migrate.c 71.7 KB
Newer Older
C
Christoph Lameter 已提交
1
/*
2
 * Memory Migration functionality - linux/mm/migrate.c
C
Christoph Lameter 已提交
3 4 5 6 7 8 9 10 11
 *
 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 *
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
C
Christoph Lameter 已提交
12
 * Christoph Lameter
C
Christoph Lameter 已提交
13 14 15
 */

#include <linux/migrate.h>
16
#include <linux/export.h>
C
Christoph Lameter 已提交
17
#include <linux/swap.h>
18
#include <linux/swapops.h>
C
Christoph Lameter 已提交
19
#include <linux/pagemap.h>
20
#include <linux/buffer_head.h>
C
Christoph Lameter 已提交
21
#include <linux/mm_inline.h>
22
#include <linux/nsproxy.h>
C
Christoph Lameter 已提交
23
#include <linux/pagevec.h>
24
#include <linux/ksm.h>
C
Christoph Lameter 已提交
25 26 27 28
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
29
#include <linux/writeback.h>
30 31
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
32
#include <linux/security.h>
33
#include <linux/backing-dev.h>
34
#include <linux/compaction.h>
35
#include <linux/syscalls.h>
N
Naoya Horiguchi 已提交
36
#include <linux/hugetlb.h>
37
#include <linux/hugetlb_cgroup.h>
38
#include <linux/gfp.h>
39
#include <linux/memremap.h>
40
#include <linux/balloon_compaction.h>
41
#include <linux/mmu_notifier.h>
42
#include <linux/page_idle.h>
43
#include <linux/page_owner.h>
44
#include <linux/sched/mm.h>
45
#include <linux/ptrace.h>
C
Christoph Lameter 已提交
46

47 48
#include <asm/tlbflush.h>

49 50 51
#define CREATE_TRACE_POINTS
#include <trace/events/migrate.h>

C
Christoph Lameter 已提交
52 53 54
#include "internal.h"

/*
55
 * migrate_prep() needs to be called before we start compiling a list of pages
56 57
 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
 * undesirable, use migrate_prep_local()
C
Christoph Lameter 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71
 */
int migrate_prep(void)
{
	/*
	 * Clear the LRU lists so pages can be isolated.
	 * Note that pages may be moved off the LRU after we have
	 * drained them. Those pages will fail to migrate like other
	 * pages that may be busy.
	 */
	lru_add_drain_all();

	return 0;
}

72 73 74 75 76 77 78 79
/* Do the necessary work of migrate_prep but not if it involves other CPUs */
int migrate_prep_local(void)
{
	lru_add_drain();

	return 0;
}

80
int isolate_movable_page(struct page *page, isolate_mode_t mode)
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
{
	struct address_space *mapping;

	/*
	 * Avoid burning cycles with pages that are yet under __free_pages(),
	 * or just got freed under us.
	 *
	 * In case we 'win' a race for a movable page being freed under us and
	 * raise its refcount preventing __free_pages() from doing its job
	 * the put_page() at the end of this block will take care of
	 * release this page, thus avoiding a nasty leakage.
	 */
	if (unlikely(!get_page_unless_zero(page)))
		goto out;

	/*
	 * Check PageMovable before holding a PG_lock because page's owner
	 * assumes anybody doesn't touch PG_lock of newly allocated page
	 * so unconditionally grapping the lock ruins page's owner side.
	 */
	if (unlikely(!__PageMovable(page)))
		goto out_putpage;
	/*
	 * As movable pages are not isolated from LRU lists, concurrent
	 * compaction threads can race against page migration functions
	 * as well as race against the releasing a page.
	 *
	 * In order to avoid having an already isolated movable page
	 * being (wrongly) re-isolated while it is under migration,
	 * or to avoid attempting to isolate pages being released,
	 * lets be sure we have the page lock
	 * before proceeding with the movable page isolation steps.
	 */
	if (unlikely(!trylock_page(page)))
		goto out_putpage;

	if (!PageMovable(page) || PageIsolated(page))
		goto out_no_isolated;

	mapping = page_mapping(page);
	VM_BUG_ON_PAGE(!mapping, page);

	if (!mapping->a_ops->isolate_page(page, mode))
		goto out_no_isolated;

	/* Driver shouldn't use PG_isolated bit of page->flags */
	WARN_ON_ONCE(PageIsolated(page));
	__SetPageIsolated(page);
	unlock_page(page);

131
	return 0;
132 133 134 135 136 137

out_no_isolated:
	unlock_page(page);
out_putpage:
	put_page(page);
out:
138
	return -EBUSY;
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
}

/* It should be called on page which is PG_movable */
void putback_movable_page(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	VM_BUG_ON_PAGE(!PageIsolated(page), page);

	mapping = page_mapping(page);
	mapping->a_ops->putback_page(page);
	__ClearPageIsolated(page);
}

155 156 157 158
/*
 * Put previously isolated pages back onto the appropriate lists
 * from where they were once taken off for compaction/migration.
 *
159 160 161
 * This function shall be used whenever the isolated pageset has been
 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 * and isolate_huge_page().
162 163 164 165 166 167
 */
void putback_movable_pages(struct list_head *l)
{
	struct page *page;
	struct page *page2;

C
Christoph Lameter 已提交
168
	list_for_each_entry_safe(page, page2, l, lru) {
169 170 171 172
		if (unlikely(PageHuge(page))) {
			putback_active_hugepage(page);
			continue;
		}
173
		list_del(&page->lru);
174 175 176 177 178
		/*
		 * We isolated non-lru movable page so here we can use
		 * __PageMovable because LRU page's mapping cannot have
		 * PAGE_MAPPING_MOVABLE.
		 */
179
		if (unlikely(__PageMovable(page))) {
180 181 182 183 184 185 186 187 188
			VM_BUG_ON_PAGE(!PageIsolated(page), page);
			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		} else {
189 190
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
					page_is_file_cache(page), -hpage_nr_pages(page));
191
			putback_lru_page(page);
192
		}
C
Christoph Lameter 已提交
193 194 195
	}
}

196 197 198
/*
 * Restore a potential migration pte to a working pte entry
 */
M
Minchan Kim 已提交
199
static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
200
				 unsigned long addr, void *old)
201
{
202 203 204 205 206 207 208 209
	struct page_vma_mapped_walk pvmw = {
		.page = old,
		.vma = vma,
		.address = addr,
		.flags = PVMW_SYNC | PVMW_MIGRATION,
	};
	struct page *new;
	pte_t pte;
210 211
	swp_entry_t entry;

212 213
	VM_BUG_ON_PAGE(PageTail(page), page);
	while (page_vma_mapped_walk(&pvmw)) {
214 215 216 217 218
		if (PageKsm(page))
			new = page;
		else
			new = page - pvmw.page->index +
				linear_page_index(vma, pvmw.address);
219

220 221 222 223 224 225 226 227 228
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
		/* PMD-mapped THP migration entry */
		if (!pvmw.pte) {
			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
			remove_migration_pmd(&pvmw, new);
			continue;
		}
#endif

229 230 231 232
		get_page(new);
		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
		if (pte_swp_soft_dirty(*pvmw.pte))
			pte = pte_mksoft_dirty(pte);
233

234 235 236 237 238 239
		/*
		 * Recheck VMA as permissions can change since migration started
		 */
		entry = pte_to_swp_entry(*pvmw.pte);
		if (is_write_migration_entry(entry))
			pte = maybe_mkwrite(pte, vma);
240

241 242 243 244 245 246 247
		if (unlikely(is_zone_device_page(new)) &&
		    is_device_private_page(new)) {
			entry = make_device_private_entry(new, pte_write(pte));
			pte = swp_entry_to_pte(entry);
		} else
			flush_dcache_page(new);

A
Andi Kleen 已提交
248
#ifdef CONFIG_HUGETLB_PAGE
249 250 251
		if (PageHuge(new)) {
			pte = pte_mkhuge(pte);
			pte = arch_make_huge_pte(pte, vma, new, 0);
252
			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
253 254 255 256
			if (PageAnon(new))
				hugepage_add_anon_rmap(new, vma, pvmw.address);
			else
				page_dup_rmap(new, true);
257 258 259 260
		} else
#endif
		{
			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261

262 263 264 265 266
			if (PageAnon(new))
				page_add_anon_rmap(new, vma, pvmw.address, false);
			else
				page_add_file_rmap(new, false);
		}
267 268 269 270 271 272
		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
			mlock_vma_page(new);

		/* No need to invalidate - it was non-present before */
		update_mmu_cache(vma, pvmw.address, pvmw.pte);
	}
273

M
Minchan Kim 已提交
274
	return true;
275 276
}

277 278 279 280
/*
 * Get rid of all migration entries and replace them by
 * references to the indicated page.
 */
281
void remove_migration_ptes(struct page *old, struct page *new, bool locked)
282
{
283 284 285 286 287
	struct rmap_walk_control rwc = {
		.rmap_one = remove_migration_pte,
		.arg = old,
	};

288 289 290 291
	if (locked)
		rmap_walk_locked(new, &rwc);
	else
		rmap_walk(new, &rwc);
292 293
}

294 295 296 297 298
/*
 * Something used the pte of a page under migration. We need to
 * get to the page and wait until migration is finished.
 * When we return from this function the fault will be retried.
 */
299
void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
300
				spinlock_t *ptl)
301
{
302
	pte_t pte;
303 304 305
	swp_entry_t entry;
	struct page *page;

306
	spin_lock(ptl);
307 308 309 310 311 312 313 314 315 316
	pte = *ptep;
	if (!is_swap_pte(pte))
		goto out;

	entry = pte_to_swp_entry(pte);
	if (!is_migration_entry(entry))
		goto out;

	page = migration_entry_to_page(entry);

N
Nick Piggin 已提交
317 318 319 320 321 322 323 324 325
	/*
	 * Once radix-tree replacement of page migration started, page_count
	 * *must* be zero. And, we don't want to call wait_on_page_locked()
	 * against a page without get_page().
	 * So, we use get_page_unless_zero(), here. Even failed, page fault
	 * will occur again.
	 */
	if (!get_page_unless_zero(page))
		goto out;
326 327 328 329 330 331 332 333
	pte_unmap_unlock(ptep, ptl);
	wait_on_page_locked(page);
	put_page(page);
	return;
out:
	pte_unmap_unlock(ptep, ptl);
}

334 335 336 337 338 339 340 341
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
				unsigned long address)
{
	spinlock_t *ptl = pte_lockptr(mm, pmd);
	pte_t *ptep = pte_offset_map(pmd, address);
	__migration_entry_wait(mm, ptep, ptl);
}

