cqm.c 33.7 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * Intel Cache Quality-of-Service Monitoring (CQM) support.
 *
 * Based very, very heavily on work by Peter Zijlstra.
 */

#include <linux/perf_event.h>
#include <linux/slab.h>
#include <asm/cpu_device_id.h>
10
#include "../perf_event.h"
11 12 13 14 15

#define MSR_IA32_PQR_ASSOC	0x0c8f
#define MSR_IA32_QM_CTR		0x0c8e
#define MSR_IA32_QM_EVTSEL	0x0c8d

16
static u32 cqm_max_rmid = -1;
17 18
static unsigned int cqm_l3_scale; /* supposedly cacheline size */

19 20 21 22 23 24 25 26 27 28 29 30 31 32
/**
 * struct intel_pqr_state - State cache for the PQR MSR
 * @rmid:		The cached Resource Monitoring ID
 * @closid:		The cached Class Of Service ID
 * @rmid_usecnt:	The usage counter for rmid
 *
 * The upper 32 bits of MSR_IA32_PQR_ASSOC contain closid and the
 * lower 10 bits rmid. The update to MSR_IA32_PQR_ASSOC always
 * contains both parts, so we need to cache them.
 *
 * The cache also helps to avoid pointless updates if the value does
 * not change.
 */
struct intel_pqr_state {
33
	u32			rmid;
34 35
	u32			closid;
	int			rmid_usecnt;
36 37
};

38
/*
39
 * The cached intel_pqr_state is strictly per CPU and can never be
40 41 42 43
 * updated from a remote CPU. Both functions which modify the state
 * (intel_cqm_event_start and intel_cqm_event_stop) are called with
 * interrupts disabled, which is sufficient for the protection.
 */
44
static DEFINE_PER_CPU(struct intel_pqr_state, pqr_state);
45 46

/*
47 48 49 50
 * Protects cache_cgroups and cqm_rmid_free_lru and cqm_rmid_limbo_lru.
 * Also protects event->hw.cqm_rmid
 *
 * Hold either for stability, both for modification of ->hw.cqm_rmid.
51 52
 */
static DEFINE_MUTEX(cache_mutex);
53
static DEFINE_RAW_SPINLOCK(cache_lock);
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

/*
 * Groups of events that have the same target(s), one RMID per group.
 */
static LIST_HEAD(cache_groups);

/*
 * Mask of CPUs for reading CQM values. We only need one per-socket.
 */
static cpumask_t cqm_cpumask;

#define RMID_VAL_ERROR		(1ULL << 63)
#define RMID_VAL_UNAVAIL	(1ULL << 62)

#define QOS_L3_OCCUP_EVENT_ID	(1 << 0)

#define QOS_EVENT_MASK	QOS_L3_OCCUP_EVENT_ID

72 73 74 75 76 77 78
/*
 * This is central to the rotation algorithm in __intel_cqm_rmid_rotate().
 *
 * This rmid is always free and is guaranteed to have an associated
 * near-zero occupancy value, i.e. no cachelines are tagged with this
 * RMID, once __intel_cqm_rmid_rotate() returns.
 */
79
static u32 intel_cqm_rotation_rmid;
80 81 82 83 84 85 86 87 88 89 90

#define INVALID_RMID		(-1)

/*
 * Is @rmid valid for programming the hardware?
 *
 * rmid 0 is reserved by the hardware for all non-monitored tasks, which
 * means that we should never come across an rmid with that value.
 * Likewise, an rmid value of -1 is used to indicate "no rmid currently
 * assigned" and is used as part of the rotation code.
 */
91
static inline bool __rmid_valid(u32 rmid)
92 93 94 95 96 97 98
{
	if (!rmid || rmid == INVALID_RMID)
		return false;

	return true;
}

99
static u64 __rmid_read(u32 rmid)
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
{
	u64 val;

	/*
	 * Ignore the SDM, this thing is _NOTHING_ like a regular perfcnt,
	 * it just says that to increase confusion.
	 */
	wrmsr(MSR_IA32_QM_EVTSEL, QOS_L3_OCCUP_EVENT_ID, rmid);
	rdmsrl(MSR_IA32_QM_CTR, val);

	/*
	 * Aside from the ERROR and UNAVAIL bits, assume this thing returns
	 * the number of cachelines tagged with @rmid.
	 */
	return val;
}

117 118 119 120 121 122
enum rmid_recycle_state {
	RMID_YOUNG = 0,
	RMID_AVAILABLE,
	RMID_DIRTY,
};

123
struct cqm_rmid_entry {
124
	u32 rmid;
125
	enum rmid_recycle_state state;
126
	struct list_head list;
127
	unsigned long queue_time;
128 129 130
};

/*
131
 * cqm_rmid_free_lru - A least recently used list of RMIDs.
132 133 134 135 136 137 138 139 140 141
 *
 * Oldest entry at the head, newest (most recently used) entry at the
 * tail. This list is never traversed, it's only used to keep track of
 * the lru order. That is, we only pick entries of the head or insert
 * them on the tail.
 *
 * All entries on the list are 'free', and their RMIDs are not currently
 * in use. To mark an RMID as in use, remove its entry from the lru
 * list.
 *
142 143 144 145 146 147 148 149 150
 *
 * cqm_rmid_limbo_lru - list of currently unused but (potentially) dirty RMIDs.
 *
 * This list is contains RMIDs that no one is currently using but that
 * may have a non-zero occupancy value associated with them. The
 * rotation worker moves RMIDs from the limbo list to the free list once
 * the occupancy value drops below __intel_cqm_threshold.
 *
 * Both lists are protected by cache_mutex.
151
 */
152 153
static LIST_HEAD(cqm_rmid_free_lru);
static LIST_HEAD(cqm_rmid_limbo_lru);
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

