rpc_rdma.c 27.7 KB
Newer Older
1
/*
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the BSD-type
 * license below:
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *      Redistributions of source code must retain the above copyright
 *      notice, this list of conditions and the following disclaimer.
 *
 *      Redistributions in binary form must reproduce the above
 *      copyright notice, this list of conditions and the following
 *      disclaimer in the documentation and/or other materials provided
 *      with the distribution.
 *
 *      Neither the name of the Network Appliance, Inc. nor the names of
 *      its contributors may be used to endorse or promote products
 *      derived from this software without specific prior written
 *      permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * rpc_rdma.c
 *
 * This file contains the guts of the RPC RDMA protocol, and
 * does marshaling/unmarshaling, etc. It is also where interfacing
 * to the Linux RPC framework lives.
46 47 48 49
 */

#include "xprt_rdma.h"

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
#include <linux/highmem.h>

#ifdef RPC_DEBUG
# define RPCDBG_FACILITY	RPCDBG_TRANS
#endif

enum rpcrdma_chunktype {
	rpcrdma_noch = 0,
	rpcrdma_readch,
	rpcrdma_areadch,
	rpcrdma_writech,
	rpcrdma_replych
};

#ifdef RPC_DEBUG
static const char transfertypes[][12] = {
	"pure inline",	/* no chunks */
	" read chunk",	/* some argument via rdma read */
	"*read chunk",	/* entire request via rdma read */
	"write chunk",	/* some result via rdma write */
	"reply chunk"	/* entire reply via rdma write */
};
#endif

/*
 * Chunk assembly from upper layer xdr_buf.
 *
 * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
 * elements. Segments are then coalesced when registered, if possible
 * within the selected memreg mode.
 *
 * Note, this routine is never called if the connection's memory
 * registration strategy is 0 (bounce buffers).
 */

static int
86
rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
87 88 89
	enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
{
	int len, n = 0, p;
90 91
	int page_base;
	struct page **ppages;
92 93 94 95 96 97 98 99

	if (pos == 0 && xdrbuf->head[0].iov_len) {
		seg[n].mr_page = NULL;
		seg[n].mr_offset = xdrbuf->head[0].iov_base;
		seg[n].mr_len = xdrbuf->head[0].iov_len;
		++n;
	}

100 101 102 103 104 105 106 107 108 109
	len = xdrbuf->page_len;
	ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
	page_base = xdrbuf->page_base & ~PAGE_MASK;
	p = 0;
	while (len && n < nsegs) {
		seg[n].mr_page = ppages[p];
		seg[n].mr_offset = (void *)(unsigned long) page_base;
		seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
		BUG_ON(seg[n].mr_len > PAGE_SIZE);
		len -= seg[n].mr_len;
110
		++n;
111 112
		++p;
		page_base = 0;	/* page offset only applies to first page */
113 114
	}

115 116 117 118
	/* Message overflows the seg array */
	if (len && n == nsegs)
		return 0;

119
	if (xdrbuf->tail[0].iov_len) {
120 121 122 123
		/* the rpcrdma protocol allows us to omit any trailing
		 * xdr pad bytes, saving the server an RDMA operation. */
		if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
			return n;
124
		if (n == nsegs)
125
			/* Tail remains, but we're out of segments */
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
			return 0;
		seg[n].mr_page = NULL;
		seg[n].mr_offset = xdrbuf->tail[0].iov_base;
		seg[n].mr_len = xdrbuf->tail[0].iov_len;
		++n;
	}

	return n;
}

/*
 * Create read/write chunk lists, and reply chunks, for RDMA
 *
 *   Assume check against THRESHOLD has been done, and chunks are required.
 *   Assume only encoding one list entry for read|write chunks. The NFSv3
 *     protocol is simple enough to allow this as it only has a single "bulk
 *     result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
 *     RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
 *
 * When used for a single reply chunk (which is a special write
 * chunk used for the entire reply, rather than just the data), it
 * is used primarily for READDIR and READLINK which would otherwise
 * be severely size-limited by a small rdma inline read max. The server
 * response will come back as an RDMA Write, followed by a message
 * of type RDMA_NOMSG carrying the xid and length. As a result, reply
 * chunks do not provide data alignment, however they do not require
 * "fixup" (moving the response to the upper layer buffer) either.
 *
 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
 *
 *  Read chunklist (a linked list):
 *   N elements, position P (same P for all chunks of same arg!):
 *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
 *
 *  Write chunklist (a list of (one) counted array):
 *   N elements:
 *    1 - N - HLOO - HLOO - ... - HLOO - 0
 *
 *  Reply chunk (a counted array):
 *   N elements:
 *    1 - N - HLOO - HLOO - ... - HLOO
 */

