tick-broadcast.c 16.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * linux/kernel/time/tick-broadcast.c
 *
 * This file contains functions which emulate a local clock-event
 * device via a broadcast event source.
 *
 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
 *
 * This code is licenced under the GPL version 2. For details see
 * kernel-base/COPYING.
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
17
#include <linux/interrupt.h>
18 19 20
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
21
#include <linux/smp.h>
22 23 24 25 26 27 28 29

#include "tick-internal.h"

/*
 * Broadcast support for broken x86 hardware, where the local apic
 * timer stops in C3 state.
 */

30
static struct tick_device tick_broadcast_device;
31 32 33
/* FIXME: Use cpumask_var_t. */
static DECLARE_BITMAP(tick_broadcast_mask, NR_CPUS);
static DECLARE_BITMAP(tmpmask, NR_CPUS);
34
static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
35
static int tick_broadcast_force;
36

37 38 39 40 41 42
#ifdef CONFIG_TICK_ONESHOT
static void tick_broadcast_clear_oneshot(int cpu);
#else
static inline void tick_broadcast_clear_oneshot(int cpu) { }
#endif

43 44 45 46 47 48 49 50
/*
 * Debugging: see timer_list.c
 */
struct tick_device *tick_get_broadcast_device(void)
{
	return &tick_broadcast_device;
}

51
struct cpumask *tick_get_broadcast_mask(void)
52
{
53
	return to_cpumask(tick_broadcast_mask);
54 55
}

56 57 58 59 60
/*
 * Start the device in periodic mode
 */
static void tick_broadcast_start_periodic(struct clock_event_device *bc)
{
T
Thomas Gleixner 已提交
61
	if (bc)
62 63 64 65 66 67 68 69
		tick_setup_periodic(bc, 1);
}

/*
 * Check, if the device can be utilized as broadcast device:
 */
int tick_check_broadcast_device(struct clock_event_device *dev)
{
70 71
	if ((dev->features & CLOCK_EVT_FEAT_DUMMY) ||
	    (tick_broadcast_device.evtdev &&
72 73
	     tick_broadcast_device.evtdev->rating >= dev->rating) ||
	     (dev->features & CLOCK_EVT_FEAT_C3STOP))
74 75
		return 0;

76
	clockevents_exchange_device(tick_broadcast_device.evtdev, dev);
77
	tick_broadcast_device.evtdev = dev;
78
	if (!cpumask_empty(tick_get_broadcast_mask()))
79 80 81 82 83 84 85 86 87 88 89 90
		tick_broadcast_start_periodic(dev);
	return 1;
}

/*
 * Check, if the device is the broadcast device
 */
int tick_is_broadcast_device(struct clock_event_device *dev)
{
	return (dev && tick_broadcast_device.evtdev == dev);
}

91 92 93 94 95
static void err_broadcast(const struct cpumask *mask)
{
	pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
}

96 97 98 99 100 101 102 103 104 105 106
static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
{
	if (!dev->broadcast)
		dev->broadcast = tick_broadcast;
	if (!dev->broadcast) {
		pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
			     dev->name);
		dev->broadcast = err_broadcast;
	}
}

107 108 109 110 111 112 113 114 115
/*
 * Check, if the device is disfunctional and a place holder, which
 * needs to be handled by the broadcast device.
 */
int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
{
	unsigned long flags;
	int ret = 0;

116
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
117 118 119 120 121 122 123 124 125

	/*
	 * Devices might be registered with both periodic and oneshot
	 * mode disabled. This signals, that the device needs to be
	 * operated from the broadcast device and is a placeholder for
	 * the cpu local device.
	 */
	if (!tick_device_is_functional(dev)) {
		dev->event_handler = tick_handle_periodic;
126
		tick_device_setup_broadcast_func(dev);
127
		cpumask_set_cpu(cpu, tick_get_broadcast_mask());
128 129
		tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
		ret = 1;
130 131 132 133 134 135 136 137
	} else {
		/*
		 * When the new device is not affected by the stop
		 * feature and the cpu is marked in the broadcast mask
		 * then clear the broadcast bit.
		 */
		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
			int cpu = smp_processor_id();
138
			cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
139
			tick_broadcast_clear_oneshot(cpu);
140 141
		} else {
			tick_device_setup_broadcast_func(dev);
142 143
		}
	}
144
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
145 146 147
	return ret;
}