/*
 * We use a simple array of pointers so that we can lookup a struct
 * cqm_rmid_entry in O(1). This alleviates the callers of __get_rmid()
 * and __put_rmid() from having to worry about dealing with struct
 * cqm_rmid_entry - they just deal with rmids, i.e. integers.
 *
 * Once this array is initialized it is read-only. No locks are required
 * to access it.
 *
 * All entries for all RMIDs can be looked up in the this array at all
 * times.
 */
static struct cqm_rmid_entry **cqm_rmid_ptrs;

169
static inline struct cqm_rmid_entry *__rmid_entry(u32 rmid)
170 171 172 173 174 175 176 177
{
	struct cqm_rmid_entry *entry;

	entry = cqm_rmid_ptrs[rmid];
	WARN_ON(entry->rmid != rmid);

	return entry;
}
178 179 180

/*
 * Returns < 0 on fail.
181 182
 *
 * We expect to be called with cache_mutex held.
183
 */
184
static u32 __get_rmid(void)
185
{
186 187 188 189
	struct cqm_rmid_entry *entry;

	lockdep_assert_held(&cache_mutex);

190 191
	if (list_empty(&cqm_rmid_free_lru))
		return INVALID_RMID;
192

193
	entry = list_first_entry(&cqm_rmid_free_lru, struct cqm_rmid_entry, list);
194 195 196
	list_del(&entry->list);

	return entry->rmid;
197 198
}

199
static void __put_rmid(u32 rmid)
200
{
201 202 203 204
	struct cqm_rmid_entry *entry;

	lockdep_assert_held(&cache_mutex);

205
	WARN_ON(!__rmid_valid(rmid));
206 207
	entry = __rmid_entry(rmid);

208 209 210 211
	entry->queue_time = jiffies;
	entry->state = RMID_YOUNG;

	list_add_tail(&entry->list, &cqm_rmid_limbo_lru);
212 213 214 215
}

static int intel_cqm_setup_rmid_cache(void)
{
216
	struct cqm_rmid_entry *entry;
217 218
	unsigned int nr_rmids;
	int r = 0;
219

220
	nr_rmids = cqm_max_rmid + 1;
221
	cqm_rmid_ptrs = kmalloc(sizeof(struct cqm_rmid_entry *) *
222
				nr_rmids, GFP_KERNEL);
223
	if (!cqm_rmid_ptrs)
224 225
		return -ENOMEM;

226
	for (; r <= cqm_max_rmid; r++) {
227 228 229 230 231 232 233 234 235 236
		struct cqm_rmid_entry *entry;

		entry = kmalloc(sizeof(*entry), GFP_KERNEL);
		if (!entry)
			goto fail;

		INIT_LIST_HEAD(&entry->list);
		entry->rmid = r;
		cqm_rmid_ptrs[r] = entry;

237
		list_add_tail(&entry->list, &cqm_rmid_free_lru);
238
	}
239 240 241 242 243

	/*
	 * RMID 0 is special and is always allocated. It's used for all
	 * tasks that are not monitored.
	 */
244 245
	entry = __rmid_entry(0);
	list_del(&entry->list);
246

247 248 249 250
	mutex_lock(&cache_mutex);
	intel_cqm_rotation_rmid = __get_rmid();
	mutex_unlock(&cache_mutex);

251
	return 0;
252 253 254 255 256 257
fail:
	while (r--)
		kfree(cqm_rmid_ptrs[r]);

	kfree(cqm_rmid_ptrs);
	return -ENOMEM;
258 259 260 261
}

/*
 * Determine if @a and @b measure the same set of tasks.
262 263 264
 *
 * If @a and @b measure the same set of tasks then we want to share a
 * single RMID.
265 266 267
 */
static bool __match_event(struct perf_event *a, struct perf_event *b)
{
268
	/* Per-cpu and task events don't mix */
269 270 271 272
	if ((a->attach_state & PERF_ATTACH_TASK) !=
	    (b->attach_state & PERF_ATTACH_TASK))
		return false;

273 274 275 276 277 278 279 280 281 282 283
#ifdef CONFIG_CGROUP_PERF
	if (a->cgrp != b->cgrp)
		return false;
#endif

	/* If not task event, we're machine wide */
	if (!(b->attach_state & PERF_ATTACH_TASK))
		return true;

	/*
	 * Events that target same task are placed into the same cache group.
284 285
	 * Mark it as a multi event group, so that we update ->count
	 * for every event rather than just the group leader later.
286
	 */
287 288
	if (a->hw.target == b->hw.target) {
		b->hw.is_group_event = true;
289
		return true;
290
	}
291 292 293 294 295 296 297 298 299 300 301 302 303 304

	/*
	 * Are we an inherited event?
	 */
	if (b->parent == a)
		return true;

	return false;
}

#ifdef CONFIG_CGROUP_PERF
static inline struct perf_cgroup *event_to_cgroup(struct perf_event *event)
{
	if (event->attach_state & PERF_ATTACH_TASK)
305
		return perf_cgroup_from_task(event->hw.target, event->ctx);
306

307
	return event->cgrp;
308
}
309
#endif
310 311 312

/*
 * Determine if @a's tasks intersect with @b's tasks
313 314 315 316 317 318 319 320 321 322 323
 *
 * There are combinations of events that we explicitly prohibit,
 *
 *		   PROHIBITS
 *     system-wide    -> 	cgroup and task
 *     cgroup 	      ->	system-wide
 *     		      ->	task in cgroup
 *     task 	      -> 	system-wide
 *     		      ->	task in cgroup
 *
 * Call this function before allocating an RMID.
324 325 326
 */
static bool __conflict_event(struct perf_event *a, struct perf_event *b)
{
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
#ifdef CONFIG_CGROUP_PERF
	/*
	 * We can have any number of cgroups but only one system-wide
	 * event at a time.
	 */
	if (a->cgrp && b->cgrp) {
		struct perf_cgroup *ac = a->cgrp;
		struct perf_cgroup *bc = b->cgrp;