static unsigned int
rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
		struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
{
	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
174
	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
175
	int nsegs, nchunks = 0;
176
	unsigned int pos;
177 178 179 180
	struct rpcrdma_mr_seg *seg = req->rl_segments;
	struct rpcrdma_read_chunk *cur_rchunk = NULL;
	struct rpcrdma_write_array *warray = NULL;
	struct rpcrdma_write_chunk *cur_wchunk = NULL;
A
Al Viro 已提交
181
	__be32 *iptr = headerp->rm_body.rm_chunks;
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

	if (type == rpcrdma_readch || type == rpcrdma_areadch) {
		/* a read chunk - server will RDMA Read our memory */
		cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
	} else {
		/* a write or reply chunk - server will RDMA Write our memory */
		*iptr++ = xdr_zero;	/* encode a NULL read chunk list */
		if (type == rpcrdma_replych)
			*iptr++ = xdr_zero;	/* a NULL write chunk list */
		warray = (struct rpcrdma_write_array *) iptr;
		cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
	}

	if (type == rpcrdma_replych || type == rpcrdma_areadch)
		pos = 0;
	else
		pos = target->head[0].iov_len;

	nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
	if (nsegs == 0)
		return 0;

	do {
		/* bind/register the memory, then build chunk from result. */
		int n = rpcrdma_register_external(seg, nsegs,
						cur_wchunk != NULL, r_xprt);
		if (n <= 0)
			goto out;
		if (cur_rchunk) {	/* read */
			cur_rchunk->rc_discrim = xdr_one;
			/* all read chunks have the same "position" */
			cur_rchunk->rc_position = htonl(pos);
			cur_rchunk->rc_target.rs_handle = htonl(seg->mr_rkey);
			cur_rchunk->rc_target.rs_length = htonl(seg->mr_len);
			xdr_encode_hyper(
A
Al Viro 已提交
217
					(__be32 *)&cur_rchunk->rc_target.rs_offset,
218 219
					seg->mr_base);
			dprintk("RPC:       %s: read chunk "
220
				"elem %d@0x%llx:0x%x pos %u (%s)\n", __func__,
221 222
				seg->mr_len, (unsigned long long)seg->mr_base,
				seg->mr_rkey, pos, n < nsegs ? "more" : "last");
223 224 225 226 227 228
			cur_rchunk++;
			r_xprt->rx_stats.read_chunk_count++;
		} else {		/* write/reply */
			cur_wchunk->wc_target.rs_handle = htonl(seg->mr_rkey);
			cur_wchunk->wc_target.rs_length = htonl(seg->mr_len);
			xdr_encode_hyper(
A
Al Viro 已提交
229
					(__be32 *)&cur_wchunk->wc_target.rs_offset,
230 231 232 233
					seg->mr_base);
			dprintk("RPC:       %s: %s chunk "
				"elem %d@0x%llx:0x%x (%s)\n", __func__,
				(type == rpcrdma_replych) ? "reply" : "write",
234 235
				seg->mr_len, (unsigned long long)seg->mr_base,
				seg->mr_rkey, n < nsegs ? "more" : "last");
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
			cur_wchunk++;
			if (type == rpcrdma_replych)
				r_xprt->rx_stats.reply_chunk_count++;
			else
				r_xprt->rx_stats.write_chunk_count++;
			r_xprt->rx_stats.total_rdma_request += seg->mr_len;
		}
		nchunks++;
		seg   += n;
		nsegs -= n;
	} while (nsegs);

	/* success. all failures return above */
	req->rl_nchunks = nchunks;