342 343
void migration_entry_wait_huge(struct vm_area_struct *vma,
		struct mm_struct *mm, pte_t *pte)
344
{
345
	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
346 347 348
	__migration_entry_wait(mm, pte, ptl);
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
{
	spinlock_t *ptl;
	struct page *page;

	ptl = pmd_lock(mm, pmd);
	if (!is_pmd_migration_entry(*pmd))
		goto unlock;
	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
	if (!get_page_unless_zero(page))
		goto unlock;
	spin_unlock(ptl);
	wait_on_page_locked(page);
	put_page(page);
	return;
unlock:
	spin_unlock(ptl);
}
#endif

370 371
#ifdef CONFIG_BLOCK
/* Returns true if all buffers are successfully locked */
372 373
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
							enum migrate_mode mode)
374 375 376 377
{
	struct buffer_head *bh = head;

	/* Simple case, sync compaction */
378
	if (mode != MIGRATE_ASYNC) {
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
		do {
			get_bh(bh);
			lock_buffer(bh);
			bh = bh->b_this_page;

		} while (bh != head);

		return true;
	}

	/* async case, we cannot block on lock_buffer so use trylock_buffer */
	do {
		get_bh(bh);
		if (!trylock_buffer(bh)) {
			/*
			 * We failed to lock the buffer and cannot stall in
			 * async migration. Release the taken locks
			 */
			struct buffer_head *failed_bh = bh;
			put_bh(failed_bh);
			bh = head;
			while (bh != failed_bh) {
				unlock_buffer(bh);
				put_bh(bh);
				bh = bh->b_this_page;
			}
			return false;
		}

		bh = bh->b_this_page;
	} while (bh != head);
	return true;
}
#else
static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
414
							enum migrate_mode mode)
415 416 417 418 419
{
	return true;
}
#endif /* CONFIG_BLOCK */

C
Christoph Lameter 已提交
420
/*
421
 * Replace the page in the mapping.
422 423 424 425
 *
 * The number of remaining references must be:
 * 1 for anonymous pages without a mapping
 * 2 for pages with a mapping
426
 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
C
Christoph Lameter 已提交
427
 */
428
int migrate_page_move_mapping(struct address_space *mapping,
429
		struct page *newpage, struct page *page,
430 431
		struct buffer_head *head, enum migrate_mode mode,
		int extra_count)
C
Christoph Lameter 已提交
432
{
433 434
	struct zone *oldzone, *newzone;
	int dirty;
435
	int expected_count = 1 + extra_count;
436
	void **pslot;
C
Christoph Lameter 已提交
437

438 439 440 441 442 443 444 445
	/*
	 * ZONE_DEVICE pages have 1 refcount always held by their device
	 *
	 * Note that DAX memory will never reach that point as it does not have
	 * the MEMORY_DEVICE_ALLOW_MIGRATE flag set (see memory_hotplug.h).
	 */
	expected_count += is_zone_device_page(page);

446
	if (!mapping) {
447
		/* Anonymous page without mapping */
448
		if (page_count(page) != expected_count)
449
			return -EAGAIN;
450 451 452 453 454

		/* No turning back from here */
		newpage->index = page->index;
		newpage->mapping = page->mapping;
		if (PageSwapBacked(page))
455
			__SetPageSwapBacked(newpage);
456

457
		return MIGRATEPAGE_SUCCESS;
458 459
	}

460 461 462
	oldzone = page_zone(page);
	newzone = page_zone(newpage);

N
Nick Piggin 已提交
463
	spin_lock_irq(&mapping->tree_lock);
C
Christoph Lameter 已提交
464

465 466
	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 					page_index(page));
C
Christoph Lameter 已提交
467

468
	expected_count += 1 + page_has_private(page);
N
Nick Piggin 已提交
469
	if (page_count(page) != expected_count ||
470
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
N
Nick Piggin 已提交
471
		spin_unlock_irq(&mapping->tree_lock);
472
		return -EAGAIN;
C
Christoph Lameter 已提交
473 474
	}

475
	if (!page_ref_freeze(page, expected_count)) {
N
Nick Piggin 已提交
476
		spin_unlock_irq(&mapping->tree_lock);
N
Nick Piggin 已提交
477 478 479
		return -EAGAIN;
	}

480 481 482 483 484 485 486
	/*
	 * In the async migration case of moving a page with buffers, lock the
	 * buffers using trylock before the mapping is moved. If the mapping
	 * was moved, we later failed to lock the buffers and could not move
	 * the mapping back due to an elevated page count, we would have to
	 * block waiting on other references to be dropped.
	 */
487 488
	if (mode == MIGRATE_ASYNC && head &&
			!buffer_migrate_lock_buffers(head, mode)) {
489
		page_ref_unfreeze(page, expected_count);
490 491 492 493
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

C
Christoph Lameter 已提交
494
	/*
495 496
	 * Now we know that no one else is looking at the page:
	 * no turning back from here.
C
Christoph Lameter 已提交
497
	 */
498 499
	newpage->index = page->index;
	newpage->mapping = page->mapping;
500
	get_page(newpage);	/* add cache reference */
501 502 503 504 505 506 507 508
	if (PageSwapBacked(page)) {
		__SetPageSwapBacked(newpage);
		if (PageSwapCache(page)) {
			SetPageSwapCache(newpage);
			set_page_private(newpage, page_private(page));
		}
	} else {
		VM_BUG_ON_PAGE(PageSwapCache(page), page);
C
Christoph Lameter 已提交
509 510
	}

511 512 513 514 515 516 517
	/* Move dirty while page refs frozen and newpage not yet exposed */
	dirty = PageDirty(page);
	if (dirty) {
		ClearPageDirty(page);
		SetPageDirty(newpage);
	}

518
	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
519 520

	/*
521 522
	 * Drop cache reference from old page by unfreezing
	 * to one less reference.
523 524
	 * We know this isn't the last reference.
	 */
525
	page_ref_unfreeze(page, expected_count - 1);
526

527 528 529
	spin_unlock(&mapping->tree_lock);
	/* Leave irq disabled to prevent preemption while updating stats */

530 531 532 533 534 535 536
	/*
	 * If moved to a different zone then also account
	 * the page for that zone. Other VM counters will be
	 * taken care of when we establish references to the
	 * new page and drop references to the old page.
	 *
	 * Note that anonymous pages are accounted for
537
	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
538 539
	 * are mapped to swap space.
	 */
540
	if (newzone != oldzone) {
541 542
		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
543
		if (PageSwapBacked(page) && !PageSwapCache(page)) {
544 545
			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
546 547
		}
		if (dirty && mapping_cap_account_dirty(mapping)) {
548
			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
549
			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
550
			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
551
			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
552
		}
553
	}
554
	local_irq_enable();
C
Christoph Lameter 已提交
555

556
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
557
}
558
EXPORT_SYMBOL(migrate_page_move_mapping);
C
Christoph Lameter 已提交
559

N
Naoya Horiguchi 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
/*
 * The expected number of remaining references is the same as that
 * of migrate_page_move_mapping().
 */
int migrate_huge_page_move_mapping(struct address_space *mapping,
				   struct page *newpage, struct page *page)
{
	int expected_count;
	void **pslot;

	spin_lock_irq(&mapping->tree_lock);

	pslot = radix_tree_lookup_slot(&mapping->page_tree,
					page_index(page));

	expected_count = 2 + page_has_private(page);
	if (page_count(page) != expected_count ||
577
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
N
Naoya Horiguchi 已提交
578 579 580 581
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

582
	if (!page_ref_freeze(page, expected_count)) {
N
Naoya Horiguchi 已提交
583 584 585 586
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

587 588
	newpage->index = page->index;
	newpage->mapping = page->mapping;
589

N
Naoya Horiguchi 已提交
590 591
	get_page(newpage);

592
	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
N
Naoya Horiguchi 已提交
593

594
	page_ref_unfreeze(page, expected_count - 1);
N
Naoya Horiguchi 已提交
595 596

	spin_unlock_irq(&mapping->tree_lock);
597

598
	return MIGRATEPAGE_SUCCESS;
N
Naoya Horiguchi 已提交
599 600
}

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
/*
 * Gigantic pages are so large that we do not guarantee that page++ pointer
 * arithmetic will work across the entire page.  We need something more
 * specialized.
 */
static void __copy_gigantic_page(struct page *dst, struct page *src,
				int nr_pages)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < nr_pages; ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

static void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	int nr_pages;

	if (PageHuge(src)) {
		/* hugetlbfs page */
		struct hstate *h = page_hstate(src);
		nr_pages = pages_per_huge_page(h);

		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
			__copy_gigantic_page(dst, src, nr_pages);
			return;
		}
	} else {
		/* thp page */
		BUG_ON(!PageTransHuge(src));
		nr_pages = hpage_nr_pages(src);
	}

	for (i = 0; i < nr_pages; i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

C
Christoph Lameter 已提交
649 650 651
/*
 * Copy the page to its new location
 */
652
void migrate_page_states(struct page *newpage, struct page *page)
C
Christoph Lameter 已提交
653
{
654 655
	int cpupid;

C
Christoph Lameter 已提交
656 657 658 659 660 661
	if (PageError(page))
		SetPageError(newpage);
	if (PageReferenced(page))
		SetPageReferenced(newpage);
	if (PageUptodate(page))
		SetPageUptodate(newpage);
L
Lee Schermerhorn 已提交
662
	if (TestClearPageActive(page)) {
663
		VM_BUG_ON_PAGE(PageUnevictable(page), page);
C
Christoph Lameter 已提交
664
		SetPageActive(newpage);
665 666
	} else if (TestClearPageUnevictable(page))
		SetPageUnevictable(newpage);
C
Christoph Lameter 已提交
667 668 669 670 671
	if (PageChecked(page))
		SetPageChecked(newpage);
	if (PageMappedToDisk(page))
		SetPageMappedToDisk(newpage);

672 673 674
	/* Move dirty on pages not done by migrate_page_move_mapping() */
	if (PageDirty(page))
		SetPageDirty(newpage);
C
Christoph Lameter 已提交
675

676 677 678 679 680
	if (page_is_young(page))
		set_page_young(newpage);
	if (page_is_idle(page))
		set_page_idle(newpage);

681 682 683 684 685 686 687
	/*
	 * Copy NUMA information to the new page, to prevent over-eager
	 * future migrations of this same page.
	 */
	cpupid = page_cpupid_xchg_last(page, -1);
	page_cpupid_xchg_last(newpage, cpupid);