		/*
		 * This condition should have been caught in
		 * __match_event() and we should be sharing an RMID.
		 */
		WARN_ON_ONCE(ac == bc);

		if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
		    cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
			return true;

		return false;
	}

	if (a->cgrp || b->cgrp) {
		struct perf_cgroup *ac, *bc;

		/*
		 * cgroup and system-wide events are mutually exclusive
		 */
		if ((a->cgrp && !(b->attach_state & PERF_ATTACH_TASK)) ||
		    (b->cgrp && !(a->attach_state & PERF_ATTACH_TASK)))
			return true;

		/*
		 * Ensure neither event is part of the other's cgroup
		 */
		ac = event_to_cgroup(a);
		bc = event_to_cgroup(b);
		if (ac == bc)
			return true;

		/*
		 * Must have cgroup and non-intersecting task events.
		 */
		if (!ac || !bc)
			return false;

		/*
		 * We have cgroup and task events, and the task belongs
		 * to a cgroup. Check for for overlap.
		 */
		if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
		    cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
			return true;

		return false;
	}
#endif
384 385 386 387 388 389 390 391 392 393 394 395 396
	/*
	 * If one of them is not a task, same story as above with cgroups.
	 */
	if (!(a->attach_state & PERF_ATTACH_TASK) ||
	    !(b->attach_state & PERF_ATTACH_TASK))
		return true;

	/*
	 * Must be non-overlapping.
	 */
	return false;
}

397
struct rmid_read {
398
	u32 rmid;
399 400 401 402 403 404 405 406
	atomic64_t value;
};

static void __intel_cqm_event_count(void *info);

/*
 * Exchange the RMID of a group of events.
 */
407
static u32 intel_cqm_xchg_rmid(struct perf_event *group, u32 rmid)
408 409 410
{
	struct perf_event *event;
	struct list_head *head = &group->hw.cqm_group_entry;
411
	u32 old_rmid = group->hw.cqm_rmid;
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475

	lockdep_assert_held(&cache_mutex);

	/*
	 * If our RMID is being deallocated, perform a read now.
	 */
	if (__rmid_valid(old_rmid) && !__rmid_valid(rmid)) {
		struct rmid_read rr = {
			.value = ATOMIC64_INIT(0),
			.rmid = old_rmid,
		};

		on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count,
				 &rr, 1);
		local64_set(&group->count, atomic64_read(&rr.value));
	}

	raw_spin_lock_irq(&cache_lock);

	group->hw.cqm_rmid = rmid;
	list_for_each_entry(event, head, hw.cqm_group_entry)
		event->hw.cqm_rmid = rmid;

	raw_spin_unlock_irq(&cache_lock);

	return old_rmid;
}

/*
 * If we fail to assign a new RMID for intel_cqm_rotation_rmid because
 * cachelines are still tagged with RMIDs in limbo, we progressively
 * increment the threshold until we find an RMID in limbo with <=
 * __intel_cqm_threshold lines tagged. This is designed to mitigate the
 * problem where cachelines tagged with an RMID are not steadily being
 * evicted.
 *
 * On successful rotations we decrease the threshold back towards zero.
 *
 * __intel_cqm_max_threshold provides an upper bound on the threshold,
 * and is measured in bytes because it's exposed to userland.
 */
static unsigned int __intel_cqm_threshold;
static unsigned int __intel_cqm_max_threshold;

/*
 * Test whether an RMID has a zero occupancy value on this cpu.
 */
static void intel_cqm_stable(void *arg)
{
	struct cqm_rmid_entry *entry;

	list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
		if (entry->state != RMID_AVAILABLE)
			break;

		if (__rmid_read(entry->rmid) > __intel_cqm_threshold)
			entry->state = RMID_DIRTY;
	}
}

/*
 * If we have group events waiting for an RMID that don't conflict with
 * events already running, assign @rmid.
 */
476
static bool intel_cqm_sched_in_event(u32 rmid)
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
{
	struct perf_event *leader, *event;

	lockdep_assert_held(&cache_mutex);

	leader = list_first_entry(&cache_groups, struct perf_event,
				  hw.cqm_groups_entry);
	event = leader;

	list_for_each_entry_continue(event, &cache_groups,
				     hw.cqm_groups_entry) {
		if (__rmid_valid(event->hw.cqm_rmid))
			continue;

		if (__conflict_event(event, leader))
			continue;

		intel_cqm_xchg_rmid(event, rmid);
		return true;
	}

	return false;
}

/*
 * Initially use this constant for both the limbo queue time and the
 * rotation timer interval, pmu::hrtimer_interval_ms.
 *
 * They don't need to be the same, but the two are related since if you
 * rotate faster than you recycle RMIDs, you may run out of available
 * RMIDs.
 */
#define RMID_DEFAULT_QUEUE_TIME 250	/* ms */

static unsigned int __rmid_queue_time_ms = RMID_DEFAULT_QUEUE_TIME;

