s5h1420.c 20.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
/*
Driver for Samsung S5H1420 QPSK Demodulator

Copyright (C) 2005 Andrew de Quincey <adq_dvb@lidskialf.net>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

*/

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/delay.h>

#include "dvb_frontend.h"
#include "s5h1420.h"



#define TONE_FREQ 22000

struct s5h1420_state {
	struct i2c_adapter* i2c;
	struct dvb_frontend_ops ops;
	const struct s5h1420_config* config;
	struct dvb_frontend frontend;

	u8 postlocked:1;
	u32 fclk;
	u32 tunedfreq;
	fe_code_rate_t fec_inner;
	u32 symbol_rate;
};

static u32 s5h1420_getsymbolrate(struct s5h1420_state* state);
51 52
static int s5h1420_get_tune_settings(struct dvb_frontend* fe,
				     struct dvb_frontend_tune_settings* fesettings);
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94


static int debug = 0;
#define dprintk if (debug) printk

static int s5h1420_writereg (struct s5h1420_state* state, u8 reg, u8 data)
{
	u8 buf [] = { reg, data };
	struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
	int err;

	if ((err = i2c_transfer (state->i2c, &msg, 1)) != 1) {
		dprintk ("%s: writereg error (err == %i, reg == 0x%02x, data == 0x%02x)\n", __FUNCTION__, err, reg, data);
		return -EREMOTEIO;
	}

	return 0;
}

static u8 s5h1420_readreg (struct s5h1420_state* state, u8 reg)
{
	int ret;
	u8 b0 [] = { reg };
	u8 b1 [] = { 0 };
	struct i2c_msg msg1 = { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 };
	struct i2c_msg msg2 = { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 };

	if ((ret = i2c_transfer (state->i2c, &msg1, 1)) != 1)
		return ret;

	if ((ret = i2c_transfer (state->i2c, &msg2, 1)) != 1)
		return ret;

	return b1[0];
}

static int s5h1420_set_voltage (struct dvb_frontend* fe, fe_sec_voltage_t voltage)
{
	struct s5h1420_state* state = fe->demodulator_priv;

	switch(voltage) {
	case SEC_VOLTAGE_13:
95 96
		s5h1420_writereg(state, 0x3c,
				 (s5h1420_readreg(state, 0x3c) & 0xfe) | 0x02);
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
		break;

	case SEC_VOLTAGE_18:
		s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) | 0x03);
		break;

	case SEC_VOLTAGE_OFF:
		s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) & 0xfd);
		break;
	}

	return 0;
}

static int s5h1420_set_tone (struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
{
	struct s5h1420_state* state = fe->demodulator_priv;

	switch(tone) {
	case SEC_TONE_ON:
117 118
		s5h1420_writereg(state, 0x3b,
				 (s5h1420_readreg(state, 0x3b) & 0x74) | 0x08);
119 120 121
		break;

	case SEC_TONE_OFF:
122 123
		s5h1420_writereg(state, 0x3b,
				 (s5h1420_readreg(state, 0x3b) & 0x74) | 0x01);
124 125 126 127 128 129
		break;
	}

	return 0;
}

130 131
static int s5h1420_send_master_cmd (struct dvb_frontend* fe,
				    struct dvb_diseqc_master_cmd* cmd)
132 133 134 135 136 137 138
{
	struct s5h1420_state* state = fe->demodulator_priv;
	u8 val;
	int i;
	unsigned long timeout;
	int result = 0;

139 140 141
	if (cmd->msg_len > 8)
		return -EINVAL;

142 143 144 145 146 147 148
	/* setup for DISEQC */
	val = s5h1420_readreg(state, 0x3b);
	s5h1420_writereg(state, 0x3b, 0x02);
	msleep(15);

	/* write the DISEQC command bytes */
	for(i=0; i< cmd->msg_len; i++) {
149
		s5h1420_writereg(state, 0x3d + i, cmd->msg[i]);
150 151 152
	}