	BUG_ON(nchunks == 0);
252 253
	BUG_ON((r_xprt->rx_ia.ri_memreg_strategy == RPCRDMA_FRMR)
	       && (nchunks > 3));
254 255 256 257 258

	/*
	 * finish off header. If write, marshal discrim and nchunks.
	 */
	if (cur_rchunk) {
A
Al Viro 已提交
259
		iptr = (__be32 *) cur_rchunk;
260 261 262 263 264 265
		*iptr++ = xdr_zero;	/* finish the read chunk list */
		*iptr++ = xdr_zero;	/* encode a NULL write chunk list */
		*iptr++ = xdr_zero;	/* encode a NULL reply chunk */
	} else {
		warray->wc_discrim = xdr_one;
		warray->wc_nchunks = htonl(nchunks);
A
Al Viro 已提交
266
		iptr = (__be32 *) cur_wchunk;
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
		if (type == rpcrdma_writech) {
			*iptr++ = xdr_zero; /* finish the write chunk list */
			*iptr++ = xdr_zero; /* encode a NULL reply chunk */
		}
	}

	/*
	 * Return header size.
	 */
	return (unsigned char *)iptr - (unsigned char *)headerp;

out:
	for (pos = 0; nchunks--;)
		pos += rpcrdma_deregister_external(
				&req->rl_segments[pos], r_xprt, NULL);
	return 0;
}

/*
 * Copy write data inline.
 * This function is used for "small" requests. Data which is passed
 * to RPC via iovecs (or page list) is copied directly into the
 * pre-registered memory buffer for this request. For small amounts
 * of data, this is efficient. The cutoff value is tunable.
 */
static int
rpcrdma_inline_pullup(struct rpc_rqst *rqst, int pad)
{
	int i, npages, curlen;
	int copy_len;
	unsigned char *srcp, *destp;
	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
299 300
	int page_base;
	struct page **ppages;
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

	destp = rqst->rq_svec[0].iov_base;
	curlen = rqst->rq_svec[0].iov_len;
	destp += curlen;
	/*
	 * Do optional padding where it makes sense. Alignment of write
	 * payload can help the server, if our setting is accurate.
	 */
	pad -= (curlen + 36/*sizeof(struct rpcrdma_msg_padded)*/);
	if (pad < 0 || rqst->rq_slen - curlen < RPCRDMA_INLINE_PAD_THRESH)
		pad = 0;	/* don't pad this request */

	dprintk("RPC:       %s: pad %d destp 0x%p len %d hdrlen %d\n",
		__func__, pad, destp, rqst->rq_slen, curlen);

	copy_len = rqst->rq_snd_buf.page_len;
317 318 319 320 321 322 323 324 325 326 327 328

	if (rqst->rq_snd_buf.tail[0].iov_len) {
		curlen = rqst->rq_snd_buf.tail[0].iov_len;
		if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
			memmove(destp + copy_len,
				rqst->rq_snd_buf.tail[0].iov_base, curlen);
			r_xprt->rx_stats.pullup_copy_count += curlen;
		}
		dprintk("RPC:       %s: tail destp 0x%p len %d\n",
			__func__, destp + copy_len, curlen);
		rqst->rq_svec[0].iov_len += curlen;
	}
329
	r_xprt->rx_stats.pullup_copy_count += copy_len;
330 331 332 333 334

	page_base = rqst->rq_snd_buf.page_base;
	ppages = rqst->rq_snd_buf.pages + (page_base >> PAGE_SHIFT);
	page_base &= ~PAGE_MASK;
	npages = PAGE_ALIGN(page_base+copy_len) >> PAGE_SHIFT;
335
	for (i = 0; copy_len && i < npages; i++) {
336
		curlen = PAGE_SIZE - page_base;
337 338 339 340
		if (curlen > copy_len)
			curlen = copy_len;
		dprintk("RPC:       %s: page %d destp 0x%p len %d curlen %d\n",
			__func__, i, destp, copy_len, curlen);
341
		srcp = kmap_atomic(ppages[i]);
342
		memcpy(destp, srcp+page_base, curlen);
343
		kunmap_atomic(srcp);
344 345 346
		rqst->rq_svec[0].iov_len += curlen;
		destp += curlen;
		copy_len -= curlen;
347
		page_base = 0;
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
	}
	/* header now contains entire send message */
	return pad;
}