/*
 * intel_cqm_rmid_stabilize - move RMIDs from limbo to free list
 * @nr_available: number of freeable RMIDs on the limbo list
 *
 * Quiescent state; wait for all 'freed' RMIDs to become unused, i.e. no
 * cachelines are tagged with those RMIDs. After this we can reuse them
 * and know that the current set of active RMIDs is stable.
 *
 * Return %true or %false depending on whether stabilization needs to be
 * reattempted.
 *
 * If we return %true then @nr_available is updated to indicate the
 * number of RMIDs on the limbo list that have been queued for the
 * minimum queue time (RMID_AVAILABLE), but whose data occupancy values
 * are above __intel_cqm_threshold.
 */
static bool intel_cqm_rmid_stabilize(unsigned int *available)
{
	struct cqm_rmid_entry *entry, *tmp;

	lockdep_assert_held(&cache_mutex);

	*available = 0;
	list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
		unsigned long min_queue_time;
		unsigned long now = jiffies;

		/*
		 * We hold RMIDs placed into limbo for a minimum queue
		 * time. Before the minimum queue time has elapsed we do
		 * not recycle RMIDs.
		 *
		 * The reasoning is that until a sufficient time has
		 * passed since we stopped using an RMID, any RMID
		 * placed onto the limbo list will likely still have
		 * data tagged in the cache, which means we'll probably
		 * fail to recycle it anyway.
		 *
		 * We can save ourselves an expensive IPI by skipping
		 * any RMIDs that have not been queued for the minimum
		 * time.
		 */
		min_queue_time = entry->queue_time +
			msecs_to_jiffies(__rmid_queue_time_ms);

		if (time_after(min_queue_time, now))
			break;

		entry->state = RMID_AVAILABLE;
		(*available)++;
	}

	/*
	 * Fast return if none of the RMIDs on the limbo list have been
	 * sitting on the queue for the minimum queue time.
	 */
	if (!*available)
		return false;

	/*
	 * Test whether an RMID is free for each package.
	 */
	on_each_cpu_mask(&cqm_cpumask, intel_cqm_stable, NULL, true);

	list_for_each_entry_safe(entry, tmp, &cqm_rmid_limbo_lru, list) {
		/*
		 * Exhausted all RMIDs that have waited min queue time.
		 */
		if (entry->state == RMID_YOUNG)
			break;

		if (entry->state == RMID_DIRTY)
			continue;

		list_del(&entry->list);	/* remove from limbo */

		/*
		 * The rotation RMID gets priority if it's
		 * currently invalid. In which case, skip adding
		 * the RMID to the the free lru.
		 */
		if (!__rmid_valid(intel_cqm_rotation_rmid)) {
			intel_cqm_rotation_rmid = entry->rmid;
			continue;
		}

		/*
		 * If we have groups waiting for RMIDs, hand
601
		 * them one now provided they don't conflict.
602
		 */
603
		if (intel_cqm_sched_in_event(entry->rmid))
604 605 606 607 608 609 610 611 612 613 614 615 616 617
			continue;

		/*
		 * Otherwise place it onto the free list.
		 */
		list_add_tail(&entry->list, &cqm_rmid_free_lru);
	}


	return __rmid_valid(intel_cqm_rotation_rmid);
}

/*
 * Pick a victim group and move it to the tail of the group list.
618
 * @next: The first group without an RMID
619
 */
620
static void __intel_cqm_pick_and_rotate(struct perf_event *next)
621 622
{
	struct perf_event *rotor;
623
	u32 rmid;
624 625 626 627 628

	lockdep_assert_held(&cache_mutex);

	rotor = list_first_entry(&cache_groups, struct perf_event,
				 hw.cqm_groups_entry);
629 630 631 632 633 634 635 636 637 638 639 640

	/*
	 * The group at the front of the list should always have a valid
	 * RMID. If it doesn't then no groups have RMIDs assigned and we
	 * don't need to rotate the list.
	 */
	if (next == rotor)
		return;

	rmid = intel_cqm_xchg_rmid(rotor, INVALID_RMID);
	__put_rmid(rmid);

641
	list_rotate_left(&cache_groups);
642 643 644 645 646 647 648 649 650
}

/*
 * Deallocate the RMIDs from any events that conflict with @event, and
 * place them on the back of the group list.
 */
static void intel_cqm_sched_out_conflicting_events(struct perf_event *event)
{
	struct perf_event *group, *g;
651
	u32 rmid;
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671

	lockdep_assert_held(&cache_mutex);

	list_for_each_entry_safe(group, g, &cache_groups, hw.cqm_groups_entry) {
		if (group == event)
			continue;

		rmid = group->hw.cqm_rmid;

		/*
		 * Skip events that don't have a valid RMID.
		 */
		if (!__rmid_valid(rmid))
			continue;

		/*
		 * No conflict? No problem! Leave the event alone.
		 */
		if (!__conflict_event(group, event))
			continue;
672

673 674 675
		intel_cqm_xchg_rmid(group, INVALID_RMID);
		__put_rmid(rmid);
	}
676 677 678 679 680
}

/*
 * Attempt to rotate the groups and assign new RMIDs.
 *
681 682 683 684
 * We rotate for two reasons,
 *   1. To handle the scheduling of conflicting events
 *   2. To recycle RMIDs
 *
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
 * Rotating RMIDs is complicated because the hardware doesn't give us
 * any clues.
 *
 * There's problems with the hardware interface; when you change the
 * task:RMID map cachelines retain their 'old' tags, giving a skewed
 * picture. In order to work around this, we must always keep one free
 * RMID - intel_cqm_rotation_rmid.
 *
 * Rotation works by taking away an RMID from a group (the old RMID),
 * and assigning the free RMID to another group (the new RMID). We must
 * then wait for the old RMID to not be used (no cachelines tagged).
 * This ensure that all cachelines are tagged with 'active' RMIDs. At
 * this point we can start reading values for the new RMID and treat the
 * old RMID as the free RMID for the next rotation.
 *
 * Return %true or %false depending on whether we did any rotating.
 */
static bool __intel_cqm_rmid_rotate(void)
{
704
	struct perf_event *group, *start = NULL;
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
	unsigned int threshold_limit;
	unsigned int nr_needed = 0;
	unsigned int nr_available;
	bool rotated = false;