	/* kick off transmission */
153 154
	s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) |
				      ((cmd->msg_len-1) << 4) | 0x08);
155 156 157 158

	/* wait for transmission to complete */
	timeout = jiffies + ((100*HZ) / 1000);
	while(time_before(jiffies, timeout)) {
159
		if (!(s5h1420_readreg(state, 0x3b) & 0x08))
160 161 162 163 164 165 166 167 168 169 170 171 172
			break;

		msleep(5);
	}
	if (time_after(jiffies, timeout))
		result = -ETIMEDOUT;

	/* restore original settings */
	s5h1420_writereg(state, 0x3b, val);
	msleep(15);
	return result;
}

173 174
static int s5h1420_recv_slave_reply (struct dvb_frontend* fe,
				     struct dvb_diseqc_slave_reply* reply)
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
{
	struct s5h1420_state* state = fe->demodulator_priv;
	u8 val;
	int i;
	int length;
	unsigned long timeout;
	int result = 0;

	/* setup for DISEQC recieve */
	val = s5h1420_readreg(state, 0x3b);
	s5h1420_writereg(state, 0x3b, 0x82); /* FIXME: guess - do we need to set DIS_RDY(0x08) in receive mode? */
	msleep(15);

	/* wait for reception to complete */
	timeout = jiffies + ((reply->timeout*HZ) / 1000);
	while(time_before(jiffies, timeout)) {
		if (!(s5h1420_readreg(state, 0x3b) & 0x80)) /* FIXME: do we test DIS_RDY(0x08) or RCV_EN(0x80)? */
			break;

		msleep(5);
	}
	if (time_after(jiffies, timeout)) {
		result = -ETIMEDOUT;
		goto exit;
	}

	/* check error flag - FIXME: not sure what this does - docs do not describe
	 * beyond "error flag for diseqc receive data :( */
	if (s5h1420_readreg(state, 0x49)) {
		result = -EIO;
		goto exit;
	}

	/* check length */
	length = (s5h1420_readreg(state, 0x3b) & 0x70) >> 4;
	if (length > sizeof(reply->msg)) {
		result = -EOVERFLOW;
		goto exit;
	}
	reply->msg_len = length;

	/* extract data */
	for(i=0; i< length; i++) {
218
		reply->msg[i] = s5h1420_readreg(state, 0x3d + i);
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
	}

exit:
	/* restore original settings */
	s5h1420_writereg(state, 0x3b, val);
	msleep(15);
	return result;
}

static int s5h1420_send_burst (struct dvb_frontend* fe, fe_sec_mini_cmd_t minicmd)
{
	struct s5h1420_state* state = fe->demodulator_priv;
	u8 val;
	int result = 0;
	unsigned long timeout;

	/* setup for tone burst */
	val = s5h1420_readreg(state, 0x3b);
	s5h1420_writereg(state, 0x3b, (s5h1420_readreg(state, 0x3b) & 0x70) | 0x01);

	/* set value for B position if requested */
	if (minicmd == SEC_MINI_B) {
		s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x04);
	}
	msleep(15);

	/* start transmission */
	s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x08);

	/* wait for transmission to complete */
249
	timeout = jiffies + ((100*HZ) / 1000);
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
	while(time_before(jiffies, timeout)) {
		if (!(s5h1420_readreg(state, 0x3b) & 0x08))
			break;

		msleep(5);
	}
	if (time_after(jiffies, timeout))
		result = -ETIMEDOUT;

	/* restore original settings */
	s5h1420_writereg(state, 0x3b, val);
	msleep(15);
	return result;
}

static fe_status_t s5h1420_get_status_bits(struct s5h1420_state* state)
{
	u8 val;
	fe_status_t status = 0;

	val = s5h1420_readreg(state, 0x14);
	if (val & 0x02)
272
		status |=  FE_HAS_SIGNAL;
273
	if (val & 0x01)
274
		status |=  FE_HAS_CARRIER;
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
	val = s5h1420_readreg(state, 0x36);
	if (val & 0x01)
		status |=  FE_HAS_VITERBI;
	if (val & 0x20)
		status |=  FE_HAS_SYNC;
	if (status == (FE_HAS_SIGNAL|FE_HAS_CARRIER|FE_HAS_VITERBI|FE_HAS_SYNC))
		status |=  FE_HAS_LOCK;

	return status;
}

static int s5h1420_read_status(struct dvb_frontend* fe, fe_status_t* status)
{
	struct s5h1420_state* state = fe->demodulator_priv;
	u8 val;

	if (status == NULL)
		return -EINVAL;

