sge.c 71.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
/*
 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
 * driver for Linux.
 *
 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <net/ipv6.h>
#include <net/tcp.h>
#include <linux/dma-mapping.h>

#include "t4vf_common.h"
#include "t4vf_defs.h"

#include "../cxgb4/t4_regs.h"
#include "../cxgb4/t4fw_api.h"
#include "../cxgb4/t4_msg.h"

/*
 * Decoded Adapter Parameters.
 */
static u32 FL_PG_ORDER;		/* large page allocation size */
static u32 STAT_LEN;		/* length of status page at ring end */
static u32 PKTSHIFT;		/* padding between CPL and packet data */
static u32 FL_ALIGN;		/* response queue message alignment */

/*
 * Constants ...
 */
enum {
	/*
	 * Egress Queue sizes, producer and consumer indices are all in units
	 * of Egress Context Units bytes.  Note that as far as the hardware is
	 * concerned, the free list is an Egress Queue (the host produces free
	 * buffers which the hardware consumes) and free list entries are
	 * 64-bit PCI DMA addresses.
	 */
	EQ_UNIT = SGE_EQ_IDXSIZE,
	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
	TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),

	/*
	 * Max number of TX descriptors we clean up at a time.  Should be
	 * modest as freeing skbs isn't cheap and it happens while holding
	 * locks.  We just need to free packets faster than they arrive, we
	 * eventually catch up and keep the amortized cost reasonable.
	 */
	MAX_TX_RECLAIM = 16,

	/*
	 * Max number of Rx buffers we replenish at a time.  Again keep this
	 * modest, allocating buffers isn't cheap either.
	 */
	MAX_RX_REFILL = 16,

	/*
	 * Period of the Rx queue check timer.  This timer is infrequent as it
	 * has something to do only when the system experiences severe memory
	 * shortage.
	 */
	RX_QCHECK_PERIOD = (HZ / 2),

	/*
	 * Period of the TX queue check timer and the maximum number of TX
	 * descriptors to be reclaimed by the TX timer.
	 */
	TX_QCHECK_PERIOD = (HZ / 2),
	MAX_TIMER_TX_RECLAIM = 100,

	/*
	 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic
	 * timer will attempt to refill it.
	 */
	FL_STARVE_THRES = 4,

	/*
	 * Suspend an Ethernet TX queue with fewer available descriptors than
	 * this.  We always want to have room for a maximum sized packet:
	 * inline immediate data + MAX_SKB_FRAGS. This is the same as
	 * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS
	 * (see that function and its helpers for a description of the
	 * calculation).
	 */
	ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1,
	ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 +
				   ((ETHTXQ_MAX_FRAGS-1) & 1) +
				   2),
	ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
			  sizeof(struct cpl_tx_pkt_lso_core) +
			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
	ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR,

	ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT),

	/*
	 * Max TX descriptor space we allow for an Ethernet packet to be
	 * inlined into a WR.  This is limited by the maximum value which
	 * we can specify for immediate data in the firmware Ethernet TX
	 * Work Request.
	 */
	MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_MASK,

	/*
	 * Max size of a WR sent through a control TX queue.
	 */
	MAX_CTRL_WR_LEN = 256,

	/*
	 * Maximum amount of data which we'll ever need to inline into a
	 * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN).
	 */
	MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN
			  ? MAX_IMM_TX_PKT_LEN
			  : MAX_CTRL_WR_LEN),

	/*
	 * For incoming packets less than RX_COPY_THRES, we copy the data into
	 * an skb rather than referencing the data.  We allocate enough
	 * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes
	 * of the data (header).
	 */
	RX_COPY_THRES = 256,
	RX_PULL_LEN = 128,
};

/*
 * Can't define this in the above enum because PKTSHIFT isn't a constant in
 * the VF Driver ...
 */
#define RX_PKT_PULL_LEN (RX_PULL_LEN + PKTSHIFT)

/*
 * Software state per TX descriptor.
 */
struct tx_sw_desc {
	struct sk_buff *skb;		/* socket buffer of TX data source */
	struct ulptx_sgl *sgl;		/* scatter/gather list in TX Queue */
};

/*
 * Software state per RX Free List descriptor.  We keep track of the allocated
 * FL page, its size, and its PCI DMA address (if the page is mapped).  The FL
 * page size and its PCI DMA mapped state are stored in the low bits of the
 * PCI DMA address as per below.
 */
struct rx_sw_desc {
	struct page *page;		/* Free List page buffer */
	dma_addr_t dma_addr;		/* PCI DMA address (if mapped) */
					/*   and flags (see below) */
};

/*
 * The low bits of rx_sw_desc.dma_addr have special meaning.  Note that the
 * SGE also uses the low 4 bits to determine the size of the buffer.  It uses
 * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array.
 * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4
 * bits can only contain a 0 or a 1 to indicate which size buffer we're giving
 * to the SGE.  Thus, our software state of "is the buffer mapped for DMA" is
 * maintained in an inverse sense so the hardware never sees that bit high.
 */
enum {
	RX_LARGE_BUF    = 1 << 0,	/* buffer is SGE_FL_BUFFER_SIZE[1] */
	RX_UNMAPPED_BUF = 1 << 1,	/* buffer is not mapped */
};

/**
 *	get_buf_addr - return DMA buffer address of software descriptor
 *	@sdesc: pointer to the software buffer descriptor
 *
 *	Return the DMA buffer address of a software descriptor (stripping out
 *	our low-order flag bits).
 */
static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc)
{
	return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
}

/**
 *	is_buf_mapped - is buffer mapped for DMA?
 *	@sdesc: pointer to the software buffer descriptor
 *
 *	Determine whether the buffer associated with a software descriptor in
 *	mapped for DMA or not.
 */
static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc)
{
	return !(sdesc->dma_addr & RX_UNMAPPED_BUF);
}

/**
 *	need_skb_unmap - does the platform need unmapping of sk_buffs?
 *
 *	Returns true if the platfrom needs sk_buff unmapping.  The compiler
 *	optimizes away unecessary code if this returns true.
 */
static inline int need_skb_unmap(void)
{
	/*
	 * This structure is used to tell if the platfrom needs buffer
	 * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
	 */
	struct dummy {
		DECLARE_PCI_UNMAP_ADDR(addr);
	};

	return sizeof(struct dummy) != 0;
}

/**
 *	txq_avail - return the number of available slots in a TX queue
 *	@tq: the TX queue
 *
 *	Returns the number of available descriptors in a TX queue.
 */
static inline unsigned int txq_avail(const struct sge_txq *tq)
{
	return tq->size - 1 - tq->in_use;
}