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
int tick_receive_broadcast(void)
{
	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
	struct clock_event_device *evt = td->evtdev;

	if (!evt)
		return -ENODEV;

	if (!evt->event_handler)
		return -EINVAL;

	evt->event_handler(evt);
	return 0;
}
#endif

165
/*
166
 * Broadcast the event to the cpus, which are set in the mask (mangled).
167
 */
168
static void tick_do_broadcast(struct cpumask *mask)
169
{
170
	int cpu = smp_processor_id();
171 172 173 174 175
	struct tick_device *td;

	/*
	 * Check, if the current cpu is in the mask
	 */
176 177
	if (cpumask_test_cpu(cpu, mask)) {
		cpumask_clear_cpu(cpu, mask);
178 179 180 181
		td = &per_cpu(tick_cpu_device, cpu);
		td->evtdev->event_handler(td->evtdev);
	}

182
	if (!cpumask_empty(mask)) {
183 184 185 186 187 188
		/*
		 * It might be necessary to actually check whether the devices
		 * have different broadcast functions. For now, just use the
		 * one of the first device. This works as long as we have this
		 * misfeature only on x86 (lapic)
		 */
189 190
		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
		td->evtdev->broadcast(mask);
191 192 193 194 195 196 197 198 199
	}
}

/*
 * Periodic broadcast:
 * - invoke the broadcast handlers
 */
static void tick_do_periodic_broadcast(void)
{
200
	raw_spin_lock(&tick_broadcast_lock);
201

202 203 204
	cpumask_and(to_cpumask(tmpmask),
		    cpu_online_mask, tick_get_broadcast_mask());
	tick_do_broadcast(to_cpumask(tmpmask));
205

206
	raw_spin_unlock(&tick_broadcast_lock);
207 208 209 210 211 212 213
}

/*
 * Event handler for periodic broadcast ticks
 */
static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
{
214 215
	ktime_t next;

216 217 218 219 220 221 222 223 224 225
	tick_do_periodic_broadcast();

	/*
	 * The device is in periodic mode. No reprogramming necessary:
	 */
	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
		return;

	/*
	 * Setup the next period for devices, which do not have
226
	 * periodic mode. We read dev->next_event first and add to it
227
	 * when the event already expired. clockevents_program_event()
228 229
	 * sets dev->next_event only when the event is really
	 * programmed to the device.
230
	 */
231 232
	for (next = dev->next_event; ;) {
		next = ktime_add(next, tick_period);
233

234
		if (!clockevents_program_event(dev, next, false))
235 236 237 238 239 240 241 242 243
			return;
		tick_do_periodic_broadcast();
	}
}

/*
 * Powerstate information: The system enters/leaves a state, where
 * affected devices might stop
 */
244
static void tick_do_broadcast_on_off(unsigned long *reason)
245 246 247
{
	struct clock_event_device *bc, *dev;
	struct tick_device *td;
248
	unsigned long flags;
249
	int cpu, bc_stopped;
250

251
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
252 253 254 255 256 257 258

	cpu = smp_processor_id();
	td = &per_cpu(tick_cpu_device, cpu);
	dev = td->evtdev;
	bc = tick_broadcast_device.evtdev;

	/*
259
	 * Is the device not affected by the powerstate ?
260
	 */
261
	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
262 263
		goto out;