	mutex_lock(&cache_mutex);

again:
	/*
	 * Fast path through this function if there are no groups and no
	 * RMIDs that need cleaning.
	 */
	if (list_empty(&cache_groups) && list_empty(&cqm_rmid_limbo_lru))
		goto out;

	list_for_each_entry(group, &cache_groups, hw.cqm_groups_entry) {
		if (!__rmid_valid(group->hw.cqm_rmid)) {
			if (!start)
				start = group;
			nr_needed++;
		}
	}

	/*
	 * We have some event groups, but they all have RMIDs assigned
	 * and no RMIDs need cleaning.
	 */
	if (!nr_needed && list_empty(&cqm_rmid_limbo_lru))
		goto out;

	if (!nr_needed)
		goto stabilize;

	/*
739 740 741
	 * We have more event groups without RMIDs than available RMIDs,
	 * or we have event groups that conflict with the ones currently
	 * scheduled.
742 743 744 745 746 747 748 749 750
	 *
	 * We force deallocate the rmid of the group at the head of
	 * cache_groups. The first event group without an RMID then gets
	 * assigned intel_cqm_rotation_rmid. This ensures we always make
	 * forward progress.
	 *
	 * Rotate the cache_groups list so the previous head is now the
	 * tail.
	 */
751
	__intel_cqm_pick_and_rotate(start);
752 753 754 755 756 757 758

	/*
	 * If the rotation is going to succeed, reduce the threshold so
	 * that we don't needlessly reuse dirty RMIDs.
	 */
	if (__rmid_valid(intel_cqm_rotation_rmid)) {
		intel_cqm_xchg_rmid(start, intel_cqm_rotation_rmid);
759 760 761
		intel_cqm_rotation_rmid = __get_rmid();

		intel_cqm_sched_out_conflicting_events(start);
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843

		if (__intel_cqm_threshold)
			__intel_cqm_threshold--;
	}

	rotated = true;

stabilize:
	/*
	 * We now need to stablize the RMID we freed above (if any) to
	 * ensure that the next time we rotate we have an RMID with zero
	 * occupancy value.
	 *
	 * Alternatively, if we didn't need to perform any rotation,
	 * we'll have a bunch of RMIDs in limbo that need stabilizing.
	 */
	threshold_limit = __intel_cqm_max_threshold / cqm_l3_scale;

	while (intel_cqm_rmid_stabilize(&nr_available) &&
	       __intel_cqm_threshold < threshold_limit) {
		unsigned int steal_limit;

		/*
		 * Don't spin if nobody is actively waiting for an RMID,
		 * the rotation worker will be kicked as soon as an
		 * event needs an RMID anyway.
		 */
		if (!nr_needed)
			break;

		/* Allow max 25% of RMIDs to be in limbo. */
		steal_limit = (cqm_max_rmid + 1) / 4;

		/*
		 * We failed to stabilize any RMIDs so our rotation
		 * logic is now stuck. In order to make forward progress
		 * we have a few options:
		 *
		 *   1. rotate ("steal") another RMID
		 *   2. increase the threshold
		 *   3. do nothing
		 *
		 * We do both of 1. and 2. until we hit the steal limit.
		 *
		 * The steal limit prevents all RMIDs ending up on the
		 * limbo list. This can happen if every RMID has a
		 * non-zero occupancy above threshold_limit, and the
		 * occupancy values aren't dropping fast enough.
		 *
		 * Note that there is prioritisation at work here - we'd
		 * rather increase the number of RMIDs on the limbo list
		 * than increase the threshold, because increasing the
		 * threshold skews the event data (because we reuse
		 * dirty RMIDs) - threshold bumps are a last resort.
		 */
		if (nr_available < steal_limit)
			goto again;

		__intel_cqm_threshold++;
	}

out:
	mutex_unlock(&cache_mutex);
	return rotated;
}

static void intel_cqm_rmid_rotate(struct work_struct *work);

static DECLARE_DELAYED_WORK(intel_cqm_rmid_work, intel_cqm_rmid_rotate);

static struct pmu intel_cqm_pmu;

static void intel_cqm_rmid_rotate(struct work_struct *work)
{
	unsigned long delay;

	__intel_cqm_rmid_rotate();

	delay = msecs_to_jiffies(intel_cqm_pmu.hrtimer_interval_ms);
	schedule_delayed_work(&intel_cqm_rmid_work, delay);
}

844 845 846 847 848
/*
 * Find a group and setup RMID.
 *
 * If we're part of a group, we use the group's RMID.
 */
849 850
static void intel_cqm_setup_event(struct perf_event *event,
				  struct perf_event **group)
851 852
{
	struct perf_event *iter;
853
	bool conflict = false;
854
	u32 rmid;
855

856
	event->hw.is_group_event = false;
857
	list_for_each_entry(iter, &cache_groups, hw.cqm_groups_entry) {
858 859
		rmid = iter->hw.cqm_rmid;

860 861
		if (__match_event(iter, event)) {
			/* All tasks in a group share an RMID */
862
			event->hw.cqm_rmid = rmid;
863
			*group = iter;
864
			return;
865 866
		}

867 868 869 870 871 872
		/*
		 * We only care about conflicts for events that are
		 * actually scheduled in (and hence have a valid RMID).
		 */
		if (__conflict_event(iter, event) && __rmid_valid(rmid))
			conflict = true;
873 874
	}