/**
 *	fl_cap - return the capacity of a Free List
 *	@fl: the Free List
 *
 *	Returns the capacity of a Free List.  The capacity is less than the
 *	size because an Egress Queue Index Unit worth of descriptors needs to
 *	be left unpopulated, otherwise the Producer and Consumer indices PIDX
 *	and CIDX will match and the hardware will think the FL is empty.
 */
static inline unsigned int fl_cap(const struct sge_fl *fl)
{
	return fl->size - FL_PER_EQ_UNIT;
}

/**
 *	fl_starving - return whether a Free List is starving.
 *	@fl: the Free List
 *
 *	Tests specified Free List to see whether the number of buffers
 *	available to the hardware has falled below our "starvation"
 *	threshhold.
 */
static inline bool fl_starving(const struct sge_fl *fl)
{
	return fl->avail - fl->pend_cred <= FL_STARVE_THRES;
}

/**
 *	map_skb -  map an skb for DMA to the device
 *	@dev: the egress net device
 *	@skb: the packet to map
 *	@addr: a pointer to the base of the DMA mapping array
 *
 *	Map an skb for DMA to the device and return an array of DMA addresses.
 */
static int map_skb(struct device *dev, const struct sk_buff *skb,
		   dma_addr_t *addr)
{
	const skb_frag_t *fp, *end;
	const struct skb_shared_info *si;

	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
	if (dma_mapping_error(dev, *addr))
		goto out_err;

	si = skb_shinfo(skb);
	end = &si->frags[si->nr_frags];
	for (fp = si->frags; fp < end; fp++) {
		*++addr = dma_map_page(dev, fp->page, fp->page_offset, fp->size,
				       DMA_TO_DEVICE);
		if (dma_mapping_error(dev, *addr))
			goto unwind;
	}
	return 0;

unwind:
	while (fp-- > si->frags)
		dma_unmap_page(dev, *--addr, fp->size, DMA_TO_DEVICE);
	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);

out_err:
	return -ENOMEM;
}

static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
		      const struct ulptx_sgl *sgl, const struct sge_txq *tq)
{
	const struct ulptx_sge_pair *p;
	unsigned int nfrags = skb_shinfo(skb)->nr_frags;

	if (likely(skb_headlen(skb)))
		dma_unmap_single(dev, be64_to_cpu(sgl->addr0),
				 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
	else {
		dma_unmap_page(dev, be64_to_cpu(sgl->addr0),
			       be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
		nfrags--;
	}

	/*
	 * the complexity below is because of the possibility of a wrap-around
	 * in the middle of an SGL
	 */
	for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
		if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) {
unmap:
			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
			dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
			p++;
		} else if ((u8 *)p == (u8 *)tq->stat) {
			p = (const struct ulptx_sge_pair *)tq->desc;
			goto unmap;
		} else if ((u8 *)p + 8 == (u8 *)tq->stat) {
			const __be64 *addr = (const __be64 *)tq->desc;

			dma_unmap_page(dev, be64_to_cpu(addr[0]),
				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
			dma_unmap_page(dev, be64_to_cpu(addr[1]),
				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
			p = (const struct ulptx_sge_pair *)&addr[2];
		} else {
			const __be64 *addr = (const __be64 *)tq->desc;

			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
			dma_unmap_page(dev, be64_to_cpu(addr[0]),
				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
			p = (const struct ulptx_sge_pair *)&addr[1];
		}
	}
	if (nfrags) {
		__be64 addr;

		if ((u8 *)p == (u8 *)tq->stat)
			p = (const struct ulptx_sge_pair *)tq->desc;
		addr = ((u8 *)p + 16 <= (u8 *)tq->stat
			? p->addr[0]
			: *(const __be64 *)tq->desc);
		dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]),
			       DMA_TO_DEVICE);
	}
}

/**
 *	free_tx_desc - reclaims TX descriptors and their buffers
 *	@adapter: the adapter
 *	@tq: the TX queue to reclaim descriptors from
 *	@n: the number of descriptors to reclaim
 *	@unmap: whether the buffers should be unmapped for DMA
 *
 *	Reclaims TX descriptors from an SGE TX queue and frees the associated
 *	TX buffers.  Called with the TX queue lock held.
 */
static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq,
			 unsigned int n, bool unmap)
{
	struct tx_sw_desc *sdesc;
	unsigned int cidx = tq->cidx;
	struct device *dev = adapter->pdev_dev;

	const int need_unmap = need_skb_unmap() && unmap;

	sdesc = &tq->sdesc[cidx];
	while (n--) {
		/*
		 * If we kept a reference to the original TX skb, we need to
		 * unmap it from PCI DMA space (if required) and free it.
		 */
		if (sdesc->skb) {
			if (need_unmap)
				unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq);
			kfree_skb(sdesc->skb);
			sdesc->skb = NULL;
		}

		sdesc++;
		if (++cidx == tq->size) {
			cidx = 0;
			sdesc = tq->sdesc;
		}
	}
	tq->cidx = cidx;
}

/*
 * Return the number of reclaimable descriptors in a TX queue.
 */
static inline int reclaimable(const struct sge_txq *tq)
{
	int hw_cidx = be16_to_cpu(tq->stat->cidx);
	int reclaimable = hw_cidx - tq->cidx;
	if (reclaimable < 0)
		reclaimable += tq->size;
	return reclaimable;
}

/**
 *	reclaim_completed_tx - reclaims completed TX descriptors
 *	@adapter: the adapter
 *	@tq: the TX queue to reclaim completed descriptors from
 *	@unmap: whether the buffers should be unmapped for DMA
 *
 *	Reclaims TX descriptors that the SGE has indicated it has processed,
 *	and frees the associated buffers if possible.  Called with the TX
 *	queue locked.
 */
static inline void reclaim_completed_tx(struct adapter *adapter,
					struct sge_txq *tq,
					bool unmap)
{
	int avail = reclaimable(tq);

	if (avail) {
		/*
		 * Limit the amount of clean up work we do at a time to keep
		 * the TX lock hold time O(1).
		 */
		if (avail > MAX_TX_RECLAIM)
			avail = MAX_TX_RECLAIM;

		free_tx_desc(adapter, tq, avail, unmap);
		tq->in_use -= avail;
	}
}

/**
 *	get_buf_size - return the size of an RX Free List buffer.
 *	@sdesc: pointer to the software buffer descriptor
 */
static inline int get_buf_size(const struct rx_sw_desc *sdesc)
{
	return FL_PG_ORDER > 0 && (sdesc->dma_addr & RX_LARGE_BUF)
		? (PAGE_SIZE << FL_PG_ORDER)
		: PAGE_SIZE;
}