	/* determine lock state */
	*status = s5h1420_get_status_bits(state);

297 298
	/* fix for FEC 5/6 inversion issue - if it doesn't quite lock, invert
	the inversion, wait a bit and check again */
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
	if (*status == (FE_HAS_SIGNAL|FE_HAS_CARRIER|FE_HAS_VITERBI)) {
		val = s5h1420_readreg(state, 0x32);
		if ((val & 0x07) == 0x03) {
			if (val & 0x08)
				s5h1420_writereg(state, 0x31, 0x13);
			else
				s5h1420_writereg(state, 0x31, 0x1b);

			/* wait a bit then update lock status */
			mdelay(200);
			*status = s5h1420_get_status_bits(state);
		}
	}

	/* perform post lock setup */
	if ((*status & FE_HAS_LOCK) && (!state->postlocked)) {

		/* calculate the data rate */
		u32 tmp = s5h1420_getsymbolrate(state);
		switch(s5h1420_readreg(state, 0x32) & 0x07) {
		case 0:
			tmp = (tmp * 2 * 1) / 2;
			break;

		case 1:
			tmp = (tmp * 2 * 2) / 3;
			break;

		case 2:
			tmp = (tmp * 2 * 3) / 4;
			break;

		case 3:
			tmp = (tmp * 2 * 5) / 6;
			break;

		case 4:
			tmp = (tmp * 2 * 6) / 7;
			break;

		case 5:
			tmp = (tmp * 2 * 7) / 8;
			break;
		}
343 344 345 346
		if (tmp == 0) {
			printk("s5h1420: avoided division by 0\n");
			tmp = 1;
		}
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
		tmp = state->fclk / tmp;

		/* set the MPEG_CLK_INTL for the calculated data rate */
		if (tmp < 4)
			val = 0x00;
		else if (tmp < 8)
			val = 0x01;
		else if (tmp < 12)
			val = 0x02;
		else if (tmp < 16)
			val = 0x03;
		else if (tmp < 24)
			val = 0x04;
		else if (tmp < 32)
			val = 0x05;
		else
			val = 0x06;
		s5h1420_writereg(state, 0x22, val);

		/* DC freeze */
		s5h1420_writereg(state, 0x1f, s5h1420_readreg(state, 0x1f) | 0x01);

		/* kicker disable + remove DC offset */
		s5h1420_writereg(state, 0x05, s5h1420_readreg(state, 0x05) & 0x6f);

		/* post-lock processing has been done! */
		state->postlocked = 1;
	}

	return 0;
}

static int s5h1420_read_ber(struct dvb_frontend* fe, u32* ber)
{
	struct s5h1420_state* state = fe->demodulator_priv;

	s5h1420_writereg(state, 0x46, 0x1d);
	mdelay(25);
385 386 387 388

	*ber = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47);

	return 0;
389 390 391 392 393 394
}

static int s5h1420_read_signal_strength(struct dvb_frontend* fe, u16* strength)
{
	struct s5h1420_state* state = fe->demodulator_priv;

395
	u8 val = s5h1420_readreg(state, 0x15);
396

397 398 399
	*strength =  (u16) ((val << 8) | val);

	return 0;
400 401 402 403 404 405 406 407
}

static int s5h1420_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
{
	struct s5h1420_state* state = fe->demodulator_priv;

	s5h1420_writereg(state, 0x46, 0x1f);
	mdelay(25);
408 409 410 411

	*ucblocks = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47);

	return 0;
412 413 414 415 416 417 418 419 420
}

static void s5h1420_reset(struct s5h1420_state* state)
{
	s5h1420_writereg (state, 0x01, 0x08);
	s5h1420_writereg (state, 0x01, 0x00);
	udelay(10);
}