/*
 * Marshal a request: the primary job of this routine is to choose
 * the transfer modes. See comments below.
 *
 * Uses multiple RDMA IOVs for a request:
 *  [0] -- RPC RDMA header, which uses memory from the *start* of the
 *         preregistered buffer that already holds the RPC data in
 *         its middle.
 *  [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
 *  [2] -- optional padding.
 *  [3] -- if padded, header only in [1] and data here.
 */

int
rpcrdma_marshal_req(struct rpc_rqst *rqst)
{
369
	struct rpc_xprt *xprt = rqst->rq_xprt;
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
	char *base;
	size_t hdrlen, rpclen, padlen;
	enum rpcrdma_chunktype rtype, wtype;
	struct rpcrdma_msg *headerp;

	/*
	 * rpclen gets amount of data in first buffer, which is the
	 * pre-registered buffer.
	 */
	base = rqst->rq_svec[0].iov_base;
	rpclen = rqst->rq_svec[0].iov_len;

	/* build RDMA header in private area at front */
	headerp = (struct rpcrdma_msg *) req->rl_base;
	/* don't htonl XID, it's already done in request */
	headerp->rm_xid = rqst->rq_xid;
	headerp->rm_vers = xdr_one;
	headerp->rm_credit = htonl(r_xprt->rx_buf.rb_max_requests);
390
	headerp->rm_type = htonl(RDMA_MSG);
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467

	/*
	 * Chunks needed for results?
	 *
	 * o If the expected result is under the inline threshold, all ops
	 *   return as inline (but see later).
	 * o Large non-read ops return as a single reply chunk.
	 * o Large read ops return data as write chunk(s), header as inline.
	 *
	 * Note: the NFS code sending down multiple result segments implies
	 * the op is one of read, readdir[plus], readlink or NFSv4 getacl.
	 */

	/*
	 * This code can handle read chunks, write chunks OR reply
	 * chunks -- only one type. If the request is too big to fit
	 * inline, then we will choose read chunks. If the request is
	 * a READ, then use write chunks to separate the file data
	 * into pages; otherwise use reply chunks.
	 */
	if (rqst->rq_rcv_buf.buflen <= RPCRDMA_INLINE_READ_THRESHOLD(rqst))
		wtype = rpcrdma_noch;
	else if (rqst->rq_rcv_buf.page_len == 0)
		wtype = rpcrdma_replych;
	else if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
		wtype = rpcrdma_writech;
	else
		wtype = rpcrdma_replych;

	/*
	 * Chunks needed for arguments?
	 *
	 * o If the total request is under the inline threshold, all ops
	 *   are sent as inline.
	 * o Large non-write ops are sent with the entire message as a
	 *   single read chunk (protocol 0-position special case).
	 * o Large write ops transmit data as read chunk(s), header as
	 *   inline.
	 *
	 * Note: the NFS code sending down multiple argument segments
	 * implies the op is a write.
	 * TBD check NFSv4 setacl
	 */
	if (rqst->rq_snd_buf.len <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst))
		rtype = rpcrdma_noch;
	else if (rqst->rq_snd_buf.page_len == 0)
		rtype = rpcrdma_areadch;
	else
		rtype = rpcrdma_readch;

	/* The following simplification is not true forever */
	if (rtype != rpcrdma_noch && wtype == rpcrdma_replych)
		wtype = rpcrdma_noch;
	BUG_ON(rtype != rpcrdma_noch && wtype != rpcrdma_noch);

	if (r_xprt->rx_ia.ri_memreg_strategy == RPCRDMA_BOUNCEBUFFERS &&
	    (rtype != rpcrdma_noch || wtype != rpcrdma_noch)) {
		/* forced to "pure inline"? */
		dprintk("RPC:       %s: too much data (%d/%d) for inline\n",
			__func__, rqst->rq_rcv_buf.len, rqst->rq_snd_buf.len);
		return -1;
	}

	hdrlen = 28; /*sizeof *headerp;*/
	padlen = 0;