/**
 *	free_rx_bufs - free RX buffers on an SGE Free List
 *	@adapter: the adapter
 *	@fl: the SGE Free List to free buffers from
 *	@n: how many buffers to free
 *
 *	Release the next @n buffers on an SGE Free List RX queue.   The
 *	buffers must be made inaccessible to hardware before calling this
 *	function.
 */
static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n)
{
	while (n--) {
		struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];

		if (is_buf_mapped(sdesc))
			dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
				       get_buf_size(sdesc), PCI_DMA_FROMDEVICE);
		put_page(sdesc->page);
		sdesc->page = NULL;
		if (++fl->cidx == fl->size)
			fl->cidx = 0;
		fl->avail--;
	}
}

/**
 *	unmap_rx_buf - unmap the current RX buffer on an SGE Free List
 *	@adapter: the adapter
 *	@fl: the SGE Free List
 *
 *	Unmap the current buffer on an SGE Free List RX queue.   The
 *	buffer must be made inaccessible to HW before calling this function.
 *
 *	This is similar to @free_rx_bufs above but does not free the buffer.
 *	Do note that the FL still loses any further access to the buffer.
 *	This is used predominantly to "transfer ownership" of an FL buffer
 *	to another entity (typically an skb's fragment list).
 */
static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl)
{
	struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];

	if (is_buf_mapped(sdesc))
		dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
			       get_buf_size(sdesc), PCI_DMA_FROMDEVICE);
	sdesc->page = NULL;
	if (++fl->cidx == fl->size)
		fl->cidx = 0;
	fl->avail--;
}

/**
 *	ring_fl_db - righ doorbell on free list
 *	@adapter: the adapter
 *	@fl: the Free List whose doorbell should be rung ...
 *
 *	Tell the Scatter Gather Engine that there are new free list entries
 *	available.
 */
static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl)
{
	/*
	 * The SGE keeps track of its Producer and Consumer Indices in terms
	 * of Egress Queue Units so we can only tell it about integral numbers
	 * of multiples of Free List Entries per Egress Queue Units ...
	 */
	if (fl->pend_cred >= FL_PER_EQ_UNIT) {
		wmb();
		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
			     DBPRIO |
			     QID(fl->cntxt_id) |
			     PIDX(fl->pend_cred / FL_PER_EQ_UNIT));
		fl->pend_cred %= FL_PER_EQ_UNIT;
	}
}

/**
 *	set_rx_sw_desc - initialize software RX buffer descriptor
 *	@sdesc: pointer to the softwore RX buffer descriptor
 *	@page: pointer to the page data structure backing the RX buffer
 *	@dma_addr: PCI DMA address (possibly with low-bit flags)
 */
static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page,
				  dma_addr_t dma_addr)
{
	sdesc->page = page;
	sdesc->dma_addr = dma_addr;
}

/*
 * Support for poisoning RX buffers ...
 */
#define POISON_BUF_VAL -1

static inline void poison_buf(struct page *page, size_t sz)
{
#if POISON_BUF_VAL >= 0
	memset(page_address(page), POISON_BUF_VAL, sz);
#endif
}

/**
 *	refill_fl - refill an SGE RX buffer ring
 *	@adapter: the adapter
 *	@fl: the Free List ring to refill
 *	@n: the number of new buffers to allocate
 *	@gfp: the gfp flags for the allocations
 *
 *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
 *	allocated with the supplied gfp flags.  The caller must assure that
 *	@n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN
 *	EGRESS QUEUE UNITS_ indicates an empty Free List!  Returns the number
 *	of buffers allocated.  If afterwards the queue is found critically low,
 *	mark it as starving in the bitmap of starving FLs.
 */
static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl,
			      int n, gfp_t gfp)
{
	struct page *page;
	dma_addr_t dma_addr;
	unsigned int cred = fl->avail;
	__be64 *d = &fl->desc[fl->pidx];
	struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx];

	/*
	 * Sanity: ensure that the result of adding n Free List buffers
	 * won't result in wrapping the SGE's Producer Index around to
	 * it's Consumer Index thereby indicating an empty Free List ...
	 */
	BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT);

	/*
	 * If we support large pages, prefer large buffers and fail over to
	 * small pages if we can't allocate large pages to satisfy the refill.
	 * If we don't support large pages, drop directly into the small page
	 * allocation code.
	 */
	if (FL_PG_ORDER == 0)
		goto alloc_small_pages;

	while (n) {
		page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN,
				   FL_PG_ORDER);
		if (unlikely(!page)) {
			/*
			 * We've failed inour attempt to allocate a "large
			 * page".  Fail over to the "small page" allocation
			 * below.
			 */
			fl->large_alloc_failed++;
			break;
		}
		poison_buf(page, PAGE_SIZE << FL_PG_ORDER);

		dma_addr = dma_map_page(adapter->pdev_dev, page, 0,
					PAGE_SIZE << FL_PG_ORDER,
					PCI_DMA_FROMDEVICE);
		if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
			/*
			 * We've run out of DMA mapping space.  Free up the
			 * buffer and return with what we've managed to put
			 * into the free list.  We don't want to fail over to
			 * the small page allocation below in this case
			 * because DMA mapping resources are typically
			 * critical resources once they become scarse.
			 */
			__free_pages(page, FL_PG_ORDER);
			goto out;
		}
		dma_addr |= RX_LARGE_BUF;
		*d++ = cpu_to_be64(dma_addr);

		set_rx_sw_desc(sdesc, page, dma_addr);
		sdesc++;

		fl->avail++;
		if (++fl->pidx == fl->size) {
			fl->pidx = 0;
			sdesc = fl->sdesc;
			d = fl->desc;
		}
		n--;
	}

alloc_small_pages:
	while (n--) {
		page = __netdev_alloc_page(adapter->port[0],
					   gfp | __GFP_NOWARN);
		if (unlikely(!page)) {
			fl->alloc_failed++;
			break;
		}
		poison_buf(page, PAGE_SIZE);

		dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE,
				       PCI_DMA_FROMDEVICE);
		if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
			netdev_free_page(adapter->port[0], page);
			break;
		}
		*d++ = cpu_to_be64(dma_addr);

		set_rx_sw_desc(sdesc, page, dma_addr);
		sdesc++;

		fl->avail++;
		if (++fl->pidx == fl->size) {
			fl->pidx = 0;
			sdesc = fl->sdesc;
			d = fl->desc;
		}
	}

out:
	/*
	 * Update our accounting state to incorporate the new Free List
	 * buffers, tell the hardware about them and return the number of
	 * bufers which we were able to allocate.
	 */
	cred = fl->avail - cred;
	fl->pend_cred += cred;
	ring_fl_db(adapter, fl);

	if (unlikely(fl_starving(fl))) {
		smp_wmb();
		set_bit(fl->cntxt_id, adapter->sge.starving_fl);
	}

	return cred;
}

/*
 * Refill a Free List to its capacity or the Maximum Refill Increment,
 * whichever is smaller ...
 */
static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl)
{
	refill_fl(adapter, fl,
		  min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail),
		  GFP_ATOMIC);
}

/**
 *	alloc_ring - allocate resources for an SGE descriptor ring
 *	@dev: the PCI device's core device
 *	@nelem: the number of descriptors
 *	@hwsize: the size of each hardware descriptor
 *	@swsize: the size of each software descriptor
 *	@busaddrp: the physical PCI bus address of the allocated ring
 *	@swringp: return address pointer for software ring
 *	@stat_size: extra space in hardware ring for status information
 *
 *	Allocates resources for an SGE descriptor ring, such as TX queues,
 *	free buffer lists, response queues, etc.  Each SGE ring requires
 *	space for its hardware descriptors plus, optionally, space for software
 *	state associated with each hardware entry (the metadata).  The function
 *	returns three values: the virtual address for the hardware ring (the
 *	return value of the function), the PCI bus address of the hardware
 *	ring (in *busaddrp), and the address of the software ring (in swringp).
 *	Both the hardware and software rings are returned zeroed out.
 */
static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize,
			size_t swsize, dma_addr_t *busaddrp, void *swringp,
			size_t stat_size)
{
	/*
	 * Allocate the hardware ring and PCI DMA bus address space for said.
	 */
	size_t hwlen = nelem * hwsize + stat_size;
	void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL);

	if (!hwring)
		return NULL;

	/*
	 * If the caller wants a software ring, allocate it and return a
	 * pointer to it in *swringp.
	 */
	BUG_ON((swsize != 0) != (swringp != NULL));
	if (swsize) {
		void *swring = kcalloc(nelem, swsize, GFP_KERNEL);

		if (!swring) {
			dma_free_coherent(dev, hwlen, hwring, *busaddrp);
			return NULL;
		}
		*(void **)swringp = swring;
	}

	/*
	 * Zero out the hardware ring and return its address as our function
	 * value.
	 */
	memset(hwring, 0, hwlen);
	return hwring;
}

/**
 *	sgl_len - calculates the size of an SGL of the given capacity
 *	@n: the number of SGL entries
 *
 *	Calculates the number of flits (8-byte units) needed for a Direct
 *	Scatter/Gather List that can hold the given number of entries.
 */
static inline unsigned int sgl_len(unsigned int n)
{
	/*
	 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
	 * repeated sequences of { Length[i], Length[i+1], Address[i],
	 * Address[i+1] } (this ensures that all addresses are on 64-bit
	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
	 * Address[N+1] is omitted.
	 *
	 * The following calculation incorporates all of the above.  It's
	 * somewhat hard to follow but, briefly: the "+2" accounts for the
	 * first two flits which include the DSGL header, Length0 and
	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
	 * (n-1) is odd ...
	 */
	n--;
	return (3 * n) / 2 + (n & 1) + 2;
}

/**
 *	flits_to_desc - returns the num of TX descriptors for the given flits
 *	@flits: the number of flits
 *
 *	Returns the number of TX descriptors needed for the supplied number
 *	of flits.
 */
static inline unsigned int flits_to_desc(unsigned int flits)
{
	BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64));
	return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT);
}

/**
 *	is_eth_imm - can an Ethernet packet be sent as immediate data?
 *	@skb: the packet
 *
 *	Returns whether an Ethernet packet is small enough to fit completely as
 *	immediate data.
 */
static inline int is_eth_imm(const struct sk_buff *skb)
{
	/*
	 * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
	 * which does not accommodate immediate data.  We could dike out all
	 * of the support code for immediate data but that would tie our hands
	 * too much if we ever want to enhace the firmware.  It would also
	 * create more differences between the PF and VF Drivers.
	 */
	return false;
}

/**
 *	calc_tx_flits - calculate the number of flits for a packet TX WR
 *	@skb: the packet
 *
 *	Returns the number of flits needed for a TX Work Request for the
 *	given Ethernet packet, including the needed WR and CPL headers.
 */
static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
{
	unsigned int flits;

	/*
	 * If the skb is small enough, we can pump it out as a work request
	 * with only immediate data.  In that case we just have to have the
	 * TX Packet header plus the skb data in the Work Request.
	 */
	if (is_eth_imm(skb))
		return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
				    sizeof(__be64));

	/*
	 * Otherwise, we're going to have to construct a Scatter gather list
	 * of the skb body and fragments.  We also include the flits necessary
	 * for the TX Packet Work Request and CPL.  We always have a firmware
	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
	 * message or, if we're doing a Large Send Offload, an LSO CPL message
	 * with an embeded TX Packet Write CPL message.
	 */
	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
	if (skb_shinfo(skb)->gso_size)
		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
			  sizeof(struct cpl_tx_pkt_lso_core) +
			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
	else
		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
	return flits;
}