421 422
static void s5h1420_setsymbolrate(struct s5h1420_state* state,
				  struct dvb_frontend_parameters *p)
423 424 425
{
	u64 val;

426
	val = ((u64) p->u.qpsk.symbol_rate / 1000ULL) * (1ULL<<24);
427 428 429 430 431 432 433 434 435 436 437 438 439 440
	if (p->u.qpsk.symbol_rate <= 21000000) {
		val *= 2;
	}
	do_div(val, (state->fclk / 1000));

	s5h1420_writereg(state, 0x09, s5h1420_readreg(state, 0x09) & 0x7f);
	s5h1420_writereg(state, 0x11, val >> 16);
	s5h1420_writereg(state, 0x12, val >> 8);
	s5h1420_writereg(state, 0x13, val & 0xff);
	s5h1420_writereg(state, 0x09, s5h1420_readreg(state, 0x09) | 0x80);
}

static u32 s5h1420_getsymbolrate(struct s5h1420_state* state)
{
441
	u64 val = 0;
442 443 444 445 446 447 448 449 450 451 452
	int sampling = 2;

	if (s5h1420_readreg(state, 0x05) & 0x2)
		sampling = 1;

	s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) | 0x08);
	val  = s5h1420_readreg(state, 0x11) << 16;
	val |= s5h1420_readreg(state, 0x12) << 8;
	val |= s5h1420_readreg(state, 0x13);
	s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) & 0xf7);

453
	val *= (state->fclk / 1000ULL);
454 455
	do_div(val, ((1<<24) * sampling));

456
	return (u32) (val * 1000ULL);
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
}

static void s5h1420_setfreqoffset(struct s5h1420_state* state, int freqoffset)
{
	int val;

	/* remember freqoffset is in kHz, but the chip wants the offset in Hz, so
	 * divide fclk by 1000000 to get the correct value. */
	val = -(int) ((freqoffset * (1<<24)) / (state->fclk / 1000000));

	s5h1420_writereg(state, 0x09, s5h1420_readreg(state, 0x09) & 0xbf);
	s5h1420_writereg(state, 0x0e, val >> 16);
	s5h1420_writereg(state, 0x0f, val >> 8);
	s5h1420_writereg(state, 0x10, val & 0xff);
	s5h1420_writereg(state, 0x09, s5h1420_readreg(state, 0x09) | 0x40);
}

static int s5h1420_getfreqoffset(struct s5h1420_state* state)
{
	int val;

	s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) | 0x08);
	val  = s5h1420_readreg(state, 0x0e) << 16;
	val |= s5h1420_readreg(state, 0x0f) << 8;
	val |= s5h1420_readreg(state, 0x10);
	s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) & 0xf7);

	if (val & 0x800000)
		val |= 0xff000000;

	/* remember freqoffset is in kHz, but the chip wants the offset in Hz, so
	 * divide fclk by 1000000 to get the correct value. */
489
	val = (((-val) * (state->fclk/1000000)) / (1<<24));
490 491 492 493

	return val;
}

494 495
static void s5h1420_setfec_inversion(struct s5h1420_state* state,
			   	     struct dvb_frontend_parameters *p)
496
{
497 498 499 500 501 502 503 504
	u8 inversion = 0;

	if (p->inversion == INVERSION_OFF) {
		inversion = state->config->invert ? 0x08 : 0;
	} else if (p->inversion == INVERSION_ON) {
		inversion = state->config->invert ? 0 : 0x08;
	}