	/*
	 * Pull up any extra send data into the preregistered buffer.
	 * When padding is in use and applies to the transfer, insert
	 * it and change the message type.
	 */
	if (rtype == rpcrdma_noch) {

		padlen = rpcrdma_inline_pullup(rqst,
						RPCRDMA_INLINE_PAD_VALUE(rqst));

		if (padlen) {
468
			headerp->rm_type = htonl(RDMA_MSGP);
469 470 471
			headerp->rm_body.rm_padded.rm_align =
				htonl(RPCRDMA_INLINE_PAD_VALUE(rqst));
			headerp->rm_body.rm_padded.rm_thresh =
472
				htonl(RPCRDMA_INLINE_PAD_THRESH);
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
			headerp->rm_body.rm_padded.rm_pempty[0] = xdr_zero;
			headerp->rm_body.rm_padded.rm_pempty[1] = xdr_zero;
			headerp->rm_body.rm_padded.rm_pempty[2] = xdr_zero;
			hdrlen += 2 * sizeof(u32); /* extra words in padhdr */
			BUG_ON(wtype != rpcrdma_noch);

		} else {
			headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
			headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
			headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
			/* new length after pullup */
			rpclen = rqst->rq_svec[0].iov_len;
			/*
			 * Currently we try to not actually use read inline.
			 * Reply chunks have the desirable property that
			 * they land, packed, directly in the target buffers
			 * without headers, so they require no fixup. The
			 * additional RDMA Write op sends the same amount
			 * of data, streams on-the-wire and adds no overhead
			 * on receive. Therefore, we request a reply chunk
			 * for non-writes wherever feasible and efficient.
			 */
			if (wtype == rpcrdma_noch &&
			    r_xprt->rx_ia.ri_memreg_strategy > RPCRDMA_REGISTER)
				wtype = rpcrdma_replych;
		}
	}

	/*
	 * Marshal chunks. This routine will return the header length
	 * consumed by marshaling.
	 */
	if (rtype != rpcrdma_noch) {
		hdrlen = rpcrdma_create_chunks(rqst,
					&rqst->rq_snd_buf, headerp, rtype);
		wtype = rtype;	/* simplify dprintk */

	} else if (wtype != rpcrdma_noch) {
		hdrlen = rpcrdma_create_chunks(rqst,
					&rqst->rq_rcv_buf, headerp, wtype);
	}

	if (hdrlen == 0)
		return -1;

518 519
	dprintk("RPC:       %s: %s: hdrlen %zd rpclen %zd padlen %zd"
		" headerp 0x%p base 0x%p lkey 0x%x\n",
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
		__func__, transfertypes[wtype], hdrlen, rpclen, padlen,
		headerp, base, req->rl_iov.lkey);

	/*
	 * initialize send_iov's - normally only two: rdma chunk header and
	 * single preregistered RPC header buffer, but if padding is present,
	 * then use a preregistered (and zeroed) pad buffer between the RPC
	 * header and any write data. In all non-rdma cases, any following
	 * data has been copied into the RPC header buffer.
	 */
	req->rl_send_iov[0].addr = req->rl_iov.addr;
	req->rl_send_iov[0].length = hdrlen;
	req->rl_send_iov[0].lkey = req->rl_iov.lkey;

	req->rl_send_iov[1].addr = req->rl_iov.addr + (base - req->rl_base);
	req->rl_send_iov[1].length = rpclen;
	req->rl_send_iov[1].lkey = req->rl_iov.lkey;

	req->rl_niovs = 2;

	if (padlen) {
		struct rpcrdma_ep *ep = &r_xprt->rx_ep;

		req->rl_send_iov[2].addr = ep->rep_pad.addr;
		req->rl_send_iov[2].length = padlen;
		req->rl_send_iov[2].lkey = ep->rep_pad.lkey;

		req->rl_send_iov[3].addr = req->rl_send_iov[1].addr + rpclen;
		req->rl_send_iov[3].length = rqst->rq_slen - rpclen;
		req->rl_send_iov[3].lkey = req->rl_iov.lkey;