/**
 *	write_sgl - populate a Scatter/Gather List for a packet
 *	@skb: the packet
 *	@tq: the TX queue we are writing into
 *	@sgl: starting location for writing the SGL
 *	@end: points right after the end of the SGL
 *	@start: start offset into skb main-body data to include in the SGL
 *	@addr: the list of DMA bus addresses for the SGL elements
 *
 *	Generates a Scatter/Gather List for the buffers that make up a packet.
 *	The caller must provide adequate space for the SGL that will be written.
 *	The SGL includes all of the packet's page fragments and the data in its
 *	main body except for the first @start bytes.  @pos must be 16-byte
 *	aligned and within a TX descriptor with available space.  @end points
 *	write after the end of the SGL but does not account for any potential
 *	wrap around, i.e., @end > @tq->stat.
 */
static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq,
		      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
		      const dma_addr_t *addr)
{
	unsigned int i, len;
	struct ulptx_sge_pair *to;
	const struct skb_shared_info *si = skb_shinfo(skb);
	unsigned int nfrags = si->nr_frags;
	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];

	len = skb_headlen(skb) - start;
	if (likely(len)) {
		sgl->len0 = htonl(len);
		sgl->addr0 = cpu_to_be64(addr[0] + start);
		nfrags++;
	} else {
		sgl->len0 = htonl(si->frags[0].size);
		sgl->addr0 = cpu_to_be64(addr[1]);
	}

	sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) |
			      ULPTX_NSGE(nfrags));
	if (likely(--nfrags == 0))
		return;
	/*
	 * Most of the complexity below deals with the possibility we hit the
	 * end of the queue in the middle of writing the SGL.  For this case
	 * only we create the SGL in a temporary buffer and then copy it.
	 */
	to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge;

	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
		to->len[0] = cpu_to_be32(si->frags[i].size);
		to->len[1] = cpu_to_be32(si->frags[++i].size);
		to->addr[0] = cpu_to_be64(addr[i]);
		to->addr[1] = cpu_to_be64(addr[++i]);
	}
	if (nfrags) {
		to->len[0] = cpu_to_be32(si->frags[i].size);
		to->len[1] = cpu_to_be32(0);
		to->addr[0] = cpu_to_be64(addr[i + 1]);
	}
	if (unlikely((u8 *)end > (u8 *)tq->stat)) {
		unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1;

		if (likely(part0))
			memcpy(sgl->sge, buf, part0);
		part1 = (u8 *)end - (u8 *)tq->stat;
		memcpy(tq->desc, (u8 *)buf + part0, part1);
		end = (void *)tq->desc + part1;
	}
	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
		*(u64 *)end = 0;
}

/**
 *	check_ring_tx_db - check and potentially ring a TX queue's doorbell
 *	@adapter: the adapter
 *	@tq: the TX queue
 *	@n: number of new descriptors to give to HW
 *
 *	Ring the doorbel for a TX queue.
 */
static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq,
			      int n)
{
	/*
	 * Warn if we write doorbells with the wrong priority and write
	 * descriptors before telling HW.
	 */
	WARN_ON((QID(tq->cntxt_id) | PIDX(n)) & DBPRIO);
	wmb();
	t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
		     QID(tq->cntxt_id) | PIDX(n));
}

/**
 *	inline_tx_skb - inline a packet's data into TX descriptors
 *	@skb: the packet
 *	@tq: the TX queue where the packet will be inlined
 *	@pos: starting position in the TX queue to inline the packet
 *
 *	Inline a packet's contents directly into TX descriptors, starting at
 *	the given position within the TX DMA ring.
 *	Most of the complexity of this operation is dealing with wrap arounds
 *	in the middle of the packet we want to inline.
 */
static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq,
			  void *pos)
{
	u64 *p;
	int left = (void *)tq->stat - pos;

	if (likely(skb->len <= left)) {
		if (likely(!skb->data_len))
			skb_copy_from_linear_data(skb, pos, skb->len);
		else
			skb_copy_bits(skb, 0, pos, skb->len);
		pos += skb->len;
	} else {
		skb_copy_bits(skb, 0, pos, left);
		skb_copy_bits(skb, left, tq->desc, skb->len - left);
		pos = (void *)tq->desc + (skb->len - left);
	}

	/* 0-pad to multiple of 16 */
	p = PTR_ALIGN(pos, 8);
	if ((uintptr_t)p & 8)
		*p = 0;
}

/*
 * Figure out what HW csum a packet wants and return the appropriate control
 * bits.
 */
static u64 hwcsum(const struct sk_buff *skb)
{
	int csum_type;
	const struct iphdr *iph = ip_hdr(skb);

	if (iph->version == 4) {
		if (iph->protocol == IPPROTO_TCP)
			csum_type = TX_CSUM_TCPIP;
		else if (iph->protocol == IPPROTO_UDP)
			csum_type = TX_CSUM_UDPIP;
		else {
nocsum:
			/*
			 * unknown protocol, disable HW csum
			 * and hope a bad packet is detected
			 */
			return TXPKT_L4CSUM_DIS;
		}
	} else {
		/*
		 * this doesn't work with extension headers
		 */
		const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;

		if (ip6h->nexthdr == IPPROTO_TCP)
			csum_type = TX_CSUM_TCPIP6;
		else if (ip6h->nexthdr == IPPROTO_UDP)
			csum_type = TX_CSUM_UDPIP6;
		else
			goto nocsum;
	}

	if (likely(csum_type >= TX_CSUM_TCPIP))
		return TXPKT_CSUM_TYPE(csum_type) |
			TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
			TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
	else {
		int start = skb_transport_offset(skb);

		return TXPKT_CSUM_TYPE(csum_type) |
			TXPKT_CSUM_START(start) |
			TXPKT_CSUM_LOC(start + skb->csum_offset);
	}
}

/*
 * Stop an Ethernet TX queue and record that state change.
 */
static void txq_stop(struct sge_eth_txq *txq)
{
	netif_tx_stop_queue(txq->txq);
	txq->q.stops++;
}

/*
 * Advance our software state for a TX queue by adding n in use descriptors.
 */
static inline void txq_advance(struct sge_txq *tq, unsigned int n)
{
	tq->in_use += n;
	tq->pidx += n;
	if (tq->pidx >= tq->size)
		tq->pidx -= tq->size;
}

/**
 *	t4vf_eth_xmit - add a packet to an Ethernet TX queue
 *	@skb: the packet
 *	@dev: the egress net device
 *
 *	Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
 */
int t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev)
{
	u64 cntrl, *end;
	int qidx, credits;
	unsigned int flits, ndesc;
	struct adapter *adapter;
	struct sge_eth_txq *txq;
	const struct port_info *pi;
	struct fw_eth_tx_pkt_vm_wr *wr;
	struct cpl_tx_pkt_core *cpl;
	const struct skb_shared_info *ssi;
	dma_addr_t addr[MAX_SKB_FRAGS + 1];
	const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) +
					sizeof(wr->ethmacsrc) +
					sizeof(wr->ethtype) +
					sizeof(wr->vlantci));