505 506
	if ((p->u.qpsk.fec_inner == FEC_AUTO) || (p->inversion == INVERSION_AUTO)) {
		s5h1420_writereg(state, 0x30, 0x3f);
507
		s5h1420_writereg(state, 0x31, 0x00 | inversion);
508 509 510 511
	} else {
		switch(p->u.qpsk.fec_inner) {
		case FEC_1_2:
			s5h1420_writereg(state, 0x30, 0x01);
512
			s5h1420_writereg(state, 0x31, 0x10 | inversion);
513 514 515 516
			break;

		case FEC_2_3:
			s5h1420_writereg(state, 0x30, 0x02);
517
			s5h1420_writereg(state, 0x31, 0x11 | inversion);
518 519 520 521
			break;

		case FEC_3_4:
			s5h1420_writereg(state, 0x30, 0x04);
522 523
                        s5h1420_writereg(state, 0x31, 0x12 | inversion);
                        break;
524 525 526

		case FEC_5_6:
			s5h1420_writereg(state, 0x30, 0x08);
527
			s5h1420_writereg(state, 0x31, 0x13 | inversion);
528 529 530 531
			break;

		case FEC_6_7:
			s5h1420_writereg(state, 0x30, 0x10);
532
			s5h1420_writereg(state, 0x31, 0x14 | inversion);
533 534 535 536
			break;

		case FEC_7_8:
			s5h1420_writereg(state, 0x30, 0x20);
537
			s5h1420_writereg(state, 0x31, 0x15 | inversion);
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
			break;

		default:
			return;
		}
	}
}

static fe_code_rate_t s5h1420_getfec(struct s5h1420_state* state)
{
	switch(s5h1420_readreg(state, 0x32) & 0x07) {
	case 0:
		return FEC_1_2;

	case 1:
		return FEC_2_3;

	case 2:
		return FEC_3_4;

	case 3:
		return FEC_5_6;

	case 4:
		return FEC_6_7;

	case 5:
		return FEC_7_8;
	}

	return FEC_NONE;
}

static fe_spectral_inversion_t s5h1420_getinversion(struct s5h1420_state* state)
{
	if (s5h1420_readreg(state, 0x32) & 0x08)
		return INVERSION_ON;

	return INVERSION_OFF;
}

579 580
static int s5h1420_set_frontend(struct dvb_frontend* fe,
				struct dvb_frontend_parameters *p)
581 582
{
	struct s5h1420_state* state = fe->demodulator_priv;
583
	int frequency_delta;
584
	struct dvb_frontend_tune_settings fesettings;
585
	u32 tmp;
586 587 588 589 590

	/* check if we should do a fast-tune */
	memcpy(&fesettings.parameters, p, sizeof(struct dvb_frontend_parameters));
	s5h1420_get_tune_settings(fe, &fesettings);
	frequency_delta = p->frequency - state->tunedfreq;
591 592
	if ((frequency_delta > -fesettings.max_drift) &&
	    (frequency_delta < fesettings.max_drift) &&
593 594 595 596
	    (frequency_delta != 0) &&
	    (state->fec_inner == p->u.qpsk.fec_inner) &&
	    (state->symbol_rate == p->u.qpsk.symbol_rate)) {

597 598 599 600 601
		if (state->config->pll_set) {
			s5h1420_writereg (state, 0x02, s5h1420_readreg(state,0x02) | 1);
			state->config->pll_set(fe, p, &tmp);
			s5h1420_setfreqoffset(state, p->frequency - tmp);
		}
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
		return 0;
	}

	/* first of all, software reset */
	s5h1420_reset(state);

	/* set s5h1420 fclk PLL according to desired symbol rate */
	if (p->u.qpsk.symbol_rate > 28000000) {
		state->fclk = 88000000;
		s5h1420_writereg(state, 0x03, 0x50);
		s5h1420_writereg(state, 0x04, 0x40);
		s5h1420_writereg(state, 0x05, 0xae);
	} else if (p->u.qpsk.symbol_rate > 21000000) {
		state->fclk = 59000000;
		s5h1420_writereg(state, 0x03, 0x33);
		s5h1420_writereg(state, 0x04, 0x40);
		s5h1420_writereg(state, 0x05, 0xae);
	} else {
		state->fclk = 88000000;
		s5h1420_writereg(state, 0x03, 0x50);
		s5h1420_writereg(state, 0x04, 0x40);
		s5h1420_writereg(state, 0x05, 0xac);
	}