688
	ksm_migrate_page(newpage, page);
689 690 691 692
	/*
	 * Please do not reorder this without considering how mm/ksm.c's
	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
	 */
693 694
	if (PageSwapCache(page))
		ClearPageSwapCache(page);
C
Christoph Lameter 已提交
695 696 697 698 699 700 701 702 703
	ClearPagePrivate(page);
	set_page_private(page, 0);

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
	if (PageWriteback(newpage))
		end_page_writeback(newpage);
704 705

	copy_page_owner(page, newpage);
706 707

	mem_cgroup_migrate(page, newpage);
C
Christoph Lameter 已提交
708
}
709 710 711 712 713 714 715 716 717 718 719
EXPORT_SYMBOL(migrate_page_states);

void migrate_page_copy(struct page *newpage, struct page *page)
{
	if (PageHuge(page) || PageTransHuge(page))
		copy_huge_page(newpage, page);
	else
		copy_highpage(newpage, page);

	migrate_page_states(newpage, page);
}
720
EXPORT_SYMBOL(migrate_page_copy);
C
Christoph Lameter 已提交
721

722 723 724 725
/************************************************************
 *                    Migration functions
 ***********************************************************/

C
Christoph Lameter 已提交
726
/*
727
 * Common logic to directly migrate a single LRU page suitable for
728
 * pages that do not use PagePrivate/PagePrivate2.
C
Christoph Lameter 已提交
729 730 731
 *
 * Pages are locked upon entry and exit.
 */
732
int migrate_page(struct address_space *mapping,
733 734
		struct page *newpage, struct page *page,
		enum migrate_mode mode)
C
Christoph Lameter 已提交
735 736 737 738 739
{
	int rc;

	BUG_ON(PageWriteback(page));	/* Writeback must be complete */

740
	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
C
Christoph Lameter 已提交
741

742
	if (rc != MIGRATEPAGE_SUCCESS)
C
Christoph Lameter 已提交
743 744
		return rc;

745 746 747 748
	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
749
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
750 751 752
}
EXPORT_SYMBOL(migrate_page);

753
#ifdef CONFIG_BLOCK
754 755 756 757 758
/*
 * Migration function for pages with buffers. This function can only be used
 * if the underlying filesystem guarantees that no other references to "page"
 * exist.
 */
759
int buffer_migrate_page(struct address_space *mapping,
760
		struct page *newpage, struct page *page, enum migrate_mode mode)
761 762 763 764 765
{
	struct buffer_head *bh, *head;
	int rc;

	if (!page_has_buffers(page))
766
		return migrate_page(mapping, newpage, page, mode);
767 768 769

	head = page_buffers(page);

770
	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
771

772
	if (rc != MIGRATEPAGE_SUCCESS)
773 774
		return rc;

775 776 777 778 779
	/*
	 * In the async case, migrate_page_move_mapping locked the buffers
	 * with an IRQ-safe spinlock held. In the sync case, the buffers
	 * need to be locked now
	 */
780 781
	if (mode != MIGRATE_ASYNC)
		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

	ClearPagePrivate(page);
	set_page_private(newpage, page_private(page));
	set_page_private(page, 0);
	put_page(page);
	get_page(newpage);

	bh = head;
	do {
		set_bh_page(bh, newpage, bh_offset(bh));
		bh = bh->b_this_page;

	} while (bh != head);

	SetPagePrivate(newpage);

798 799 800 801
	if (mode != MIGRATE_SYNC_NO_COPY)
		migrate_page_copy(newpage, page);
	else
		migrate_page_states(newpage, page);
802 803 804 805

	bh = head;
	do {
		unlock_buffer(bh);
806
		put_bh(bh);
807 808 809 810
		bh = bh->b_this_page;

	} while (bh != head);

811
	return MIGRATEPAGE_SUCCESS;
812 813
}
EXPORT_SYMBOL(buffer_migrate_page);
814
#endif
815

816 817 818 819
/*
 * Writeback a page to clean the dirty state
 */
static int writeout(struct address_space *mapping, struct page *page)
820
{
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_NONE,
		.nr_to_write = 1,
		.range_start = 0,
		.range_end = LLONG_MAX,
		.for_reclaim = 1
	};
	int rc;

	if (!mapping->a_ops->writepage)
		/* No write method for the address space */
		return -EINVAL;

	if (!clear_page_dirty_for_io(page))
		/* Someone else already triggered a write */
		return -EAGAIN;

838
	/*
839 840 841 842 843 844
	 * A dirty page may imply that the underlying filesystem has
	 * the page on some queue. So the page must be clean for
	 * migration. Writeout may mean we loose the lock and the
	 * page state is no longer what we checked for earlier.
	 * At this point we know that the migration attempt cannot
	 * be successful.
845
	 */
846
	remove_migration_ptes(page, page, false);
847

848
	rc = mapping->a_ops->writepage(page, &wbc);
849

850 851 852 853
	if (rc != AOP_WRITEPAGE_ACTIVATE)
		/* unlocked. Relock */
		lock_page(page);

H
Hugh Dickins 已提交
854
	return (rc < 0) ? -EIO : -EAGAIN;
855 856 857 858 859 860
}

/*
 * Default handling if a filesystem does not provide a migration function.
 */
static int fallback_migrate_page(struct address_space *mapping,
861
	struct page *newpage, struct page *page, enum migrate_mode mode)
862
{
863
	if (PageDirty(page)) {
864
		/* Only writeback pages in full synchronous migration */
865 866 867 868 869
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
870
			return -EBUSY;
871
		}
872
		return writeout(mapping, page);
873
	}
874 875 876 877 878

	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
879
	if (page_has_private(page) &&
880 881 882
	    !try_to_release_page(page, GFP_KERNEL))
		return -EAGAIN;

883
	return migrate_page(mapping, newpage, page, mode);
884 885
}

886 887 888 889 890 891
/*
 * Move a page to a newly allocated page
 * The page is locked and all ptes have been successfully removed.
 *
 * The new page will have replaced the old page if this function
 * is successful.
L
Lee Schermerhorn 已提交
892 893 894
 *
 * Return value:
 *   < 0 - error code
895
 *  MIGRATEPAGE_SUCCESS - success
896
 */
897
static int move_to_new_page(struct page *newpage, struct page *page,
898
				enum migrate_mode mode)
899 900
{
	struct address_space *mapping;
901 902
	int rc = -EAGAIN;
	bool is_lru = !__PageMovable(page);
903

904 905
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
906 907

	mapping = page_mapping(page);
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925

	if (likely(is_lru)) {
		if (!mapping)
			rc = migrate_page(mapping, newpage, page, mode);
		else if (mapping->a_ops->migratepage)
			/*
			 * Most pages have a mapping and most filesystems
			 * provide a migratepage callback. Anonymous pages
			 * are part of swap space which also has its own
			 * migratepage callback. This is the most common path
			 * for page migration.
			 */
			rc = mapping->a_ops->migratepage(mapping, newpage,
							page, mode);
		else
			rc = fallback_migrate_page(mapping, newpage,
							page, mode);
	} else {
926
		/*
927 928
		 * In case of non-lru page, it could be released after
		 * isolation step. In that case, we shouldn't try migration.
929
		 */
930 931 932 933 934 935 936 937 938 939 940 941
		VM_BUG_ON_PAGE(!PageIsolated(page), page);
		if (!PageMovable(page)) {
			rc = MIGRATEPAGE_SUCCESS;
			__ClearPageIsolated(page);
			goto out;
		}

		rc = mapping->a_ops->migratepage(mapping, newpage,
						page, mode);
		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
			!PageIsolated(page));
	}
942

943 944 945 946 947
	/*
	 * When successful, old pagecache page->mapping must be cleared before
	 * page is freed; but stats require that PageAnon be left as PageAnon.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
		if (__PageMovable(page)) {
			VM_BUG_ON_PAGE(!PageIsolated(page), page);

			/*
			 * We clear PG_movable under page_lock so any compactor
			 * cannot try to migrate this page.
			 */
			__ClearPageIsolated(page);
		}

		/*
		 * Anonymous and movable page->mapping will be cleard by
		 * free_pages_prepare so don't reset it here for keeping
		 * the type to work PageAnon, for example.
		 */
		if (!PageMappingFlags(page))
964
			page->mapping = NULL;
965
	}
966
out:
967 968 969
	return rc;
}

970
static int __unmap_and_move(struct page *page, struct page *newpage,
971
				int force, enum migrate_mode mode)
972
{
973
	int rc = -EAGAIN;
974
	int page_was_mapped = 0;
975
	struct anon_vma *anon_vma = NULL;
976
	bool is_lru = !__PageMovable(page);
977

N
Nick Piggin 已提交
978
	if (!trylock_page(page)) {
979
		if (!force || mode == MIGRATE_ASYNC)
980
			goto out;
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995

		/*
		 * It's not safe for direct compaction to call lock_page.
		 * For example, during page readahead pages are added locked
		 * to the LRU. Later, when the IO completes the pages are
		 * marked uptodate and unlocked. However, the queueing
		 * could be merging multiple pages for one bio (e.g.
		 * mpage_readpages). If an allocation happens for the
		 * second or third page, the process can end up locking
		 * the same page twice and deadlocking. Rather than
		 * trying to be clever about what pages can be locked,
		 * avoid the use of lock_page for direct compaction
		 * altogether.
		 */
		if (current->flags & PF_MEMALLOC)
996
			goto out;
997

998 999 1000 1001
		lock_page(page);
	}

	if (PageWriteback(page)) {
1002
		/*
1003
		 * Only in the case of a full synchronous migration is it
1004 1005 1006
		 * necessary to wait for PageWriteback. In the async case,
		 * the retry loop is too short and in the sync-light case,
		 * the overhead of stalling is too much
1007
		 */
1008 1009 1010 1011 1012
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
1013
			rc = -EBUSY;
1014
			goto out_unlock;
1015 1016
		}
		if (!force)
1017
			goto out_unlock;
1018 1019
		wait_on_page_writeback(page);
	}
1020

1021
	/*
1022 1023
	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
	 * we cannot notice that anon_vma is freed while we migrates a page.
1024
	 * This get_anon_vma() delays freeing anon_vma pointer until the end
1025
	 * of migration. File cache pages are no problem because of page_lock()
1026 1027
	 * File Caches may use write_page() or lock_page() in migration, then,
	 * just care Anon page here.
1028 1029 1030 1031 1032 1033
	 *
	 * Only page_get_anon_vma() understands the subtleties of
	 * getting a hold on an anon_vma from outside one of its mms.
	 * But if we cannot get anon_vma, then we won't need it anyway,
	 * because that implies that the anon page is no longer mapped
	 * (and cannot be remapped so long as we hold the page lock).
1034
	 */
1035
	if (PageAnon(page) && !PageKsm(page))
1036
		anon_vma = page_get_anon_vma(page);
1037