	/*
	 * The chip minimum packet length is 10 octets but the firmware
	 * command that we are using requires that we copy the Ethernet header
	 * (including the VLAN tag) into the header so we reject anything
	 * smaller than that ...
	 */
	if (unlikely(skb->len < fw_hdr_copy_len))
		goto out_free;

	/*
	 * Figure out which TX Queue we're going to use.
	 */
	pi = netdev_priv(dev);
	adapter = pi->adapter;
	qidx = skb_get_queue_mapping(skb);
	BUG_ON(qidx >= pi->nqsets);
	txq = &adapter->sge.ethtxq[pi->first_qset + qidx];

	/*
	 * Take this opportunity to reclaim any TX Descriptors whose DMA
	 * transfers have completed.
	 */
	reclaim_completed_tx(adapter, &txq->q, true);

	/*
	 * Calculate the number of flits and TX Descriptors we're going to
	 * need along with how many TX Descriptors will be left over after
	 * we inject our Work Request.
	 */
	flits = calc_tx_flits(skb);
	ndesc = flits_to_desc(flits);
	credits = txq_avail(&txq->q) - ndesc;

	if (unlikely(credits < 0)) {
		/*
		 * Not enough room for this packet's Work Request.  Stop the
		 * TX Queue and return a "busy" condition.  The queue will get
		 * started later on when the firmware informs us that space
		 * has opened up.
		 */
		txq_stop(txq);
		dev_err(adapter->pdev_dev,
			"%s: TX ring %u full while queue awake!\n",
			dev->name, qidx);
		return NETDEV_TX_BUSY;
	}

	if (!is_eth_imm(skb) &&
	    unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) {
		/*
		 * We need to map the skb into PCI DMA space (because it can't
		 * be in-lined directly into the Work Request) and the mapping
		 * operation failed.  Record the error and drop the packet.
		 */
		txq->mapping_err++;
		goto out_free;
	}

	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
		/*
		 * After we're done injecting the Work Request for this
		 * packet, we'll be below our "stop threshhold" so stop the TX
		 * Queue now.  The queue will get started later on when the
		 * firmware informs us that space has opened up.
		 */
		txq_stop(txq);
	}

	/*
	 * Start filling in our Work Request.  Note that we do _not_ handle
	 * the WR Header wrapping around the TX Descriptor Ring.  If our
	 * maximum header size ever exceeds one TX Descriptor, we'll need to
	 * do something else here.
	 */
	BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
	wr = (void *)&txq->q.desc[txq->q.pidx];
	wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16(DIV_ROUND_UP(flits, 2)));
	wr->r3[0] = cpu_to_be64(0);
	wr->r3[1] = cpu_to_be64(0);
	skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
	end = (u64 *)wr + flits;

	/*
	 * If this is a Large Send Offload packet we'll put in an LSO CPL
	 * message with an encapsulated TX Packet CPL message.  Otherwise we
	 * just use a TX Packet CPL message.
	 */
	ssi = skb_shinfo(skb);
	if (ssi->gso_size) {
		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
		int l3hdr_len = skb_network_header_len(skb);
		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;

		wr->op_immdlen =
			cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
				    FW_WR_IMMDLEN(sizeof(*lso) +
						  sizeof(*cpl)));
		/*
		 * Fill in the LSO CPL message.
		 */
		lso->lso_ctrl =
			cpu_to_be32(LSO_OPCODE(CPL_TX_PKT_LSO) |
				    LSO_FIRST_SLICE |
				    LSO_LAST_SLICE |
				    LSO_IPV6(v6) |
				    LSO_ETHHDR_LEN(eth_xtra_len/4) |
				    LSO_IPHDR_LEN(l3hdr_len/4) |
				    LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
		lso->ipid_ofst = cpu_to_be16(0);
		lso->mss = cpu_to_be16(ssi->gso_size);
		lso->seqno_offset = cpu_to_be32(0);
		lso->len = cpu_to_be32(skb->len);

		/*
		 * Set up TX Packet CPL pointer, control word and perform
		 * accounting.
		 */
		cpl = (void *)(lso + 1);
		cntrl = (TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
			 TXPKT_IPHDR_LEN(l3hdr_len) |
			 TXPKT_ETHHDR_LEN(eth_xtra_len));
		txq->tso++;
		txq->tx_cso += ssi->gso_segs;
	} else {
		int len;

		len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
		wr->op_immdlen =
			cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
				    FW_WR_IMMDLEN(len));

		/*
		 * Set up TX Packet CPL pointer, control word and perform
		 * accounting.
		 */
		cpl = (void *)(wr + 1);
		if (skb->ip_summed == CHECKSUM_PARTIAL) {
			cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
			txq->tx_cso++;
		} else
			cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
	}

	/*
	 * If there's a VLAN tag present, add that to the list of things to
	 * do in this Work Request.
	 */
	if (vlan_tx_tag_present(skb)) {
		txq->vlan_ins++;
		cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
	}

	/*
	 * Fill in the TX Packet CPL message header.
	 */
	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE(CPL_TX_PKT_XT) |
				 TXPKT_INTF(pi->port_id) |
				 TXPKT_PF(0));
	cpl->pack = cpu_to_be16(0);
	cpl->len = cpu_to_be16(skb->len);
	cpl->ctrl1 = cpu_to_be64(cntrl);

#ifdef T4_TRACE
	T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7],
		  "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
		  ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags);
#endif