	/* set misc registers */
	s5h1420_writereg(state, 0x02, 0x00);
628
	s5h1420_writereg(state, 0x06, 0x00);
629
	s5h1420_writereg(state, 0x07, 0xb0);
630
	s5h1420_writereg(state, 0x0a, 0xe7);
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
	s5h1420_writereg(state, 0x0b, 0x78);
	s5h1420_writereg(state, 0x0c, 0x48);
	s5h1420_writereg(state, 0x0d, 0x6b);
	s5h1420_writereg(state, 0x2e, 0x8e);
	s5h1420_writereg(state, 0x35, 0x33);
	s5h1420_writereg(state, 0x38, 0x01);
	s5h1420_writereg(state, 0x39, 0x7d);
	s5h1420_writereg(state, 0x3a, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32));
	s5h1420_writereg(state, 0x3c, 0x00);
	s5h1420_writereg(state, 0x45, 0x61);
	s5h1420_writereg(state, 0x46, 0x1d);

	/* start QPSK */
	s5h1420_writereg(state, 0x05, s5h1420_readreg(state, 0x05) | 1);

646 647 648 649 650 651
	/* set tuner PLL */
	if (state->config->pll_set) {
		s5h1420_writereg (state, 0x02, s5h1420_readreg(state,0x02) | 1);
		state->config->pll_set(fe, p, &tmp);
		s5h1420_setfreqoffset(state, 0);
	}
652 653 654

	/* set the reset of the parameters */
	s5h1420_setsymbolrate(state, p);
655
	s5h1420_setfec_inversion(state, p);
656 657 658 659

	state->fec_inner = p->u.qpsk.fec_inner;
	state->symbol_rate = p->u.qpsk.symbol_rate;
	state->postlocked = 0;
660
	state->tunedfreq = p->frequency;
661 662 663
	return 0;
}

664 665
static int s5h1420_get_frontend(struct dvb_frontend* fe,
				struct dvb_frontend_parameters *p)
666 667 668 669 670 671 672 673 674 675 676
{
	struct s5h1420_state* state = fe->demodulator_priv;

	p->frequency = state->tunedfreq + s5h1420_getfreqoffset(state);
	p->inversion = s5h1420_getinversion(state);
	p->u.qpsk.symbol_rate = s5h1420_getsymbolrate(state);
	p->u.qpsk.fec_inner = s5h1420_getfec(state);

	return 0;
}

677 678
static int s5h1420_get_tune_settings(struct dvb_frontend* fe,
				     struct dvb_frontend_tune_settings* fesettings)
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
{
	if (fesettings->parameters.u.qpsk.symbol_rate > 20000000) {
		fesettings->min_delay_ms = 50;
		fesettings->step_size = 2000;
		fesettings->max_drift = 8000;
	} else if (fesettings->parameters.u.qpsk.symbol_rate > 12000000) {
		fesettings->min_delay_ms = 100;
		fesettings->step_size = 1500;
		fesettings->max_drift = 9000;
	} else if (fesettings->parameters.u.qpsk.symbol_rate > 8000000) {
		fesettings->min_delay_ms = 100;
		fesettings->step_size = 1000;
		fesettings->max_drift = 8000;
	} else if (fesettings->parameters.u.qpsk.symbol_rate > 4000000) {
		fesettings->min_delay_ms = 100;
		fesettings->step_size = 500;
		fesettings->max_drift = 7000;
	} else if (fesettings->parameters.u.qpsk.symbol_rate > 2000000) {
		fesettings->min_delay_ms = 200;
		fesettings->step_size = (fesettings->parameters.u.qpsk.symbol_rate / 8000);
		fesettings->max_drift = 14 * fesettings->step_size;
	} else {
		fesettings->min_delay_ms = 200;
		fesettings->step_size = (fesettings->parameters.u.qpsk.symbol_rate / 8000);
		fesettings->max_drift = 18 * fesettings->step_size;
	}

	return 0;
}

static int s5h1420_init (struct dvb_frontend* fe)
{
	struct s5h1420_state* state = fe->demodulator_priv;