		req->rl_niovs = 4;
	}

	return 0;
}

/*
 * Chase down a received write or reply chunklist to get length
 * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
 */
static int
562
rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp)
563 564 565 566 567 568 569 570 571 572 573 574 575
{
	unsigned int i, total_len;
	struct rpcrdma_write_chunk *cur_wchunk;

	i = ntohl(**iptrp);	/* get array count */
	if (i > max)
		return -1;
	cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
	total_len = 0;
	while (i--) {
		struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
		ifdebug(FACILITY) {
			u64 off;
A
Al Viro 已提交
576
			xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
577 578 579
			dprintk("RPC:       %s: chunk %d@0x%llx:0x%x\n",
				__func__,
				ntohl(seg->rs_length),
580
				(unsigned long long)off,
581 582 583 584 585 586 587
				ntohl(seg->rs_handle));
		}
		total_len += ntohl(seg->rs_length);
		++cur_wchunk;
	}
	/* check and adjust for properly terminated write chunk */
	if (wrchunk) {
A
Al Viro 已提交
588
		__be32 *w = (__be32 *) cur_wchunk;
589 590 591 592 593 594 595
		if (*w++ != xdr_zero)
			return -1;
		cur_wchunk = (struct rpcrdma_write_chunk *) w;
	}
	if ((char *) cur_wchunk > rep->rr_base + rep->rr_len)
		return -1;

A
Al Viro 已提交
596
	*iptrp = (__be32 *) cur_wchunk;
597 598 599 600 601 602 603
	return total_len;
}

/*
 * Scatter inline received data back into provided iov's.
 */
static void
604
rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
605 606 607
{
	int i, npages, curlen, olen;
	char *destp;
608 609
	struct page **ppages;
	int page_base;
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627

	curlen = rqst->rq_rcv_buf.head[0].iov_len;
	if (curlen > copy_len) {	/* write chunk header fixup */
		curlen = copy_len;
		rqst->rq_rcv_buf.head[0].iov_len = curlen;
	}

	dprintk("RPC:       %s: srcp 0x%p len %d hdrlen %d\n",
		__func__, srcp, copy_len, curlen);

	/* Shift pointer for first receive segment only */
	rqst->rq_rcv_buf.head[0].iov_base = srcp;
	srcp += curlen;
	copy_len -= curlen;

	olen = copy_len;
	i = 0;
	rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
628 629 630 631
	page_base = rqst->rq_rcv_buf.page_base;
	ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT);
	page_base &= ~PAGE_MASK;

632
	if (copy_len && rqst->rq_rcv_buf.page_len) {
633
		npages = PAGE_ALIGN(page_base +
634 635
			rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
		for (; i < npages; i++) {
636
			curlen = PAGE_SIZE - page_base;
637 638 639 640 641
			if (curlen > copy_len)
				curlen = copy_len;
			dprintk("RPC:       %s: page %d"
				" srcp 0x%p len %d curlen %d\n",
				__func__, i, srcp, copy_len, curlen);
642
			destp = kmap_atomic(ppages[i]);
643 644
			memcpy(destp + page_base, srcp, curlen);
			flush_dcache_page(ppages[i]);
645
			kunmap_atomic(destp);
646 647 648 649
			srcp += curlen;
			copy_len -= curlen;
			if (copy_len == 0)
				break;
650
			page_base = 0;
651 652 653 654 655 656 657 658 659 660
		}
		rqst->rq_rcv_buf.page_len = olen - copy_len;
	} else
		rqst->rq_rcv_buf.page_len = 0;

	if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
		curlen = copy_len;
		if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
			curlen = rqst->rq_rcv_buf.tail[0].iov_len;
		if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
661
			memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
662 663 664 665 666 667 668
		dprintk("RPC:       %s: tail srcp 0x%p len %d curlen %d\n",
			__func__, srcp, copy_len, curlen);
		rqst->rq_rcv_buf.tail[0].iov_len = curlen;
		copy_len -= curlen; ++i;
	} else
		rqst->rq_rcv_buf.tail[0].iov_len = 0;

669 670 671 672 673 674 675
	if (pad) {
		/* implicit padding on terminal chunk */
		unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
		while (pad--)
			p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
	}