264 265
	if (!tick_device_is_functional(dev))
		goto out;
266

267
	bc_stopped = cpumask_empty(tick_get_broadcast_mask());
268

269 270 271
	switch (*reason) {
	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
272 273
		if (!cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
			cpumask_set_cpu(cpu, tick_get_broadcast_mask());
274 275
			if (tick_broadcast_device.mode ==
			    TICKDEV_MODE_PERIODIC)
276
				clockevents_shutdown(dev);
277
		}
278
		if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
279
			tick_broadcast_force = 1;
280 281
		break;
	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
282
		if (!tick_broadcast_force &&
283 284
		    cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
			cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
285 286
			if (tick_broadcast_device.mode ==
			    TICKDEV_MODE_PERIODIC)
287 288
				tick_setup_periodic(dev, 0);
		}
289
		break;
290 291
	}

292
	if (cpumask_empty(tick_get_broadcast_mask())) {
293
		if (!bc_stopped)
294
			clockevents_shutdown(bc);
295
	} else if (bc_stopped) {
296 297
		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
			tick_broadcast_start_periodic(bc);
298 299
		else
			tick_broadcast_setup_oneshot(bc);
300 301
	}
out:
302
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
303 304 305 306 307 308 309 310
}

/*
 * Powerstate information: The system enters/leaves a state, where
 * affected devices might stop.
 */
void tick_broadcast_on_off(unsigned long reason, int *oncpu)
{
311
	if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
312
		printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
313
		       "offline CPU #%d\n", *oncpu);
314
	else
315
		tick_do_broadcast_on_off(&reason);
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
}

/*
 * Set the periodic handler depending on broadcast on/off
 */
void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
{
	if (!broadcast)
		dev->event_handler = tick_handle_periodic;
	else
		dev->event_handler = tick_handle_periodic_broadcast;
}

/*
 * Remove a CPU from broadcasting
 */
void tick_shutdown_broadcast(unsigned int *cpup)
{
	struct clock_event_device *bc;
	unsigned long flags;
	unsigned int cpu = *cpup;

338
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
339 340

	bc = tick_broadcast_device.evtdev;
341
	cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
342 343

	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
344
		if (bc && cpumask_empty(tick_get_broadcast_mask()))
345
			clockevents_shutdown(bc);
346 347
	}

348
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
349
}
350

351 352 353 354 355
void tick_suspend_broadcast(void)
{
	struct clock_event_device *bc;
	unsigned long flags;

356
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
357 358

	bc = tick_broadcast_device.evtdev;
T
Thomas Gleixner 已提交
359
	if (bc)
360
		clockevents_shutdown(bc);
361

362
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
363 364 365 366 367 368 369 370
}

int tick_resume_broadcast(void)
{
	struct clock_event_device *bc;
	unsigned long flags;
	int broadcast = 0;

371
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
372 373 374

	bc = tick_broadcast_device.evtdev;

375
	if (bc) {
T
Thomas Gleixner 已提交
376 377
		clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);

378 379
		switch (tick_broadcast_device.mode) {
		case TICKDEV_MODE_PERIODIC:
380
			if (!cpumask_empty(tick_get_broadcast_mask()))
381
				tick_broadcast_start_periodic(bc);
382 383
			broadcast = cpumask_test_cpu(smp_processor_id(),
						     tick_get_broadcast_mask());
384 385
			break;
		case TICKDEV_MODE_ONESHOT:
386 387
			if (!cpumask_empty(tick_get_broadcast_mask()))
				broadcast = tick_resume_broadcast_oneshot(bc);
388 389
			break;
		}
390
	}
391
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
392 393 394 395 396

	return broadcast;
}


397 398
#ifdef CONFIG_TICK_ONESHOT

399 400
/* FIXME: use cpumask_var_t. */
static DECLARE_BITMAP(tick_broadcast_oneshot_mask, NR_CPUS);
401

402
/*
403
 * Exposed for debugging: see timer_list.c
404
 */
405
struct cpumask *tick_get_broadcast_oneshot_mask(void)
406
{
407
	return to_cpumask(tick_broadcast_oneshot_mask);
408 409
}