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	/*
	 * Block others from accessing the new page when we get around to
	 * establishing additional references. We are usually the only one
	 * holding a reference to newpage at this point. We used to have a BUG
	 * here if trylock_page(newpage) fails, but would like to allow for
	 * cases where there might be a race with the previous use of newpage.
	 * This is much like races on refcount of oldpage: just don't BUG().
	 */
	if (unlikely(!trylock_page(newpage)))
		goto out_unlock;

1049 1050 1051 1052 1053
	if (unlikely(!is_lru)) {
		rc = move_to_new_page(newpage, page, mode);
		goto out_unlock_both;
	}

1054
	/*
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	 * Corner case handling:
	 * 1. When a new swap-cache page is read into, it is added to the LRU
	 * and treated as swapcache but it has no rmap yet.
	 * Calling try_to_unmap() against a page->mapping==NULL page will
	 * trigger a BUG.  So handle it here.
	 * 2. An orphaned page (see truncate_complete_page) might have
	 * fs-private metadata. The page can be picked up due to memory
	 * offlining.  Everywhere else except page reclaim, the page is
	 * invisible to the vm, so the page can not be migrated.  So try to
	 * free the metadata, so the page can be freed.
1065
	 */
1066
	if (!page->mapping) {
1067
		VM_BUG_ON_PAGE(PageAnon(page), page);
1068
		if (page_has_private(page)) {
1069
			try_to_free_buffers(page);
1070
			goto out_unlock_both;
1071
		}
1072 1073
	} else if (page_mapped(page)) {
		/* Establish migration ptes */
1074 1075
		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
				page);
1076
		try_to_unmap(page,
1077
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1078 1079
		page_was_mapped = 1;
	}
1080

1081
	if (!page_mapped(page))
1082
		rc = move_to_new_page(newpage, page, mode);
1083

1084 1085
	if (page_was_mapped)
		remove_migration_ptes(page,
1086
			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1087

1088 1089 1090
out_unlock_both:
	unlock_page(newpage);
out_unlock:
1091
	/* Drop an anon_vma reference if we took one */
1092
	if (anon_vma)
1093
		put_anon_vma(anon_vma);
1094
	unlock_page(page);
1095
out:
1096 1097 1098 1099 1100 1101 1102
	/*
	 * If migration is successful, decrease refcount of the newpage
	 * which will not free the page because new page owner increased
	 * refcounter. As well, if it is LRU page, add the page to LRU
	 * list in here.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
1103
		if (unlikely(__PageMovable(newpage)))
1104 1105 1106 1107 1108
			put_page(newpage);
		else
			putback_lru_page(newpage);
	}

1109 1110
	return rc;
}
1111

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
/*
 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
 * around it.
 */
#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
#define ICE_noinline noinline
#else
#define ICE_noinline
#endif

1122 1123 1124 1125
/*
 * Obtain the lock on page, remove all ptes and migrate the page
 * to the newly allocated page in newpage.
 */
1126 1127 1128
static ICE_noinline int unmap_and_move(new_page_t get_new_page,
				   free_page_t put_new_page,
				   unsigned long private, struct page *page,
1129 1130
				   int force, enum migrate_mode mode,
				   enum migrate_reason reason)
1131
{
1132
	int rc = MIGRATEPAGE_SUCCESS;
1133
	int *result = NULL;
1134
	struct page *newpage;
1135

1136
	newpage = get_new_page(page, private, &result);
1137 1138 1139 1140 1141
	if (!newpage)
		return -ENOMEM;

	if (page_count(page) == 1) {
		/* page was freed from under us. So we are done. */
1142 1143
		ClearPageActive(page);
		ClearPageUnevictable(page);
1144 1145 1146 1147 1148 1149
		if (unlikely(__PageMovable(page))) {
			lock_page(page);
			if (!PageMovable(page))
				__ClearPageIsolated(page);
			unlock_page(page);
		}
1150 1151 1152 1153
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1154 1155 1156
		goto out;
	}

1157
	if (unlikely(PageTransHuge(page) && !PageTransHuge(newpage))) {
1158 1159 1160 1161
		lock_page(page);
		rc = split_huge_page(page);
		unlock_page(page);
		if (rc)
1162
			goto out;
1163
	}
1164

1165
	rc = __unmap_and_move(page, newpage, force, mode);
1166
	if (rc == MIGRATEPAGE_SUCCESS)
1167
		set_page_owner_migrate_reason(newpage, reason);
1168

1169
out:
1170
	if (rc != -EAGAIN) {
1171 1172 1173 1174 1175 1176 1177
		/*
		 * A page that has been migrated has all references
		 * removed and will be freed. A page that has not been
		 * migrated will have kepts its references and be
		 * restored.
		 */
		list_del(&page->lru);
1178 1179 1180 1181 1182 1183 1184

		/*
		 * Compaction can migrate also non-LRU pages which are
		 * not accounted to NR_ISOLATED_*. They can be recognized
		 * as __PageMovable
		 */
		if (likely(!__PageMovable(page)))
1185 1186
			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
					page_is_file_cache(page), -hpage_nr_pages(page));
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	}

	/*
	 * If migration is successful, releases reference grabbed during
	 * isolation. Otherwise, restore the page to right list unless
	 * we want to retry.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
		put_page(page);
		if (reason == MR_MEMORY_FAILURE) {
1197
			/*
1198 1199 1200
			 * Set PG_HWPoison on just freed page
			 * intentionally. Although it's rather weird,
			 * it's how HWPoison flag works at the moment.
1201
			 */
1202 1203
			if (!test_set_page_hwpoison(page))
				num_poisoned_pages_inc();
1204 1205
		}
	} else {
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
		if (rc != -EAGAIN) {
			if (likely(!__PageMovable(page))) {
				putback_lru_page(page);
				goto put_new;
			}

			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		}
put_new:
1221 1222 1223 1224
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1225
	}
1226

1227 1228 1229 1230 1231 1232
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(newpage);
	}
1233 1234 1235
	return rc;
}

N
Naoya Horiguchi 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
/*
 * Counterpart of unmap_and_move_page() for hugepage migration.
 *
 * This function doesn't wait the completion of hugepage I/O
 * because there is no race between I/O and migration for hugepage.
 * Note that currently hugepage I/O occurs only in direct I/O
 * where no lock is held and PG_writeback is irrelevant,
 * and writeback status of all subpages are counted in the reference
 * count of the head page (i.e. if all subpages of a 2MB hugepage are
 * under direct I/O, the reference of the head page is 512 and a bit more.)
 * This means that when we try to migrate hugepage whose subpages are
 * doing direct I/O, some references remain after try_to_unmap() and
 * hugepage migration fails without data corruption.
 *
 * There is also no race when direct I/O is issued on the page under migration,
 * because then pte is replaced with migration swap entry and direct I/O code
 * will wait in the page fault for migration to complete.
 */
static int unmap_and_move_huge_page(new_page_t get_new_page,
1255 1256
				free_page_t put_new_page, unsigned long private,
				struct page *hpage, int force,
1257
				enum migrate_mode mode, int reason)
N
Naoya Horiguchi 已提交
1258
{
1259
	int rc = -EAGAIN;
N
Naoya Horiguchi 已提交
1260
	int *result = NULL;
1261
	int page_was_mapped = 0;
1262
	struct page *new_hpage;
N
Naoya Horiguchi 已提交
1263 1264
	struct anon_vma *anon_vma = NULL;

1265 1266 1267 1268 1269 1270 1271
	/*
	 * Movability of hugepages depends on architectures and hugepage size.
	 * This check is necessary because some callers of hugepage migration
	 * like soft offline and memory hotremove don't walk through page
	 * tables or check whether the hugepage is pmd-based or not before
	 * kicking migration.
	 */
1272
	if (!hugepage_migration_supported(page_hstate(hpage))) {
1273
		putback_active_hugepage(hpage);
1274
		return -ENOSYS;
1275
	}
1276

1277
	new_hpage = get_new_page(hpage, private, &result);
N
Naoya Horiguchi 已提交
1278 1279 1280 1281
	if (!new_hpage)
		return -ENOMEM;

	if (!trylock_page(hpage)) {
1282
		if (!force)
N
Naoya Horiguchi 已提交
1283
			goto out;
1284 1285 1286 1287 1288 1289 1290
		switch (mode) {
		case MIGRATE_SYNC:
		case MIGRATE_SYNC_NO_COPY:
			break;
		default:
			goto out;
		}
N
Naoya Horiguchi 已提交
1291 1292 1293
		lock_page(hpage);
	}

1294 1295
	if (PageAnon(hpage))
		anon_vma = page_get_anon_vma(hpage);
N
Naoya Horiguchi 已提交
1296

1297 1298 1299
	if (unlikely(!trylock_page(new_hpage)))
		goto put_anon;

1300 1301 1302 1303 1304
	if (page_mapped(hpage)) {
		try_to_unmap(hpage,
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
		page_was_mapped = 1;
	}
N
Naoya Horiguchi 已提交
1305 1306

	if (!page_mapped(hpage))
1307
		rc = move_to_new_page(new_hpage, hpage, mode);
N
Naoya Horiguchi 已提交
1308

1309 1310
	if (page_was_mapped)
		remove_migration_ptes(hpage,
1311
			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
N
Naoya Horiguchi 已提交
1312

1313 1314 1315
	unlock_page(new_hpage);

put_anon:
H
Hugh Dickins 已提交
1316
	if (anon_vma)
1317
		put_anon_vma(anon_vma);
1318

1319
	if (rc == MIGRATEPAGE_SUCCESS) {
1320
		hugetlb_cgroup_migrate(hpage, new_hpage);
1321
		put_new_page = NULL;
1322
		set_page_owner_migrate_reason(new_hpage, reason);
1323
	}
1324

N
Naoya Horiguchi 已提交
1325
	unlock_page(hpage);
1326
out:
1327 1328
	if (rc != -EAGAIN)
		putback_active_hugepage(hpage);
1329 1330
	if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
		num_poisoned_pages_inc();
1331 1332 1333 1334 1335 1336