875 876 877 878 879 880
	if (conflict)
		rmid = INVALID_RMID;
	else
		rmid = __get_rmid();

	event->hw.cqm_rmid = rmid;
881 882 883 884
}

static void intel_cqm_event_read(struct perf_event *event)
{
885
	unsigned long flags;
886
	u32 rmid;
887 888
	u64 val;

889 890 891 892 893 894
	/*
	 * Task events are handled by intel_cqm_event_count().
	 */
	if (event->cpu == -1)
		return;

895
	raw_spin_lock_irqsave(&cache_lock, flags);
896
	rmid = event->hw.cqm_rmid;
897 898 899 900

	if (!__rmid_valid(rmid))
		goto out;

901 902 903 904 905 906
	val = __rmid_read(rmid);

	/*
	 * Ignore this reading on error states and do not update the value.
	 */
	if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
907
		goto out;
908 909

	local64_set(&event->count, val);
910 911
out:
	raw_spin_unlock_irqrestore(&cache_lock, flags);
912 913
}

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
static void __intel_cqm_event_count(void *info)
{
	struct rmid_read *rr = info;
	u64 val;

	val = __rmid_read(rr->rmid);

	if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
		return;

	atomic64_add(val, &rr->value);
}

static inline bool cqm_group_leader(struct perf_event *event)
{
	return !list_empty(&event->hw.cqm_groups_entry);
}

static u64 intel_cqm_event_count(struct perf_event *event)
{
934
	unsigned long flags;
935 936 937 938 939 940 941 942 943 944 945 946 947
	struct rmid_read rr = {
		.value = ATOMIC64_INIT(0),
	};

	/*
	 * We only need to worry about task events. System-wide events
	 * are handled like usual, i.e. entirely with
	 * intel_cqm_event_read().
	 */
	if (event->cpu != -1)
		return __perf_event_count(event);

	/*
948 949 950
	 * Only the group leader gets to report values except in case of
	 * multiple events in the same group, we still need to read the
	 * other events.This stops us
951 952 953 954 955 956 957
	 * reporting duplicate values to userspace, and gives us a clear
	 * rule for which task gets to report the values.
	 *
	 * Note that it is impossible to attribute these values to
	 * specific packages - we forfeit that ability when we create
	 * task events.
	 */
958
	if (!cqm_group_leader(event) && !event->hw.is_group_event)
959 960
		return 0;

961 962 963 964 965 966 967 968
	/*
	 * Getting up-to-date values requires an SMP IPI which is not
	 * possible if we're being called in interrupt context. Return
	 * the cached values instead.
	 */
	if (unlikely(in_interrupt()))
		goto out;

969 970 971 972 973 974 975 976 977 978 979 980
	/*
	 * Notice that we don't perform the reading of an RMID
	 * atomically, because we can't hold a spin lock across the
	 * IPIs.
	 *
	 * Speculatively perform the read, since @event might be
	 * assigned a different (possibly invalid) RMID while we're
	 * busying performing the IPI calls. It's therefore necessary to
	 * check @event's RMID afterwards, and if it has changed,
	 * discard the result of the read.
	 */
	rr.rmid = ACCESS_ONCE(event->hw.cqm_rmid);
981

982 983 984 985
	if (!__rmid_valid(rr.rmid))
		goto out;

	on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count, &rr, 1);
986

987 988 989 990 991
	raw_spin_lock_irqsave(&cache_lock, flags);
	if (event->hw.cqm_rmid == rr.rmid)
		local64_set(&event->count, atomic64_read(&rr.value));
	raw_spin_unlock_irqrestore(&cache_lock, flags);
out:
992 993 994
	return __perf_event_count(event);
}

995 996
static void intel_cqm_event_start(struct perf_event *event, int mode)
{
997
	struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
998
	u32 rmid = event->hw.cqm_rmid;
999 1000 1001 1002 1003 1004

	if (!(event->hw.cqm_state & PERF_HES_STOPPED))
		return;

	event->hw.cqm_state &= ~PERF_HES_STOPPED;

1005
	if (state->rmid_usecnt++) {
1006 1007 1008
		if (!WARN_ON_ONCE(state->rmid != rmid))
			return;
	} else {
1009
		WARN_ON_ONCE(state->rmid);
1010
	}
1011 1012

	state->rmid = rmid;
1013
	wrmsr(MSR_IA32_PQR_ASSOC, rmid, state->closid);
1014 1015 1016 1017
}

static void intel_cqm_event_stop(struct perf_event *event, int mode)
{
1018
	struct intel_pqr_state *state = this_cpu_ptr(&pqr_state);
1019 1020 1021 1022 1023 1024 1025 1026

	if (event->hw.cqm_state & PERF_HES_STOPPED)
		return;

	event->hw.cqm_state |= PERF_HES_STOPPED;

	intel_cqm_event_read(event);

1027
	if (!--state->rmid_usecnt) {
1028
		state->rmid = 0;
1029
		wrmsr(MSR_IA32_PQR_ASSOC, 0, state->closid);
1030 1031 1032 1033 1034 1035 1036
	} else {
		WARN_ON_ONCE(!state->rmid);
	}
}

static int intel_cqm_event_add(struct perf_event *event, int mode)
{
1037
	unsigned long flags;
1038
	u32 rmid;
1039 1040

	raw_spin_lock_irqsave(&cache_lock, flags);
1041 1042 1043 1044

	event->hw.cqm_state = PERF_HES_STOPPED;
	rmid = event->hw.cqm_rmid;

1045
	if (__rmid_valid(rmid) && (mode & PERF_EF_START))
1046 1047
		intel_cqm_event_start(event, mode);