410 411 412
static int tick_broadcast_set_event(ktime_t expires, int force)
{
	struct clock_event_device *bc = tick_broadcast_device.evtdev;
413

414 415 416
	if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
		clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);

417
	return clockevents_program_event(bc, expires, force);
418 419
}

420 421 422
int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
{
	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
423
	return 0;
424 425
}

426 427 428 429 430 431
/*
 * Called from irq_enter() when idle was interrupted to reenable the
 * per cpu device.
 */
void tick_check_oneshot_broadcast(int cpu)
{
432
	if (cpumask_test_cpu(cpu, to_cpumask(tick_broadcast_oneshot_mask))) {
433 434 435 436 437 438
		struct tick_device *td = &per_cpu(tick_cpu_device, cpu);

		clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
	}
}

439 440 441 442 443 444
/*
 * Handle oneshot mode broadcasting
 */
static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
{
	struct tick_device *td;
445
	ktime_t now, next_event;
446 447
	int cpu;

448
	raw_spin_lock(&tick_broadcast_lock);
449 450
again:
	dev->next_event.tv64 = KTIME_MAX;
451
	next_event.tv64 = KTIME_MAX;
452
	cpumask_clear(to_cpumask(tmpmask));
453 454
	now = ktime_get();
	/* Find all expired events */
455
	for_each_cpu(cpu, tick_get_broadcast_oneshot_mask()) {
456 457
		td = &per_cpu(tick_cpu_device, cpu);
		if (td->evtdev->next_event.tv64 <= now.tv64)
458
			cpumask_set_cpu(cpu, to_cpumask(tmpmask));
459 460
		else if (td->evtdev->next_event.tv64 < next_event.tv64)
			next_event.tv64 = td->evtdev->next_event.tv64;
461 462 463
	}

	/*
464 465
	 * Wakeup the cpus which have an expired event.
	 */
466
	tick_do_broadcast(to_cpumask(tmpmask));
467 468 469 470 471 472 473 474 475 476

	/*
	 * Two reasons for reprogram:
	 *
	 * - The global event did not expire any CPU local
	 * events. This happens in dyntick mode, as the maximum PIT
	 * delta is quite small.
	 *
	 * - There are pending events on sleeping CPUs which were not
	 * in the event mask
477
	 */
478
	if (next_event.tv64 != KTIME_MAX) {
479
		/*
480 481
		 * Rearm the broadcast device. If event expired,
		 * repeat the above
482
		 */
483
		if (tick_broadcast_set_event(next_event, 0))
484 485
			goto again;
	}
486
	raw_spin_unlock(&tick_broadcast_lock);
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
}

/*
 * Powerstate information: The system enters/leaves a state, where
 * affected devices might stop
 */
void tick_broadcast_oneshot_control(unsigned long reason)
{
	struct clock_event_device *bc, *dev;
	struct tick_device *td;
	unsigned long flags;
	int cpu;

	/*
	 * Periodic mode does not care about the enter/exit of power
	 * states
	 */
	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
505
		return;
506

507 508 509 510
	/*
	 * We are called with preemtion disabled from the depth of the
	 * idle code, so we can't be moved away.
	 */
511 512 513 514 515
	cpu = smp_processor_id();
	td = &per_cpu(tick_cpu_device, cpu);
	dev = td->evtdev;

	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
516 517 518
		return;

	bc = tick_broadcast_device.evtdev;
519

520
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
521
	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
522 523
		if (!cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
			cpumask_set_cpu(cpu, tick_get_broadcast_oneshot_mask());
524 525 526 527 528
			clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
			if (dev->next_event.tv64 < bc->next_event.tv64)
				tick_broadcast_set_event(dev->next_event, 1);
		}
	} else {
529 530 531
		if (cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
			cpumask_clear_cpu(cpu,
					  tick_get_broadcast_oneshot_mask());
532 533 534 535 536
			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
			if (dev->next_event.tv64 != KTIME_MAX)
				tick_program_event(dev->next_event, 1);
		}
	}
537
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
538 539
}