	/*
	 * If migration was not successful and there's a freeing callback, use
	 * it.  Otherwise, put_page() will drop the reference grabbed during
	 * isolation.
	 */
1337
	if (put_new_page)
1338 1339
		put_new_page(new_hpage, private);
	else
1340
		putback_active_hugepage(new_hpage);
1341

N
Naoya Horiguchi 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(new_hpage);
	}
	return rc;
}

C
Christoph Lameter 已提交
1351
/*
1352 1353
 * migrate_pages - migrate the pages specified in a list, to the free pages
 *		   supplied as the target for the page migration
C
Christoph Lameter 已提交
1354
 *
1355 1356 1357
 * @from:		The list of pages to be migrated.
 * @get_new_page:	The function used to allocate free pages to be used
 *			as the target of the page migration.
1358 1359
 * @put_new_page:	The function used to free target pages if migration
 *			fails, or NULL if no special handling is necessary.
1360 1361 1362 1363
 * @private:		Private data to be passed on to get_new_page()
 * @mode:		The migration mode that specifies the constraints for
 *			page migration, if any.
 * @reason:		The reason for page migration.
C
Christoph Lameter 已提交
1364
 *
1365 1366
 * The function returns after 10 attempts or if no pages are movable any more
 * because the list has become empty or no retryable pages exist any more.
1367
 * The caller should call putback_movable_pages() to return pages to the LRU
1368
 * or free list only if ret != 0.
C
Christoph Lameter 已提交
1369
 *
1370
 * Returns the number of pages that were not migrated, or an error code.
C
Christoph Lameter 已提交
1371
 */
1372
int migrate_pages(struct list_head *from, new_page_t get_new_page,
1373 1374
		free_page_t put_new_page, unsigned long private,
		enum migrate_mode mode, int reason)
C
Christoph Lameter 已提交
1375
{
1376
	int retry = 1;
C
Christoph Lameter 已提交
1377
	int nr_failed = 0;
1378
	int nr_succeeded = 0;
C
Christoph Lameter 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387
	int pass = 0;
	struct page *page;
	struct page *page2;
	int swapwrite = current->flags & PF_SWAPWRITE;
	int rc;

	if (!swapwrite)
		current->flags |= PF_SWAPWRITE;

1388 1389
	for(pass = 0; pass < 10 && retry; pass++) {
		retry = 0;
C
Christoph Lameter 已提交
1390

1391 1392
		list_for_each_entry_safe(page, page2, from, lru) {
			cond_resched();
1393

1394 1395
			if (PageHuge(page))
				rc = unmap_and_move_huge_page(get_new_page,
1396
						put_new_page, private, page,
1397
						pass > 2, mode, reason);
1398
			else
1399
				rc = unmap_and_move(get_new_page, put_new_page,
1400 1401
						private, page, pass > 2, mode,
						reason);
1402

1403
			switch(rc) {
1404
			case -ENOMEM:
1405
				nr_failed++;
1406
				goto out;
1407
			case -EAGAIN:
1408
				retry++;
1409
				break;
1410
			case MIGRATEPAGE_SUCCESS:
1411
				nr_succeeded++;
1412 1413
				break;
			default:
1414 1415 1416 1417 1418 1419
				/*
				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
				 * unlike -EAGAIN case, the failed page is
				 * removed from migration page list and not
				 * retried in the next outer loop.
				 */
1420
				nr_failed++;
1421
				break;
1422
			}
C
Christoph Lameter 已提交
1423 1424
		}
	}
1425 1426
	nr_failed += retry;
	rc = nr_failed;
1427
out:
1428 1429 1430 1431
	if (nr_succeeded)
		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
	if (nr_failed)
		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1432 1433
	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);

C
Christoph Lameter 已提交
1434 1435 1436
	if (!swapwrite)
		current->flags &= ~PF_SWAPWRITE;

1437
	return rc;
C
Christoph Lameter 已提交
1438
}
1439

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
#ifdef CONFIG_NUMA
/*
 * Move a list of individual pages
 */
struct page_to_node {
	unsigned long addr;
	struct page *page;
	int node;
	int status;
};

static struct page *new_page_node(struct page *p, unsigned long private,
		int **result)
{
	struct page_to_node *pm = (struct page_to_node *)private;

	while (pm->node != MAX_NUMNODES && pm->page != p)
		pm++;

	if (pm->node == MAX_NUMNODES)
		return NULL;

	*result = &pm->status;

1464 1465 1466
	if (PageHuge(p))
		return alloc_huge_page_node(page_hstate(compound_head(p)),
					pm->node);
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
	else if (thp_migration_supported() && PageTransHuge(p)) {
		struct page *thp;

		thp = alloc_pages_node(pm->node,
			(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
			HPAGE_PMD_ORDER);
		if (!thp)
			return NULL;
		prep_transhuge_page(thp);
		return thp;
	} else
1478
		return __alloc_pages_node(pm->node,
1479
				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1480 1481 1482 1483 1484 1485
}

/*
 * Move a set of pages as indicated in the pm array. The addr
 * field must be set to the virtual address of the page to be moved
 * and the node number must contain a valid target node.
1486
 * The pm array ends with node = MAX_NUMNODES.
1487
 */
1488 1489 1490
static int do_move_page_to_node_array(struct mm_struct *mm,
				      struct page_to_node *pm,
				      int migrate_all)
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
{
	int err;
	struct page_to_node *pp;
	LIST_HEAD(pagelist);

	down_read(&mm->mmap_sem);

	/*
	 * Build a list of pages to migrate
	 */
	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
		struct vm_area_struct *vma;
		struct page *page;
1504 1505
		struct page *head;
		unsigned int follflags;
1506 1507 1508

		err = -EFAULT;
		vma = find_vma(mm, pp->addr);
1509
		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1510 1511
			goto set_status;

1512
		/* FOLL_DUMP to ignore special (like zero) pages */
1513 1514 1515 1516
		follflags = FOLL_GET | FOLL_DUMP;
		if (!thp_migration_supported())
			follflags |= FOLL_SPLIT;
		page = follow_page(vma, pp->addr, follflags);
1517 1518 1519 1520 1521

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
		err = -ENOENT;
		if (!page)
			goto set_status;

		err = page_to_nid(page);

		if (err == pp->node)
			/*
			 * Node already in the right place
			 */
			goto put_and_set;

		err = -EACCES;
		if (page_mapcount(page) > 1 &&
				!migrate_all)
			goto put_and_set;

1539
		if (PageHuge(page)) {
1540
			if (PageHead(page)) {
1541
				isolate_huge_page(page, &pagelist);
1542 1543 1544
				err = 0;
				pp->page = page;
			}
1545 1546 1547
			goto put_and_set;
		}

1548 1549 1550
		pp->page = compound_head(page);
		head = compound_head(page);
		err = isolate_lru_page(head);
1551
		if (!err) {
1552 1553 1554 1555
			list_add_tail(&head->lru, &pagelist);
			mod_node_page_state(page_pgdat(head),
				NR_ISOLATED_ANON + page_is_file_cache(head),
				hpage_nr_pages(head));
1556
		}
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
put_and_set:
		/*
		 * Either remove the duplicate refcount from
		 * isolate_lru_page() or drop the page ref if it was
		 * not isolated.
		 */
		put_page(page);
set_status:
		pp->status = err;
	}

1568
	err = 0;
1569
	if (!list_empty(&pagelist)) {
1570
		err = migrate_pages(&pagelist, new_page_node, NULL,
1571
				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1572
		if (err)
1573
			putback_movable_pages(&pagelist);
1574
	}
1575 1576 1577 1578 1579

	up_read(&mm->mmap_sem);
	return err;
}

1580 1581 1582 1583
/*
 * Migrate an array of page address onto an array of nodes and fill
 * the corresponding array of status.
 */
1584
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1585 1586 1587 1588 1589
			 unsigned long nr_pages,
			 const void __user * __user *pages,
			 const int __user *nodes,
			 int __user *status, int flags)
{
1590 1591 1592 1593
	struct page_to_node *pm;
	unsigned long chunk_nr_pages;
	unsigned long chunk_start;
	int err;
1594

1595 1596 1597
	err = -ENOMEM;
	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
	if (!pm)
1598
		goto out;
1599 1600 1601

	migrate_prep();

1602
	/*
1603 1604
	 * Store a chunk of page_to_node array in a page,
	 * but keep the last one as a marker
1605
	 */
1606
	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1607

1608 1609 1610 1611
	for (chunk_start = 0;
	     chunk_start < nr_pages;
	     chunk_start += chunk_nr_pages) {
		int j;
1612

1613 1614 1615 1616 1617 1618
		if (chunk_start + chunk_nr_pages > nr_pages)
			chunk_nr_pages = nr_pages - chunk_start;

		/* fill the chunk pm with addrs and nodes from user-space */
		for (j = 0; j < chunk_nr_pages; j++) {
			const void __user *p;
1619 1620
			int node;

1621 1622 1623 1624 1625 1626
			err = -EFAULT;
			if (get_user(p, pages + j + chunk_start))
				goto out_pm;
			pm[j].addr = (unsigned long) p;

			if (get_user(node, nodes + j + chunk_start))
1627 1628 1629
				goto out_pm;

			err = -ENODEV;
1630 1631 1632
			if (node < 0 || node >= MAX_NUMNODES)
				goto out_pm;

1633
			if (!node_state(node, N_MEMORY))
1634 1635 1636 1637 1638 1639
				goto out_pm;

			err = -EACCES;
			if (!node_isset(node, task_nodes))
				goto out_pm;

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
			pm[j].node = node;
		}

		/* End marker for this chunk */
		pm[chunk_nr_pages].node = MAX_NUMNODES;

		/* Migrate this chunk */
		err = do_move_page_to_node_array(mm, pm,
						 flags & MPOL_MF_MOVE_ALL);
		if (err < 0)
			goto out_pm;
1651 1652

		/* Return status information */
1653 1654
		for (j = 0; j < chunk_nr_pages; j++)
			if (put_user(pm[j].status, status + j + chunk_start)) {
1655
				err = -EFAULT;
1656 1657 1658 1659
				goto out_pm;
			}
	}
	err = 0;
1660 1661

out_pm:
1662
	free_page((unsigned long)pm);
1663 1664 1665 1666
out:
	return err;
}

1667
/*
1668
 * Determine the nodes of an array of pages and store it in an array of status.
1669
 */
1670 1671
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
				const void __user **pages, int *status)
1672
{
1673 1674
	unsigned long i;

1675 1676
	down_read(&mm->mmap_sem);