	/*
	 * Fill in the body of the TX Packet CPL message with either in-lined
	 * data or a Scatter/Gather List.
	 */
	if (is_eth_imm(skb)) {
		/*
		 * In-line the packet's data and free the skb since we don't
		 * need it any longer.
		 */
		inline_tx_skb(skb, &txq->q, cpl + 1);
		dev_kfree_skb(skb);
	} else {
		/*
		 * Write the skb's Scatter/Gather list into the TX Packet CPL
		 * message and retain a pointer to the skb so we can free it
		 * later when its DMA completes.  (We store the skb pointer
		 * in the Software Descriptor corresponding to the last TX
		 * Descriptor used by the Work Request.)
		 *
		 * The retained skb will be freed when the corresponding TX
		 * Descriptors are reclaimed after their DMAs complete.
		 * However, this could take quite a while since, in general,
		 * the hardware is set up to be lazy about sending DMA
		 * completion notifications to us and we mostly perform TX
		 * reclaims in the transmit routine.
		 *
		 * This is good for performamce but means that we rely on new
		 * TX packets arriving to run the destructors of completed
		 * packets, which open up space in their sockets' send queues.
		 * Sometimes we do not get such new packets causing TX to
		 * stall.  A single UDP transmitter is a good example of this
		 * situation.  We have a clean up timer that periodically
		 * reclaims completed packets but it doesn't run often enough
		 * (nor do we want it to) to prevent lengthy stalls.  A
		 * solution to this problem is to run the destructor early,
		 * after the packet is queued but before it's DMAd.  A con is
		 * that we lie to socket memory accounting, but the amount of
		 * extra memory is reasonable (limited by the number of TX
		 * descriptors), the packets do actually get freed quickly by
		 * new packets almost always, and for protocols like TCP that
		 * wait for acks to really free up the data the extra memory
		 * is even less.  On the positive side we run the destructors
		 * on the sending CPU rather than on a potentially different
1304
		 * completing CPU, usually a good thing.
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
		 *
		 * Run the destructor before telling the DMA engine about the
		 * packet to make sure it doesn't complete and get freed
		 * prematurely.
		 */
		struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
		struct sge_txq *tq = &txq->q;
		int last_desc;

		/*
		 * If the Work Request header was an exact multiple of our TX
		 * Descriptor length, then it's possible that the starting SGL
		 * pointer lines up exactly with the end of our TX Descriptor
		 * ring.  If that's the case, wrap around to the beginning
		 * here ...
		 */
		if (unlikely((void *)sgl == (void *)tq->stat)) {
			sgl = (void *)tq->desc;
			end = (void *)((void *)tq->desc +
				       ((void *)end - (void *)tq->stat));
		}

		write_sgl(skb, tq, sgl, end, 0, addr);
		skb_orphan(skb);

		last_desc = tq->pidx + ndesc - 1;
		if (last_desc >= tq->size)
			last_desc -= tq->size;
		tq->sdesc[last_desc].skb = skb;
		tq->sdesc[last_desc].sgl = sgl;
	}

	/*
	 * Advance our internal TX Queue state, tell the hardware about
	 * the new TX descriptors and return success.
	 */
	txq_advance(&txq->q, ndesc);
	dev->trans_start = jiffies;
	ring_tx_db(adapter, &txq->q, ndesc);
	return NETDEV_TX_OK;

out_free:
	/*
	 * An error of some sort happened.  Free the TX skb and tell the
	 * OS that we've "dealt" with the packet ...
	 */
	dev_kfree_skb(skb);
	return NETDEV_TX_OK;
}

/**
 *	t4vf_pktgl_free - free a packet gather list
 *	@gl: the gather list
 *
 *	Releases the pages of a packet gather list.  We do not own the last
 *	page on the list and do not free it.
 */
void t4vf_pktgl_free(const struct pkt_gl *gl)
{
	int frag;

	frag = gl->nfrags - 1;
	while (frag--)
		put_page(gl->frags[frag].page);
}

/**
 *	copy_frags - copy fragments from gather list into skb_shared_info
 *	@si: destination skb shared info structure
 *	@gl: source internal packet gather list
 *	@offset: packet start offset in first page
 *
 *	Copy an internal packet gather list into a Linux skb_shared_info
 *	structure.
 */
static inline void copy_frags(struct skb_shared_info *si,
			      const struct pkt_gl *gl,
			      unsigned int offset)
{
	unsigned int n;

	/* usually there's just one frag */
	si->frags[0].page = gl->frags[0].page;
	si->frags[0].page_offset = gl->frags[0].page_offset + offset;
	si->frags[0].size = gl->frags[0].size - offset;
	si->nr_frags = gl->nfrags;

	n = gl->nfrags - 1;
	if (n)
		memcpy(&si->frags[1], &gl->frags[1], n * sizeof(skb_frag_t));

	/* get a reference to the last page, we don't own it */
	get_page(gl->frags[n].page);
}

/**
 *	do_gro - perform Generic Receive Offload ingress packet processing
 *	@rxq: ingress RX Ethernet Queue
 *	@gl: gather list for ingress packet
 *	@pkt: CPL header for last packet fragment
 *
 *	Perform Generic Receive Offload (GRO) ingress packet processing.
 *	We use the standard Linux GRO interfaces for this.
 */
static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
		   const struct cpl_rx_pkt *pkt)
{
	int ret;
	struct sk_buff *skb;

	skb = napi_get_frags(&rxq->rspq.napi);
	if (unlikely(!skb)) {
		t4vf_pktgl_free(gl);
		rxq->stats.rx_drops++;
		return;
	}

	copy_frags(skb_shinfo(skb), gl, PKTSHIFT);
	skb->len = gl->tot_len - PKTSHIFT;
	skb->data_len = skb->len;
	skb->truesize += skb->data_len;
	skb->ip_summed = CHECKSUM_UNNECESSARY;
	skb_record_rx_queue(skb, rxq->rspq.idx);

	if (unlikely(pkt->vlan_ex)) {
		struct port_info *pi = netdev_priv(rxq->rspq.netdev);
		struct vlan_group *grp = pi->vlan_grp;

		rxq->stats.vlan_ex++;
		if (likely(grp)) {
			ret = vlan_gro_frags(&rxq->rspq.napi, grp,
					     be16_to_cpu(pkt->vlan));
			goto stats;
		}
	}
	ret = napi_gro_frags(&rxq->rspq.napi);

stats:
	if (ret == GRO_HELD)
		rxq->stats.lro_pkts++;
	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
		rxq->stats.lro_merged++;
	rxq->stats.pkts++;
	rxq->stats.rx_cso++;
}

/**
 *	t4vf_ethrx_handler - process an ingress ethernet packet
 *	@rspq: the response queue that received the packet
 *	@rsp: the response queue descriptor holding the RX_PKT message
 *	@gl: the gather list of packet fragments
 *
 *	Process an ingress ethernet packet and deliver it to the stack.
 */
int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp,
		       const struct pkt_gl *gl)
{
	struct sk_buff *skb;
	struct port_info *pi;
	struct skb_shared_info *ssi;
	const struct cpl_rx_pkt *pkt = (void *)&rsp[1];
	bool csum_ok = pkt->csum_calc && !pkt->err_vec;
	unsigned int len = be16_to_cpu(pkt->len);
	struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);