1048 1049
	raw_spin_unlock_irqrestore(&cache_lock, flags);

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	return 0;
}

static void intel_cqm_event_destroy(struct perf_event *event)
{
	struct perf_event *group_other = NULL;

	mutex_lock(&cache_mutex);

	/*
	 * If there's another event in this group...
	 */
	if (!list_empty(&event->hw.cqm_group_entry)) {
		group_other = list_first_entry(&event->hw.cqm_group_entry,
					       struct perf_event,
					       hw.cqm_group_entry);
		list_del(&event->hw.cqm_group_entry);
	}

	/*
	 * And we're the group leader..
	 */
1072
	if (cqm_group_leader(event)) {
1073 1074 1075 1076 1077 1078 1079 1080
		/*
		 * If there was a group_other, make that leader, otherwise
		 * destroy the group and return the RMID.
		 */
		if (group_other) {
			list_replace(&event->hw.cqm_groups_entry,
				     &group_other->hw.cqm_groups_entry);
		} else {
1081
			u32 rmid = event->hw.cqm_rmid;
1082

1083 1084
			if (__rmid_valid(rmid))
				__put_rmid(rmid);
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
			list_del(&event->hw.cqm_groups_entry);
		}
	}

	mutex_unlock(&cache_mutex);
}

static int intel_cqm_event_init(struct perf_event *event)
{
	struct perf_event *group = NULL;
1095
	bool rotate = false;
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119

	if (event->attr.type != intel_cqm_pmu.type)
		return -ENOENT;

	if (event->attr.config & ~QOS_EVENT_MASK)
		return -EINVAL;

	/* unsupported modes and filters */
	if (event->attr.exclude_user   ||
	    event->attr.exclude_kernel ||
	    event->attr.exclude_hv     ||
	    event->attr.exclude_idle   ||
	    event->attr.exclude_host   ||
	    event->attr.exclude_guest  ||
	    event->attr.sample_period) /* no sampling */
		return -EINVAL;

	INIT_LIST_HEAD(&event->hw.cqm_group_entry);
	INIT_LIST_HEAD(&event->hw.cqm_groups_entry);

	event->destroy = intel_cqm_event_destroy;

	mutex_lock(&cache_mutex);

1120
	/* Will also set rmid */
1121
	intel_cqm_setup_event(event, &group);
1122 1123 1124 1125 1126 1127 1128

	if (group) {
		list_add_tail(&event->hw.cqm_group_entry,
			      &group->hw.cqm_group_entry);
	} else {
		list_add_tail(&event->hw.cqm_groups_entry,
			      &cache_groups);
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

		/*
		 * All RMIDs are either in use or have recently been
		 * used. Kick the rotation worker to clean/free some.
		 *
		 * We only do this for the group leader, rather than for
		 * every event in a group to save on needless work.
		 */
		if (!__rmid_valid(event->hw.cqm_rmid))
			rotate = true;
1139 1140 1141
	}

	mutex_unlock(&cache_mutex);
1142 1143 1144 1145

	if (rotate)
		schedule_delayed_work(&intel_cqm_rmid_work, 0);

1146
	return 0;
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
}

EVENT_ATTR_STR(llc_occupancy, intel_cqm_llc, "event=0x01");
EVENT_ATTR_STR(llc_occupancy.per-pkg, intel_cqm_llc_pkg, "1");
EVENT_ATTR_STR(llc_occupancy.unit, intel_cqm_llc_unit, "Bytes");
EVENT_ATTR_STR(llc_occupancy.scale, intel_cqm_llc_scale, NULL);
EVENT_ATTR_STR(llc_occupancy.snapshot, intel_cqm_llc_snapshot, "1");

static struct attribute *intel_cqm_events_attr[] = {
	EVENT_PTR(intel_cqm_llc),
	EVENT_PTR(intel_cqm_llc_pkg),
	EVENT_PTR(intel_cqm_llc_unit),
	EVENT_PTR(intel_cqm_llc_scale),
	EVENT_PTR(intel_cqm_llc_snapshot),
	NULL,
};

static struct attribute_group intel_cqm_events_group = {
	.name = "events",
	.attrs = intel_cqm_events_attr,
};

PMU_FORMAT_ATTR(event, "config:0-7");
static struct attribute *intel_cqm_formats_attr[] = {
	&format_attr_event.attr,
	NULL,
};

static struct attribute_group intel_cqm_format_group = {
	.name = "format",
	.attrs = intel_cqm_formats_attr,
};

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
static ssize_t
max_recycle_threshold_show(struct device *dev, struct device_attribute *attr,
			   char *page)
{
	ssize_t rv;

	mutex_lock(&cache_mutex);
	rv = snprintf(page, PAGE_SIZE-1, "%u\n", __intel_cqm_max_threshold);
	mutex_unlock(&cache_mutex);

	return rv;
}

static ssize_t
max_recycle_threshold_store(struct device *dev,
			    struct device_attribute *attr,
			    const char *buf, size_t count)
{
	unsigned int bytes, cachelines;
	int ret;

	ret = kstrtouint(buf, 0, &bytes);
	if (ret)
		return ret;

	mutex_lock(&cache_mutex);

	__intel_cqm_max_threshold = bytes;
	cachelines = bytes / cqm_l3_scale;

	/*
	 * The new maximum takes effect immediately.
	 */
	if (__intel_cqm_threshold > cachelines)
		__intel_cqm_threshold = cachelines;

	mutex_unlock(&cache_mutex);

	return count;
}

static DEVICE_ATTR_RW(max_recycle_threshold);

static struct attribute *intel_cqm_attrs[] = {
	&dev_attr_max_recycle_threshold.attr,
	NULL,
};

static const struct attribute_group intel_cqm_group = {
	.attrs = intel_cqm_attrs,
};

