
		ret = -ENOSYS;
	}
	return ret;
}


1809
asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
L
Linus Torvalds 已提交
1810
			  struct timespec __user *utime, u32 __user *uaddr2,
1811
			  u32 val3)
L
Linus Torvalds 已提交
1812 1813 1814
{
	struct timespec t;
	unsigned long timeout = MAX_SCHEDULE_TIMEOUT;
1815
	u32 val2 = 0;
L
Linus Torvalds 已提交
1816

1817
	if (utime && (op == FUTEX_WAIT || op == FUTEX_LOCK_PI)) {
L
Linus Torvalds 已提交
1818 1819
		if (copy_from_user(&t, utime, sizeof(t)) != 0)
			return -EFAULT;
1820 1821
		if (!timespec_valid(&t))
			return -EINVAL;
1822 1823 1824 1825 1826 1827
		if (op == FUTEX_WAIT)
			timeout = timespec_to_jiffies(&t) + 1;
		else {
			timeout = t.tv_sec;
			val2 = t.tv_nsec;
		}
L
Linus Torvalds 已提交
1828 1829 1830 1831
	}
	/*
	 * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
	 */
1832
	if (op == FUTEX_REQUEUE || op == FUTEX_CMP_REQUEUE)
1833
		val2 = (u32) (unsigned long) utime;
L
Linus Torvalds 已提交
1834

1835
	return do_futex(uaddr, op, val, timeout, uaddr2, val2, val3);
L
Linus Torvalds 已提交
1836 1837
}

1838 1839 1840
static int futexfs_get_sb(struct file_system_type *fs_type,
			  int flags, const char *dev_name, void *data,
			  struct vfsmount *mnt)
L
Linus Torvalds 已提交
1841
{
1842
	return get_sb_pseudo(fs_type, "futex", NULL, 0xBAD1DEA, mnt);
L
Linus Torvalds 已提交
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
}

static struct file_system_type futex_fs_type = {
	.name		= "futexfs",
	.get_sb		= futexfs_get_sb,
	.kill_sb	= kill_anon_super,
};

static int __init init(void)
{
	unsigned int i;

	register_filesystem(&futex_fs_type);
	futex_mnt = kern_mount(&futex_fs_type);

	for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
		INIT_LIST_HEAD(&futex_queues[i].chain);
		spin_lock_init(&futex_queues[i].lock);
	}
	return 0;
}
__initcall(init);