1677
	for (i = 0; i < nr_pages; i++) {
1678
		unsigned long addr = (unsigned long)(*pages);
1679 1680
		struct vm_area_struct *vma;
		struct page *page;
1681
		int err = -EFAULT;
1682 1683

		vma = find_vma(mm, addr);
1684
		if (!vma || addr < vma->vm_start)
1685 1686
			goto set_status;

1687 1688
		/* FOLL_DUMP to ignore special (like zero) pages */
		page = follow_page(vma, addr, FOLL_DUMP);
1689 1690 1691 1692 1693

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1694
		err = page ? page_to_nid(page) : -ENOENT;
1695
set_status:
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
		*status = err;

		pages++;
		status++;
	}

	up_read(&mm->mmap_sem);
}

/*
 * Determine the nodes of a user array of pages and store it in
 * a user array of status.
 */
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
			 const void __user * __user *pages,
			 int __user *status)
{
#define DO_PAGES_STAT_CHUNK_NR 16
	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
	int chunk_status[DO_PAGES_STAT_CHUNK_NR];

1717 1718
	while (nr_pages) {
		unsigned long chunk_nr;
1719

1720 1721 1722 1723 1724 1725
		chunk_nr = nr_pages;
		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
			chunk_nr = DO_PAGES_STAT_CHUNK_NR;

		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
			break;
1726 1727 1728

		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);

1729 1730
		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
			break;
1731

1732 1733 1734 1735 1736
		pages += chunk_nr;
		status += chunk_nr;
		nr_pages -= chunk_nr;
	}
	return nr_pages ? -EFAULT : 0;
1737 1738 1739 1740 1741 1742
}

/*
 * Move a list of pages in the address space of the currently executing
 * process.
 */
1743 1744 1745 1746
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
		const void __user * __user *, pages,
		const int __user *, nodes,
		int __user *, status, int, flags)
1747 1748 1749
{
	struct task_struct *task;
	struct mm_struct *mm;
1750
	int err;
1751
	nodemask_t task_nodes;
1752 1753 1754 1755 1756 1757 1758 1759 1760

	/* Check flags */
	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
		return -EINVAL;

	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
		return -EPERM;

	/* Find the mm_struct */
1761
	rcu_read_lock();
1762
	task = pid ? find_task_by_vpid(pid) : current;
1763
	if (!task) {
1764
		rcu_read_unlock();
1765 1766
		return -ESRCH;
	}
1767
	get_task_struct(task);
1768 1769 1770

	/*
	 * Check if this process has the right to modify the specified
1771
	 * process. Use the regular "ptrace_may_access()" checks.
1772
	 */
1773
	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1774
		rcu_read_unlock();
1775
		err = -EPERM;
1776
		goto out;
1777
	}
1778
	rcu_read_unlock();
1779

1780 1781
 	err = security_task_movememory(task);
 	if (err)
1782
		goto out;
1783

1784 1785 1786 1787
	task_nodes = cpuset_mems_allowed(task);
	mm = get_task_mm(task);
	put_task_struct(task);

1788 1789 1790 1791 1792 1793 1794 1795
	if (!mm)
		return -EINVAL;

	if (nodes)
		err = do_pages_move(mm, task_nodes, nr_pages, pages,
				    nodes, status, flags);
	else
		err = do_pages_stat(mm, nr_pages, pages, status);
1796 1797 1798

	mmput(mm);
	return err;
1799 1800 1801 1802

out:
	put_task_struct(task);
	return err;
1803 1804
}

1805 1806 1807 1808 1809 1810
#ifdef CONFIG_NUMA_BALANCING
/*
 * Returns true if this is a safe migration target node for misplaced NUMA
 * pages. Currently it only checks the watermarks which crude
 */
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1811
				   unsigned long nr_migrate_pages)
1812 1813
{
	int z;
M
Mel Gorman 已提交
1814

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
		struct zone *zone = pgdat->node_zones + z;

		if (!populated_zone(zone))
			continue;

		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
		if (!zone_watermark_ok(zone, 0,
				       high_wmark_pages(zone) +
				       nr_migrate_pages,
				       0, 0))
			continue;
		return true;
	}
	return false;
}

static struct page *alloc_misplaced_dst_page(struct page *page,
					   unsigned long data,
					   int **result)
{
	int nid = (int) data;
	struct page *newpage;

1839
	newpage = __alloc_pages_node(nid,
1840 1841 1842
					 (GFP_HIGHUSER_MOVABLE |
					  __GFP_THISNODE | __GFP_NOMEMALLOC |
					  __GFP_NORETRY | __GFP_NOWARN) &
1843
					 ~__GFP_RECLAIM, 0);
1844

1845 1846 1847
	return newpage;
}

1848 1849 1850 1851 1852 1853 1854 1855
/*
 * page migration rate limiting control.
 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
 * window of time. Default here says do not migrate more than 1280M per second.
 */
static unsigned int migrate_interval_millisecs __read_mostly = 100;
static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);

1856
/* Returns true if the node is migrate rate-limited after the update */
1857 1858
static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
					unsigned long nr_pages)
1859
{
1860 1861 1862 1863 1864 1865
	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1866
		spin_lock(&pgdat->numabalancing_migrate_lock);
1867 1868 1869
		pgdat->numabalancing_migrate_nr_pages = 0;
		pgdat->numabalancing_migrate_next_window = jiffies +
			msecs_to_jiffies(migrate_interval_millisecs);
1870
		spin_unlock(&pgdat->numabalancing_migrate_lock);
1871
	}
1872 1873 1874
	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
								nr_pages);
1875
		return true;
1876
	}
1877 1878 1879 1880 1881 1882 1883 1884 1885

	/*
	 * This is an unlocked non-atomic update so errors are possible.
	 * The consequences are failing to migrate when we potentiall should
	 * have which is not severe enough to warrant locking. If it is ever
	 * a problem, it can be converted to a per-cpu counter.
	 */
	pgdat->numabalancing_migrate_nr_pages += nr_pages;
	return false;
1886 1887
}

1888
static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1889
{
1890
	int page_lru;
1891

1892
	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1893

1894
	/* Avoid migrating to a node that is nearly full */
1895 1896
	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
		return 0;
1897

1898 1899
	if (isolate_lru_page(page))
		return 0;
1900

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
	/*
	 * migrate_misplaced_transhuge_page() skips page migration's usual
	 * check on page_count(), so we must do it here, now that the page
	 * has been isolated: a GUP pin, or any other pin, prevents migration.
	 * The expected page count is 3: 1 for page's mapcount and 1 for the
	 * caller's pin and 1 for the reference taken by isolate_lru_page().
	 */
	if (PageTransHuge(page) && page_count(page) != 3) {
		putback_lru_page(page);
		return 0;
1911 1912
	}

1913
	page_lru = page_is_file_cache(page);
M
Mel Gorman 已提交
1914
	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1915 1916
				hpage_nr_pages(page));

1917
	/*
1918 1919 1920
	 * Isolating the page has taken another reference, so the
	 * caller's reference can be safely dropped without the page
	 * disappearing underneath us during migration.
1921 1922
	 */
	put_page(page);
1923
	return 1;
1924 1925
}

1926 1927 1928 1929 1930 1931
bool pmd_trans_migrating(pmd_t pmd)
{
	struct page *page = pmd_page(pmd);
	return PageLocked(page);
}

1932 1933 1934 1935 1936
/*
 * Attempt to migrate a misplaced page to the specified destination
 * node. Caller is expected to have an elevated reference count on
 * the page that will be dropped by this function before returning.
 */
1937 1938
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
			   int node)
1939 1940
{
	pg_data_t *pgdat = NODE_DATA(node);
1941
	int isolated;
1942 1943 1944 1945
	int nr_remaining;
	LIST_HEAD(migratepages);

	/*
1946 1947
	 * Don't migrate file pages that are mapped in multiple processes
	 * with execute permissions as they are probably shared libraries.
1948
	 */
1949 1950
	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
	    (vma->vm_flags & VM_EXEC))
1951 1952 1953 1954 1955 1956 1957
		goto out;

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
1958
	if (numamigrate_update_ratelimit(pgdat, 1))
1959 1960 1961 1962 1963 1964 1965
		goto out;

	isolated = numamigrate_isolate_page(pgdat, page);
	if (!isolated)
		goto out;

	list_add(&page->lru, &migratepages);
1966
	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1967 1968
				     NULL, node, MIGRATE_ASYNC,
				     MR_NUMA_MISPLACED);
1969
	if (nr_remaining) {
1970 1971
		if (!list_empty(&migratepages)) {
			list_del(&page->lru);
M
Mel Gorman 已提交
1972
			dec_node_page_state(page, NR_ISOLATED_ANON +
1973 1974 1975
					page_is_file_cache(page));
			putback_lru_page(page);
		}
1976 1977 1978
		isolated = 0;
	} else
		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1979 1980
	BUG_ON(!list_empty(&migratepages));
	return isolated;
1981 1982 1983 1984

out:
	put_page(page);
	return 0;
1985
}
1986
#endif /* CONFIG_NUMA_BALANCING */
1987

1988
#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1989 1990 1991 1992
/*
 * Migrates a THP to a given target node. page must be locked and is unlocked
 * before returning.
 */
1993 1994 1995 1996 1997 1998
int migrate_misplaced_transhuge_page(struct mm_struct *mm,
				struct vm_area_struct *vma,
				pmd_t *pmd, pmd_t entry,
				unsigned long address,
				struct page *page, int node)
{
1999
	spinlock_t *ptl;
2000 2001 2002 2003
	pg_data_t *pgdat = NODE_DATA(node);
	int isolated = 0;
	struct page *new_page = NULL;
	int page_lru = page_is_file_cache(page);
2004 2005
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2006 2007 2008 2009 2010 2011

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
2012
	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2013 2014 2015
		goto out_dropref;

	new_page = alloc_pages_node(node,
2016
		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2017
		HPAGE_PMD_ORDER);
2018 2019
	if (!new_page)
		goto out_fail;
2020
	prep_transhuge_page(new_page);
2021

2022
	isolated = numamigrate_isolate_page(pgdat, page);
2023
	if (!isolated) {
2024
		put_page(new_page);
2025
		goto out_fail;
2026
	}
2027

2028
	/* Prepare a page as a migration target */
2029
	__SetPageLocked(new_page);
2030 2031
	if (PageSwapBacked(page))
		__SetPageSwapBacked(new_page);
2032 2033 2034 2035 2036 2037 2038 2039