	/* disable power down and do reset */
	s5h1420_writereg(state, 0x02, 0x10);
	msleep(10);
	s5h1420_reset(state);

	/* init PLL */
	if (state->config->pll_init) {
		s5h1420_writereg (state, 0x02, s5h1420_readreg(state,0x02) | 1);
		state->config->pll_init(fe);
		s5h1420_writereg (state, 0x02, s5h1420_readreg(state,0x02) & 0xfe);
	}

	return 0;
}

static int s5h1420_sleep(struct dvb_frontend* fe)
{
	struct s5h1420_state* state = fe->demodulator_priv;

	return s5h1420_writereg(state, 0x02, 0x12);
}

static void s5h1420_release(struct dvb_frontend* fe)
{
	struct s5h1420_state* state = fe->demodulator_priv;
	kfree(state);
}

static struct dvb_frontend_ops s5h1420_ops;

743 744
struct dvb_frontend* s5h1420_attach(const struct s5h1420_config* config,
				    struct i2c_adapter* i2c)
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
{
	struct s5h1420_state* state = NULL;
	u8 identity;

	/* allocate memory for the internal state */
	state = kmalloc(sizeof(struct s5h1420_state), GFP_KERNEL);
	if (state == NULL)
		goto error;

	/* setup the state */
	state->config = config;
	state->i2c = i2c;
	memcpy(&state->ops, &s5h1420_ops, sizeof(struct dvb_frontend_ops));
	state->postlocked = 0;
	state->fclk = 88000000;
	state->tunedfreq = 0;
	state->fec_inner = FEC_NONE;
	state->symbol_rate = 0;

	/* check if the demod is there + identify it */
	identity = s5h1420_readreg(state, 0x00);
	if (identity != 0x03)
		goto error;

	/* create dvb_frontend */
	state->frontend.ops = &state->ops;
	state->frontend.demodulator_priv = state;
	return &state->frontend;

error:
	kfree(state);
	return NULL;
}

static struct dvb_frontend_ops s5h1420_ops = {

	.info = {
		.name     = "Samsung S5H1420 DVB-S",
		.type     = FE_QPSK,
		.frequency_min    = 950000,
		.frequency_max    = 2150000,
		.frequency_stepsize = 125,     /* kHz for QPSK frontends */
		.frequency_tolerance  = 29500,
		.symbol_rate_min  = 1000000,
		.symbol_rate_max  = 45000000,
		/*  .symbol_rate_tolerance  = ???,*/
		.caps = FE_CAN_INVERSION_AUTO |
		FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
		FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
		FE_CAN_QPSK
	},

	.release = s5h1420_release,

	.init = s5h1420_init,
	.sleep = s5h1420_sleep,

	.set_frontend = s5h1420_set_frontend,
	.get_frontend = s5h1420_get_frontend,
	.get_tune_settings = s5h1420_get_tune_settings,

	.read_status = s5h1420_read_status,
	.read_ber = s5h1420_read_ber,
	.read_signal_strength = s5h1420_read_signal_strength,
	.read_ucblocks = s5h1420_read_ucblocks,

	.diseqc_send_master_cmd = s5h1420_send_master_cmd,
	.diseqc_recv_slave_reply = s5h1420_recv_slave_reply,
	.diseqc_send_burst = s5h1420_send_burst,
	.set_tone = s5h1420_set_tone,
	.set_voltage = s5h1420_set_voltage,
};

module_param(debug, int, 0644);

MODULE_DESCRIPTION("Samsung S5H1420 DVB-S Demodulator driver");
MODULE_AUTHOR("Andrew de Quincey");
MODULE_LICENSE("GPL");

EXPORT_SYMBOL(s5h1420_attach);