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
	if (copy_len)
		dprintk("RPC:       %s: %d bytes in"
			" %d extra segments (%d lost)\n",
			__func__, olen, i, copy_len);

	/* TBD avoid a warning from call_decode() */
	rqst->rq_private_buf = rqst->rq_rcv_buf;
}

/*
 * This function is called when an async event is posted to
 * the connection which changes the connection state. All it
 * does at this point is mark the connection up/down, the rpc
 * timers do the rest.
 */
void
rpcrdma_conn_func(struct rpcrdma_ep *ep)
{
	struct rpc_xprt *xprt = ep->rep_xprt;

	spin_lock_bh(&xprt->transport_lock);
697 698
	if (++xprt->connect_cookie == 0)	/* maintain a reserved value */
		++xprt->connect_cookie;
699 700 701 702 703
	if (ep->rep_connected > 0) {
		if (!xprt_test_and_set_connected(xprt))
			xprt_wake_pending_tasks(xprt, 0);
	} else {
		if (xprt_test_and_clear_connected(xprt))
704
			xprt_wake_pending_tasks(xprt, -ENOTCONN);
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
	}
	spin_unlock_bh(&xprt->transport_lock);
}

/*
 * This function is called when memory window unbind which we are waiting
 * for completes. Just use rr_func (zeroed by upcall) to signal completion.
 */
static void
rpcrdma_unbind_func(struct rpcrdma_rep *rep)
{
	wake_up(&rep->rr_unbind);
}

/*
 * Called as a tasklet to do req/reply match and complete a request
 * Errors must result in the RPC task either being awakened, or
 * allowed to timeout, to discover the errors at that time.
 */
void
rpcrdma_reply_handler(struct rpcrdma_rep *rep)
{
	struct rpcrdma_msg *headerp;
	struct rpcrdma_req *req;
	struct rpc_rqst *rqst;
	struct rpc_xprt *xprt = rep->rr_xprt;
	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
A
Al Viro 已提交
732
	__be32 *iptr;
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
	int i, rdmalen, status;

	/* Check status. If bad, signal disconnect and return rep to pool */
	if (rep->rr_len == ~0U) {
		rpcrdma_recv_buffer_put(rep);
		if (r_xprt->rx_ep.rep_connected == 1) {
			r_xprt->rx_ep.rep_connected = -EIO;
			rpcrdma_conn_func(&r_xprt->rx_ep);
		}
		return;
	}
	if (rep->rr_len < 28) {
		dprintk("RPC:       %s: short/invalid reply\n", __func__);
		goto repost;
	}
	headerp = (struct rpcrdma_msg *) rep->rr_base;
	if (headerp->rm_vers != xdr_one) {
		dprintk("RPC:       %s: invalid version %d\n",
			__func__, ntohl(headerp->rm_vers));
		goto repost;
	}

	/* Get XID and try for a match. */
	spin_lock(&xprt->transport_lock);
	rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
	if (rqst == NULL) {
		spin_unlock(&xprt->transport_lock);
		dprintk("RPC:       %s: reply 0x%p failed "
			"to match any request xid 0x%08x len %d\n",
			__func__, rep, headerp->rm_xid, rep->rr_len);
repost:
		r_xprt->rx_stats.bad_reply_count++;
		rep->rr_func = rpcrdma_reply_handler;
		if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
			rpcrdma_recv_buffer_put(rep);

		return;
	}

	/* get request object */
	req = rpcr_to_rdmar(rqst);
774 775 776 777 778 779 780
	if (req->rl_reply) {
		spin_unlock(&xprt->transport_lock);
		dprintk("RPC:       %s: duplicate reply 0x%p to RPC "
			"request 0x%p: xid 0x%08x\n", __func__, rep, req,
			headerp->rm_xid);
		goto repost;
	}
781 782 783 784 785 786 787 788 789 790 791

	dprintk("RPC:       %s: reply 0x%p completes request 0x%p\n"
		"                   RPC request 0x%p xid 0x%08x\n",
			__func__, rep, req, rqst, headerp->rm_xid);

	/* from here on, the reply is no longer an orphan */
	req->rl_reply = rep;