	/* anon mapping, we can simply copy page->mapping to the new page: */
	new_page->mapping = page->mapping;
	new_page->index = page->index;
	migrate_page_copy(new_page, page);
	WARN_ON(PageLRU(new_page));

	/* Recheck the target PMD */
2040
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2041
	ptl = pmd_lock(mm, pmd);
2042
	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2043
		spin_unlock(ptl);
2044
		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054

		/* Reverse changes made by migrate_page_copy() */
		if (TestClearPageActive(new_page))
			SetPageActive(page);
		if (TestClearPageUnevictable(new_page))
			SetPageUnevictable(page);

		unlock_page(new_page);
		put_page(new_page);		/* Free it */

2055 2056
		/* Retake the callers reference and putback on LRU */
		get_page(page);
2057
		putback_lru_page(page);
M
Mel Gorman 已提交
2058
		mod_node_page_state(page_pgdat(page),
2059
			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2060 2061

		goto out_unlock;
2062 2063
	}

K
Kirill A. Shutemov 已提交
2064
	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2065
	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2066

2067 2068 2069 2070 2071 2072 2073
	/*
	 * Clear the old entry under pagetable lock and establish the new PTE.
	 * Any parallel GUP will either observe the old page blocking on the
	 * page lock, block on the page table lock or observe the new page.
	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
	 * guarantee the copy is visible before the pagetable update.
	 */
2074
	flush_cache_range(vma, mmun_start, mmun_end);
2075
	page_add_anon_rmap(new_page, vma, mmun_start, true);
2076
	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2077
	set_pmd_at(mm, mmun_start, pmd, entry);
2078
	update_mmu_cache_pmd(vma, address, &entry);
2079

2080
	page_ref_unfreeze(page, 2);
2081
	mlock_migrate_page(new_page, page);
2082
	page_remove_rmap(page, true);
2083
	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2084

2085
	spin_unlock(ptl);
2086
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2087

2088 2089 2090 2091
	/* Take an "isolate" reference and put new page on the LRU. */
	get_page(new_page);
	putback_lru_page(new_page);

2092 2093 2094 2095 2096 2097 2098 2099
	unlock_page(new_page);
	unlock_page(page);
	put_page(page);			/* Drop the rmap reference */
	put_page(page);			/* Drop the LRU isolation reference */

	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);

M
Mel Gorman 已提交
2100
	mod_node_page_state(page_pgdat(page),
2101 2102 2103 2104
			NR_ISOLATED_ANON + page_lru,
			-HPAGE_PMD_NR);
	return isolated;

2105 2106
out_fail:
	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2107
out_dropref:
2108 2109
	ptl = pmd_lock(mm, pmd);
	if (pmd_same(*pmd, entry)) {
2110
		entry = pmd_modify(entry, vma->vm_page_prot);
2111
		set_pmd_at(mm, mmun_start, pmd, entry);
2112 2113 2114
		update_mmu_cache_pmd(vma, address, &entry);
	}
	spin_unlock(ptl);
2115

2116
out_unlock:
2117
	unlock_page(page);
2118 2119 2120
	put_page(page);
	return 0;
}
2121 2122 2123
#endif /* CONFIG_NUMA_BALANCING */

#endif /* CONFIG_NUMA */
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158


struct migrate_vma {
	struct vm_area_struct	*vma;
	unsigned long		*dst;
	unsigned long		*src;
	unsigned long		cpages;
	unsigned long		npages;
	unsigned long		start;
	unsigned long		end;
};

static int migrate_vma_collect_hole(unsigned long start,
				    unsigned long end,
				    struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	unsigned long addr;

	for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
		migrate->dst[migrate->npages] = 0;
		migrate->src[migrate->npages++] = 0;
	}

	return 0;
}

static int migrate_vma_collect_pmd(pmd_t *pmdp,
				   unsigned long start,
				   unsigned long end,
				   struct mm_walk *walk)
{
	struct migrate_vma *migrate = walk->private;
	struct vm_area_struct *vma = walk->vma;
	struct mm_struct *mm = vma->vm_mm;
2159
	unsigned long addr = start, unmapped = 0;
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
	spinlock_t *ptl;
	pte_t *ptep;

again:
	if (pmd_none(*pmdp))
		return migrate_vma_collect_hole(start, end, walk);

	if (pmd_trans_huge(*pmdp)) {
		struct page *page;

		ptl = pmd_lock(mm, pmdp);
		if (unlikely(!pmd_trans_huge(*pmdp))) {
			spin_unlock(ptl);
			goto again;
		}

		page = pmd_page(*pmdp);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			split_huge_pmd(vma, pmdp, addr);
			if (pmd_trans_unstable(pmdp))
				return migrate_vma_collect_hole(start, end,
								walk);
		} else {
			int ret;

			get_page(page);
			spin_unlock(ptl);
			if (unlikely(!trylock_page(page)))
				return migrate_vma_collect_hole(start, end,
								walk);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
			if (ret || pmd_none(*pmdp))
				return migrate_vma_collect_hole(start, end,
								walk);
		}
	}

	if (unlikely(pmd_bad(*pmdp)))
		return migrate_vma_collect_hole(start, end, walk);

	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2204 2205
	arch_enter_lazy_mmu_mode();

2206 2207 2208
	for (; addr < end; addr += PAGE_SIZE, ptep++) {
		unsigned long mpfn, pfn;
		struct page *page;
2209
		swp_entry_t entry;
2210 2211 2212 2213 2214
		pte_t pte;

		pte = *ptep;
		pfn = pte_pfn(pte);

2215
		if (pte_none(pte)) {
2216 2217 2218 2219
			mpfn = pfn = 0;
			goto next;
		}

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
		if (!pte_present(pte)) {
			mpfn = pfn = 0;

			/*
			 * Only care about unaddressable device page special
			 * page table entry. Other special swap entries are not
			 * migratable, and we ignore regular swapped page.
			 */
			entry = pte_to_swp_entry(pte);
			if (!is_device_private_entry(entry))
				goto next;

			page = device_private_entry_to_page(entry);
			mpfn = migrate_pfn(page_to_pfn(page))|
				MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
			if (is_write_device_private_entry(entry))
				mpfn |= MIGRATE_PFN_WRITE;
		} else {
			page = vm_normal_page(migrate->vma, addr, pte);
			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
		}

2243 2244 2245 2246 2247
		/* FIXME support THP */
		if (!page || !page->mapping || PageTransCompound(page)) {
			mpfn = pfn = 0;
			goto next;
		}
2248
		pfn = page_to_pfn(page);
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261

		/*
		 * By getting a reference on the page we pin it and that blocks
		 * any kind of migration. Side effect is that it "freezes" the
		 * pte.
		 *
		 * We drop this reference after isolating the page from the lru
		 * for non device page (device page are not on the lru and thus
		 * can't be dropped from it).
		 */
		get_page(page);
		migrate->cpages++;

2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
		/*
		 * Optimize for the common case where page is only mapped once
		 * in one process. If we can lock the page, then we can safely
		 * set up a special migration page table entry now.
		 */
		if (trylock_page(page)) {
			pte_t swp_pte;

			mpfn |= MIGRATE_PFN_LOCKED;
			ptep_get_and_clear(mm, addr, ptep);

			/* Setup special migration page table entry */
			entry = make_migration_entry(page, pte_write(pte));
			swp_pte = swp_entry_to_pte(entry);
			if (pte_soft_dirty(pte))
				swp_pte = pte_swp_mksoft_dirty(swp_pte);
			set_pte_at(mm, addr, ptep, swp_pte);

			/*
			 * This is like regular unmap: we remove the rmap and
			 * drop page refcount. Page won't be freed, as we took
			 * a reference just above.
			 */
			page_remove_rmap(page, false);
			put_page(page);
2287 2288 2289

			if (pte_present(pte))
				unmapped++;
2290 2291
		}

2292
next:
2293
		migrate->dst[migrate->npages] = 0;
2294 2295
		migrate->src[migrate->npages++] = mpfn;
	}
2296
	arch_leave_lazy_mmu_mode();
2297 2298
	pte_unmap_unlock(ptep - 1, ptl);

2299 2300 2301 2302
	/* Only flush the TLB if we actually modified any entries */
	if (unmapped)
		flush_tlb_range(walk->vma, start, end);

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
	return 0;
}

/*
 * migrate_vma_collect() - collect pages over a range of virtual addresses
 * @migrate: migrate struct containing all migration information
 *
 * This will walk the CPU page table. For each virtual address backed by a
 * valid page, it updates the src array and takes a reference on the page, in
 * order to pin the page until we lock it and unmap it.
 */
static void migrate_vma_collect(struct migrate_vma *migrate)
{
	struct mm_walk mm_walk;

	mm_walk.pmd_entry = migrate_vma_collect_pmd;
	mm_walk.pte_entry = NULL;
	mm_walk.pte_hole = migrate_vma_collect_hole;
	mm_walk.hugetlb_entry = NULL;
	mm_walk.test_walk = NULL;
	mm_walk.vma = migrate->vma;
	mm_walk.mm = migrate->vma->vm_mm;
	mm_walk.private = migrate;

2327 2328 2329
	mmu_notifier_invalidate_range_start(mm_walk.mm,
					    migrate->start,
					    migrate->end);
2330
	walk_page_range(migrate->start, migrate->end, &mm_walk);
2331 2332 2333
	mmu_notifier_invalidate_range_end(mm_walk.mm,
					  migrate->start,
					  migrate->end);
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362

	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
}

/*
 * migrate_vma_check_page() - check if page is pinned or not
 * @page: struct page to check
 *
 * Pinned pages cannot be migrated. This is the same test as in
 * migrate_page_move_mapping(), except that here we allow migration of a
 * ZONE_DEVICE page.
 */
static bool migrate_vma_check_page(struct page *page)
{
	/*
	 * One extra ref because caller holds an extra reference, either from
	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
	 * a device page.
	 */
	int extra = 1;

	/*
	 * FIXME support THP (transparent huge page), it is bit more complex to
	 * check them than regular pages, because they can be mapped with a pmd
	 * or with a pte (split pte mapping).
	 */
	if (PageCompound(page))
		return false;

2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
	/* Page from ZONE_DEVICE have one extra reference */
	if (is_zone_device_page(page)) {
		/*
		 * Private page can never be pin as they have no valid pte and
		 * GUP will fail for those. Yet if there is a pending migration
		 * a thread might try to wait on the pte migration entry and
		 * will bump the page reference count. Sadly there is no way to
		 * differentiate a regular pin from migration wait. Hence to
		 * avoid 2 racing thread trying to migrate back to CPU to enter
		 * infinite loop (one stoping migration because the other is
		 * waiting on pte migration entry). We always return true here.
		 *
		 * FIXME proper solution is to rework migration_entry_wait() so
		 * it does not need to take a reference on page.
		 */
		if (is_device_private_page(page))
			return true;