1232 1233 1234
static const struct attribute_group *intel_cqm_attr_groups[] = {
	&intel_cqm_events_group,
	&intel_cqm_format_group,
1235
	&intel_cqm_group,
1236 1237 1238 1239
	NULL,
};

static struct pmu intel_cqm_pmu = {
1240 1241 1242 1243 1244
	.hrtimer_interval_ms = RMID_DEFAULT_QUEUE_TIME,
	.attr_groups	     = intel_cqm_attr_groups,
	.task_ctx_nr	     = perf_sw_context,
	.event_init	     = intel_cqm_event_init,
	.add		     = intel_cqm_event_add,
1245
	.del		     = intel_cqm_event_stop,
1246 1247 1248 1249
	.start		     = intel_cqm_event_start,
	.stop		     = intel_cqm_event_stop,
	.read		     = intel_cqm_event_read,
	.count		     = intel_cqm_event_count,
1250 1251 1252 1253
};

static inline void cqm_pick_event_reader(int cpu)
{
1254
	int reader;
1255

1256 1257 1258 1259
	/* First online cpu in package becomes the reader */
	reader = cpumask_any_and(&cqm_cpumask, topology_core_cpumask(cpu));
	if (reader >= nr_cpu_ids)
		cpumask_set_cpu(cpu, &cqm_cpumask);
1260 1261
}

1262
static void intel_cqm_cpu_starting(unsigned int cpu)
1263
{
1264
	struct intel_pqr_state *state = &per_cpu(pqr_state, cpu);
1265 1266 1267
	struct cpuinfo_x86 *c = &cpu_data(cpu);

	state->rmid = 0;
1268 1269
	state->closid = 0;
	state->rmid_usecnt = 0;
1270 1271 1272 1273 1274 1275 1276

	WARN_ON(c->x86_cache_max_rmid != cqm_max_rmid);
	WARN_ON(c->x86_cache_occ_scale != cqm_l3_scale);
}

static void intel_cqm_cpu_exit(unsigned int cpu)
{
1277
	int target;
1278

1279
	/* Is @cpu the current cqm reader for this package ? */
1280 1281 1282
	if (!cpumask_test_and_clear_cpu(cpu, &cqm_cpumask))
		return;

1283 1284
	/* Find another online reader in this package */
	target = cpumask_any_but(topology_core_cpumask(cpu), cpu);
1285

1286 1287
	if (target < nr_cpu_ids)
		cpumask_set_cpu(target, &cqm_cpumask);
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
}

static int intel_cqm_cpu_notifier(struct notifier_block *nb,
				  unsigned long action, void *hcpu)
{
	unsigned int cpu  = (unsigned long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		intel_cqm_cpu_exit(cpu);
		break;
	case CPU_STARTING:
1300
		intel_cqm_cpu_starting(cpu);
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
		cqm_pick_event_reader(cpu);
		break;
	}

	return NOTIFY_OK;
}

static const struct x86_cpu_id intel_cqm_match[] = {
	{ .vendor = X86_VENDOR_INTEL, .feature = X86_FEATURE_CQM_OCCUP_LLC },
	{}
};

static int __init intel_cqm_init(void)
{
	char *str, scale[20];
	int i, cpu, ret;

	if (!x86_match_cpu(intel_cqm_match))
		return -ENODEV;

	cqm_l3_scale = boot_cpu_data.x86_cache_occ_scale;

	/*
	 * It's possible that not all resources support the same number
	 * of RMIDs. Instead of making scheduling much more complicated
	 * (where we have to match a task's RMID to a cpu that supports
	 * that many RMIDs) just find the minimum RMIDs supported across
	 * all cpus.
	 *
	 * Also, check that the scales match on all cpus.
	 */
	cpu_notifier_register_begin();

	for_each_online_cpu(cpu) {
		struct cpuinfo_x86 *c = &cpu_data(cpu);

		if (c->x86_cache_max_rmid < cqm_max_rmid)
			cqm_max_rmid = c->x86_cache_max_rmid;

		if (c->x86_cache_occ_scale != cqm_l3_scale) {
			pr_err("Multiple LLC scale values, disabling\n");
			ret = -EINVAL;
			goto out;
		}
	}

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
	/*
	 * A reasonable upper limit on the max threshold is the number
	 * of lines tagged per RMID if all RMIDs have the same number of
	 * lines tagged in the LLC.
	 *
	 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
	 */
	__intel_cqm_max_threshold =
		boot_cpu_data.x86_cache_size * 1024 / (cqm_max_rmid + 1);

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	snprintf(scale, sizeof(scale), "%u", cqm_l3_scale);
	str = kstrdup(scale, GFP_KERNEL);
	if (!str) {
		ret = -ENOMEM;
		goto out;
	}

	event_attr_intel_cqm_llc_scale.event_str = str;

	ret = intel_cqm_setup_rmid_cache();
	if (ret)
		goto out;

	for_each_online_cpu(i) {
1371
		intel_cqm_cpu_starting(i);
1372 1373 1374 1375 1376
		cqm_pick_event_reader(i);
	}

	__perf_cpu_notifier(intel_cqm_cpu_notifier);

1377
	ret = perf_pmu_register(&intel_cqm_pmu, "intel_cqm", -1);
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	if (ret)
		pr_err("Intel CQM perf registration failed: %d\n", ret);
	else
		pr_info("Intel CQM monitoring enabled\n");

out:
	cpu_notifier_register_done();

	return ret;
}
device_initcall(intel_cqm_init);