540 541 542 543 544 545 546
/*
 * Reset the one shot broadcast for a cpu
 *
 * Called with tick_broadcast_lock held
 */
static void tick_broadcast_clear_oneshot(int cpu)
{
547
	cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
548 549
}

550 551
static void tick_broadcast_init_next_event(struct cpumask *mask,
					   ktime_t expires)
552 553 554 555
{
	struct tick_device *td;
	int cpu;

556
	for_each_cpu(cpu, mask) {
557 558 559 560 561 562
		td = &per_cpu(tick_cpu_device, cpu);
		if (td->evtdev)
			td->evtdev->next_event = expires;
	}
}

563
/**
564
 * tick_broadcast_setup_oneshot - setup the broadcast device
565 566 567
 */
void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
{
568 569
	int cpu = smp_processor_id();

570 571
	/* Set it up only once ! */
	if (bc->event_handler != tick_handle_oneshot_broadcast) {
572 573
		int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;

574
		bc->event_handler = tick_handle_oneshot_broadcast;
575 576 577 578 579 580 581 582 583 584

		/* Take the do_timer update */
		tick_do_timer_cpu = cpu;

		/*
		 * We must be careful here. There might be other CPUs
		 * waiting for periodic broadcast. We need to set the
		 * oneshot_mask bits for those and program the
		 * broadcast device to fire.
		 */
585 586 587 588 589 590 591
		cpumask_copy(to_cpumask(tmpmask), tick_get_broadcast_mask());
		cpumask_clear_cpu(cpu, to_cpumask(tmpmask));
		cpumask_or(tick_get_broadcast_oneshot_mask(),
			   tick_get_broadcast_oneshot_mask(),
			   to_cpumask(tmpmask));

		if (was_periodic && !cpumask_empty(to_cpumask(tmpmask))) {
592
			clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
593 594
			tick_broadcast_init_next_event(to_cpumask(tmpmask),
						       tick_next_period);
595 596 597
			tick_broadcast_set_event(tick_next_period, 1);
		} else
			bc->next_event.tv64 = KTIME_MAX;
598 599 600 601 602 603 604 605 606
	} else {
		/*
		 * The first cpu which switches to oneshot mode sets
		 * the bit for all other cpus which are in the general
		 * (periodic) broadcast mask. So the bit is set and
		 * would prevent the first broadcast enter after this
		 * to program the bc device.
		 */
		tick_broadcast_clear_oneshot(cpu);
607
	}
608 609 610 611 612 613 614 615 616 617
}

/*
 * Select oneshot operating mode for the broadcast device
 */
void tick_broadcast_switch_to_oneshot(void)
{
	struct clock_event_device *bc;
	unsigned long flags;

618
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
619 620

	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
621 622 623
	bc = tick_broadcast_device.evtdev;
	if (bc)
		tick_broadcast_setup_oneshot(bc);
624

625
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
626 627 628 629 630 631 632 633 634 635 636
}


/*
 * Remove a dead CPU from broadcasting
 */
void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
{
	unsigned long flags;
	unsigned int cpu = *cpup;

637
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
638

639 640 641 642
	/*
	 * Clear the broadcast mask flag for the dead cpu, but do not
	 * stop the broadcast device!
	 */
643
	cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
644

645
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
646 647
}

648 649 650 651 652 653 654 655
/*
 * Check, whether the broadcast device is in one shot mode
 */
int tick_broadcast_oneshot_active(void)
{
	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
}

656 657 658 659 660 661 662 663 664 665
/*
 * Check whether the broadcast device supports oneshot.
 */
bool tick_broadcast_oneshot_available(void)
{
	struct clock_event_device *bc = tick_broadcast_device.evtdev;

	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
}

666
#endif