		/* Other ZONE_DEVICE memory type are not supported */
		return false;
	}

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
	if ((page_count(page) - extra) > page_mapcount(page))
		return false;

	return true;
}

/*
 * migrate_vma_prepare() - lock pages and isolate them from the lru
 * @migrate: migrate struct containing all migration information
 *
 * This locks pages that have been collected by migrate_vma_collect(). Once each
 * page is locked it is isolated from the lru (for non-device pages). Finally,
 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
 * migrated by concurrent kernel threads.
 */
static void migrate_vma_prepare(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
2403 2404
	const unsigned long start = migrate->start;
	unsigned long addr, i, restore = 0;
2405 2406 2407 2408 2409 2410
	bool allow_drain = true;

	lru_add_drain();

	for (i = 0; (i < npages) && migrate->cpages; i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);
2411
		bool remap = true;
2412 2413 2414 2415

		if (!page)
			continue;

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
			/*
			 * Because we are migrating several pages there can be
			 * a deadlock between 2 concurrent migration where each
			 * are waiting on each other page lock.
			 *
			 * Make migrate_vma() a best effort thing and backoff
			 * for any page we can not lock right away.
			 */
			if (!trylock_page(page)) {
				migrate->src[i] = 0;
				migrate->cpages--;
				put_page(page);
				continue;
			}
			remap = false;
			migrate->src[i] |= MIGRATE_PFN_LOCKED;
2433 2434
		}

2435 2436 2437 2438 2439 2440 2441
		/* ZONE_DEVICE pages are not on LRU */
		if (!is_zone_device_page(page)) {
			if (!PageLRU(page) && allow_drain) {
				/* Drain CPU's pagevec */
				lru_add_drain_all();
				allow_drain = false;
			}
2442

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
			if (isolate_lru_page(page)) {
				if (remap) {
					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
					migrate->cpages--;
					restore++;
				} else {
					migrate->src[i] = 0;
					unlock_page(page);
					migrate->cpages--;
					put_page(page);
				}
				continue;
2455
			}
2456 2457 2458

			/* Drop the reference we took in collect */
			put_page(page);
2459 2460 2461
		}

		if (!migrate_vma_check_page(page)) {
2462 2463 2464 2465
			if (remap) {
				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
				migrate->cpages--;
				restore++;
2466

2467 2468 2469 2470
				if (!is_zone_device_page(page)) {
					get_page(page);
					putback_lru_page(page);
				}
2471 2472 2473 2474 2475
			} else {
				migrate->src[i] = 0;
				unlock_page(page);
				migrate->cpages--;

2476 2477 2478 2479
				if (!is_zone_device_page(page))
					putback_lru_page(page);
				else
					put_page(page);
2480
			}
2481 2482
		}
	}
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496

	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

		remove_migration_pte(page, migrate->vma, addr, page);

		migrate->src[i] = 0;
		unlock_page(page);
		put_page(page);
		restore--;
	}
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
}

/*
 * migrate_vma_unmap() - replace page mapping with special migration pte entry
 * @migrate: migrate struct containing all migration information
 *
 * Replace page mapping (CPU page table pte) with a special migration pte entry
 * and check again if it has been pinned. Pinned pages are restored because we
 * cannot migrate them.
 *
 * This is the last step before we call the device driver callback to allocate
 * destination memory and copy contents of original page over to new page.
 */
static void migrate_vma_unmap(struct migrate_vma *migrate)
{
	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
	const unsigned long npages = migrate->npages;
	const unsigned long start = migrate->start;
	unsigned long addr, i, restore = 0;

	for (i = 0; i < npages; i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

2523 2524 2525 2526
		if (page_mapped(page)) {
			try_to_unmap(page, flags);
			if (page_mapped(page))
				goto restore;
2527
		}
2528 2529 2530 2531 2532 2533 2534 2535

		if (migrate_vma_check_page(page))
			continue;

restore:
		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
		migrate->cpages--;
		restore++;
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
	}

	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

		remove_migration_ptes(page, page, false);

		migrate->src[i] = 0;
		unlock_page(page);
		restore--;

2550 2551 2552 2553
		if (is_zone_device_page(page))
			put_page(page);
		else
			putback_lru_page(page);
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
	}
}

/*
 * migrate_vma_pages() - migrate meta-data from src page to dst page
 * @migrate: migrate struct containing all migration information
 *
 * This migrates struct page meta-data from source struct page to destination
 * struct page. This effectively finishes the migration from source page to the
 * destination page.
 */
static void migrate_vma_pages(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
	const unsigned long start = migrate->start;
	unsigned long addr, i;

	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
		struct page *page = migrate_pfn_to_page(migrate->src[i]);
		struct address_space *mapping;
		int r;

		if (!page || !newpage)
			continue;
		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
			continue;

		mapping = page_mapping(page);

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
		if (is_zone_device_page(newpage)) {
			if (is_device_private_page(newpage)) {
				/*
				 * For now only support private anonymous when
				 * migrating to un-addressable device memory.
				 */
				if (mapping) {
					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
					continue;
				}
			} else {
				/*
				 * Other types of ZONE_DEVICE page are not
				 * supported.
				 */
				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
				continue;
			}
		}

2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
		if (r != MIGRATEPAGE_SUCCESS)
			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
	}
}

/*
 * migrate_vma_finalize() - restore CPU page table entry
 * @migrate: migrate struct containing all migration information
 *
 * This replaces the special migration pte entry with either a mapping to the
 * new page if migration was successful for that page, or to the original page
 * otherwise.
 *
 * This also unlocks the pages and puts them back on the lru, or drops the extra
 * refcount, for device pages.
 */
static void migrate_vma_finalize(struct migrate_vma *migrate)
{
	const unsigned long npages = migrate->npages;
	unsigned long i;

	for (i = 0; i < npages; i++) {
		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
		struct page *page = migrate_pfn_to_page(migrate->src[i]);

		if (!page)
			continue;
		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
			if (newpage) {
				unlock_page(newpage);
				put_page(newpage);
			}
			newpage = page;
		}

		remove_migration_ptes(page, newpage, false);
		unlock_page(page);
		migrate->cpages--;

2644 2645 2646 2647
		if (is_zone_device_page(page))
			put_page(page);
		else
			putback_lru_page(page);
2648 2649 2650

		if (newpage != page) {
			unlock_page(newpage);
2651 2652 2653 2654
			if (is_zone_device_page(newpage))
				put_page(newpage);
			else
				putback_lru_page(newpage);
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
		}
	}
}

/*
 * migrate_vma() - migrate a range of memory inside vma
 *
 * @ops: migration callback for allocating destination memory and copying
 * @vma: virtual memory area containing the range to be migrated
 * @start: start address of the range to migrate (inclusive)
 * @end: end address of the range to migrate (exclusive)
 * @src: array of hmm_pfn_t containing source pfns
 * @dst: array of hmm_pfn_t containing destination pfns
 * @private: pointer passed back to each of the callback
 * Returns: 0 on success, error code otherwise
 *
 * This function tries to migrate a range of memory virtual address range, using
 * callbacks to allocate and copy memory from source to destination. First it
 * collects all the pages backing each virtual address in the range, saving this
 * inside the src array. Then it locks those pages and unmaps them. Once the pages
 * are locked and unmapped, it checks whether each page is pinned or not. Pages
 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
 * in the corresponding src array entry. It then restores any pages that are
 * pinned, by remapping and unlocking those pages.
 *
 * At this point it calls the alloc_and_copy() callback. For documentation on
 * what is expected from that callback, see struct migrate_vma_ops comments in
 * include/linux/migrate.h
 *
 * After the alloc_and_copy() callback, this function goes over each entry in
 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
 * then the function tries to migrate struct page information from the source
 * struct page to the destination struct page. If it fails to migrate the struct
 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
 * array.
 *
 * At this point all successfully migrated pages have an entry in the src
 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
 * array entry with MIGRATE_PFN_VALID flag set.
 *
 * It then calls the finalize_and_map() callback. See comments for "struct
 * migrate_vma_ops", in include/linux/migrate.h for details about
 * finalize_and_map() behavior.
 *
 * After the finalize_and_map() callback, for successfully migrated pages, this
 * function updates the CPU page table to point to new pages, otherwise it
 * restores the CPU page table to point to the original source pages.
 *
 * Function returns 0 after the above steps, even if no pages were migrated
 * (The function only returns an error if any of the arguments are invalid.)
 *
 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
 * unsigned long entries.
 */
int migrate_vma(const struct migrate_vma_ops *ops,
		struct vm_area_struct *vma,
		unsigned long start,
		unsigned long end,
		unsigned long *src,
		unsigned long *dst,
		void *private)
{
	struct migrate_vma migrate;

	/* Sanity check the arguments */
	start &= PAGE_MASK;
	end &= PAGE_MASK;
	if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
		return -EINVAL;
	if (start < vma->vm_start || start >= vma->vm_end)
		return -EINVAL;
	if (end <= vma->vm_start || end > vma->vm_end)
		return -EINVAL;
	if (!ops || !src || !dst || start >= end)
		return -EINVAL;

	memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
	migrate.src = src;
	migrate.dst = dst;
	migrate.start = start;
	migrate.npages = 0;
	migrate.cpages = 0;
	migrate.end = end;
	migrate.vma = vma;

	/* Collect, and try to unmap source pages */
	migrate_vma_collect(&migrate);
	if (!migrate.cpages)
		return 0;

	/* Lock and isolate page */
	migrate_vma_prepare(&migrate);
	if (!migrate.cpages)
		return 0;

	/* Unmap pages */
	migrate_vma_unmap(&migrate);
	if (!migrate.cpages)
		return 0;

	/*
	 * At this point pages are locked and unmapped, and thus they have
	 * stable content and can safely be copied to destination memory that
	 * is allocated by the callback.
	 *
	 * Note that migration can fail in migrate_vma_struct_page() for each
	 * individual page.
	 */
	ops->alloc_and_copy(vma, src, dst, start, end, private);

	/* This does the real migration of struct page */
	migrate_vma_pages(&migrate);

	ops->finalize_and_map(vma, src, dst, start, end, private);

	/* Unlock and remap pages */
	migrate_vma_finalize(&migrate);

	return 0;
}
EXPORT_SYMBOL(migrate_vma);