	/* check for expected message types */
	/* The order of some of these tests is important. */
	switch (headerp->rm_type) {
792
	case htonl(RDMA_MSG):
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
		/* never expect read chunks */
		/* never expect reply chunks (two ways to check) */
		/* never expect write chunks without having offered RDMA */
		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
		    (headerp->rm_body.rm_chunks[1] == xdr_zero &&
		     headerp->rm_body.rm_chunks[2] != xdr_zero) ||
		    (headerp->rm_body.rm_chunks[1] != xdr_zero &&
		     req->rl_nchunks == 0))
			goto badheader;
		if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
			/* count any expected write chunks in read reply */
			/* start at write chunk array count */
			iptr = &headerp->rm_body.rm_chunks[2];
			rdmalen = rpcrdma_count_chunks(rep,
						req->rl_nchunks, 1, &iptr);
			/* check for validity, and no reply chunk after */
			if (rdmalen < 0 || *iptr++ != xdr_zero)
				goto badheader;
			rep->rr_len -=
			    ((unsigned char *)iptr - (unsigned char *)headerp);
			status = rep->rr_len + rdmalen;
			r_xprt->rx_stats.total_rdma_reply += rdmalen;
815 816 817 818 819
			/* special case - last chunk may omit padding */
			if (rdmalen &= 3) {
				rdmalen = 4 - rdmalen;
				status += rdmalen;
			}
820 821
		} else {
			/* else ordinary inline */
822
			rdmalen = 0;
A
Al Viro 已提交
823
			iptr = (__be32 *)((unsigned char *)headerp + 28);
824 825 826 827
			rep->rr_len -= 28; /*sizeof *headerp;*/
			status = rep->rr_len;
		}
		/* Fix up the rpc results for upper layer */
828
		rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen);
829 830
		break;

831
	case htonl(RDMA_NOMSG):
832 833 834 835 836 837
		/* never expect read or write chunks, always reply chunks */
		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
		    headerp->rm_body.rm_chunks[1] != xdr_zero ||
		    headerp->rm_body.rm_chunks[2] != xdr_one ||
		    req->rl_nchunks == 0)
			goto badheader;
A
Al Viro 已提交
838
		iptr = (__be32 *)((unsigned char *)headerp + 28);
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
		rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
		if (rdmalen < 0)
			goto badheader;
		r_xprt->rx_stats.total_rdma_reply += rdmalen;
		/* Reply chunk buffer already is the reply vector - no fixup. */
		status = rdmalen;
		break;

badheader:
	default:
		dprintk("%s: invalid rpcrdma reply header (type %d):"
				" chunks[012] == %d %d %d"
				" expected chunks <= %d\n",
				__func__, ntohl(headerp->rm_type),
				headerp->rm_body.rm_chunks[0],
				headerp->rm_body.rm_chunks[1],
				headerp->rm_body.rm_chunks[2],
				req->rl_nchunks);
		status = -EIO;
		r_xprt->rx_stats.bad_reply_count++;
		break;
	}

	/* If using mw bind, start the deregister process now. */
	/* (Note: if mr_free(), cannot perform it here, in tasklet context) */
	if (req->rl_nchunks) switch (r_xprt->rx_ia.ri_memreg_strategy) {
	case RPCRDMA_MEMWINDOWS:
		for (i = 0; req->rl_nchunks-- > 1;)
			i += rpcrdma_deregister_external(
				&req->rl_segments[i], r_xprt, NULL);
		/* Optionally wait (not here) for unbinds to complete */
		rep->rr_func = rpcrdma_unbind_func;
		(void) rpcrdma_deregister_external(&req->rl_segments[i],
						   r_xprt, rep);
		break;
	case RPCRDMA_MEMWINDOWS_ASYNC:
		for (i = 0; req->rl_nchunks--;)
			i += rpcrdma_deregister_external(&req->rl_segments[i],
							 r_xprt, NULL);
		break;
	default:
		break;
	}

	dprintk("RPC:       %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
			__func__, xprt, rqst, status);
	xprt_complete_rqst(rqst->rq_task, status);
	spin_unlock(&xprt->transport_lock);
}