	/*
	 * If this is a good TCP packet and we have Generic Receive Offload
	 * enabled, handle the packet in the GRO path.
	 */
	if ((pkt->l2info & cpu_to_be32(RXF_TCP)) &&
	    (rspq->netdev->features & NETIF_F_GRO) && csum_ok &&
	    !pkt->ip_frag) {
		do_gro(rxq, gl, pkt);
		return 0;
	}

	/*
	 * If the ingress packet is small enough, allocate an skb large enough
	 * for all of the data and copy it inline.  Otherwise, allocate an skb
	 * with enough room to pull in the header and reference the rest of
	 * the data via the skb fragment list.
	 */
	if (len <= RX_COPY_THRES) {
		/* small packets have only one fragment */
		skb = alloc_skb(gl->frags[0].size, GFP_ATOMIC);
		if (!skb)
			goto nomem;
		__skb_put(skb, gl->frags[0].size);
		skb_copy_to_linear_data(skb, gl->va, gl->frags[0].size);
	} else {
		skb = alloc_skb(RX_PKT_PULL_LEN, GFP_ATOMIC);
		if (!skb)
			goto nomem;
		__skb_put(skb, RX_PKT_PULL_LEN);
		skb_copy_to_linear_data(skb, gl->va, RX_PKT_PULL_LEN);

		ssi = skb_shinfo(skb);
		ssi->frags[0].page = gl->frags[0].page;
		ssi->frags[0].page_offset = (gl->frags[0].page_offset +
					     RX_PKT_PULL_LEN);
		ssi->frags[0].size = gl->frags[0].size - RX_PKT_PULL_LEN;
		if (gl->nfrags > 1)
			memcpy(&ssi->frags[1], &gl->frags[1],
			       (gl->nfrags-1) * sizeof(skb_frag_t));
		ssi->nr_frags = gl->nfrags;
		skb->len = len + PKTSHIFT;
		skb->data_len = skb->len - RX_PKT_PULL_LEN;
		skb->truesize += skb->data_len;

		/* Get a reference for the last page, we don't own it */
		get_page(gl->frags[gl->nfrags - 1].page);
	}

	__skb_pull(skb, PKTSHIFT);
	skb->protocol = eth_type_trans(skb, rspq->netdev);
	skb_record_rx_queue(skb, rspq->idx);
	skb->dev->last_rx = jiffies;                  /* XXX removed 2.6.29 */
	pi = netdev_priv(skb->dev);
	rxq->stats.pkts++;

	if (csum_ok && (pi->rx_offload & RX_CSO) && !pkt->err_vec &&
	    (be32_to_cpu(pkt->l2info) & (RXF_UDP|RXF_TCP))) {
		if (!pkt->ip_frag)
			skb->ip_summed = CHECKSUM_UNNECESSARY;
		else {
			__sum16 c = (__force __sum16)pkt->csum;
			skb->csum = csum_unfold(c);
			skb->ip_summed = CHECKSUM_COMPLETE;
		}
		rxq->stats.rx_cso++;
	} else
		skb->ip_summed = CHECKSUM_NONE;

	if (unlikely(pkt->vlan_ex)) {
		struct vlan_group *grp = pi->vlan_grp;

		rxq->stats.vlan_ex++;
		if (likely(grp))
			vlan_hwaccel_receive_skb(skb, grp,
						 be16_to_cpu(pkt->vlan));
		else
			dev_kfree_skb_any(skb);
	} else
		netif_receive_skb(skb);

	return 0;

nomem:
	t4vf_pktgl_free(gl);
	rxq->stats.rx_drops++;
	return 0;
}

/**
 *	is_new_response - check if a response is newly written
 *	@rc: the response control descriptor
 *	@rspq: the response queue
 *
 *	Returns true if a response descriptor contains a yet unprocessed
 *	response.
 */
static inline bool is_new_response(const struct rsp_ctrl *rc,
				   const struct sge_rspq *rspq)
{
	return RSPD_GEN(rc->type_gen) == rspq->gen;
}

/**
 *	restore_rx_bufs - put back a packet's RX buffers
 *	@gl: the packet gather list
 *	@fl: the SGE Free List
 *	@nfrags: how many fragments in @si
 *
 *	Called when we find out that the current packet, @si, can't be
 *	processed right away for some reason.  This is a very rare event and
 *	there's no effort to make this suspension/resumption process
 *	particularly efficient.
 *
 *	We implement the suspension by putting all of the RX buffers associated
 *	with the current packet back on the original Free List.  The buffers
 *	have already been unmapped and are left unmapped, we mark them as
 *	unmapped in order to prevent further unmapping attempts.  (Effectively
 *	this function undoes the series of @unmap_rx_buf calls which were done
 *	to create the current packet's gather list.)  This leaves us ready to
 *	restart processing of the packet the next time we start processing the
 *	RX Queue ...
 */
static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl,
			    int frags)
{
	struct rx_sw_desc *sdesc;

	while (frags--) {
		if (fl->cidx == 0)
			fl->cidx = fl->size - 1;
		else
			fl->cidx--;
		sdesc = &fl->sdesc[fl->cidx];
		sdesc->page = gl->frags[frags].page;
		sdesc->dma_addr |= RX_UNMAPPED_BUF;
		fl->avail++;
	}
}

/**
 *	rspq_next - advance to the next entry in a response queue
 *	@rspq: the queue
 *
 *	Updates the state of a response queue to advance it to the next entry.
 */
static inline void rspq_next(struct sge_rspq *rspq)
{
	rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len;
	if (unlikely(++rspq->cidx == rspq->size)) {
		rspq->cidx = 0;
		rspq->gen ^= 1;
		rspq->cur_desc = rspq->desc;
	}
}

/**
 *	process_responses - process responses from an SGE response queue
 *	@rspq: the ingress response queue to process
 *	@budget: how many responses can be processed in this round
 *
 *	Process responses from a Scatter Gather Engine response queue up to
 *	the supplied budget.  Responses include received packets as well as
 *	control messages from firmware or hardware.
 *
 *	Additionally choose the interrupt holdoff time for the next interrupt
 *	on this queue.  If the system is under memory shortage use a fairly
 *	long delay to help recovery.
 */
int process_responses(struct sge_rspq *rspq, int budget)
{
	struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
	int budget_left = budget;

	while (likely(budget_left)) {
		int ret, rsp_type;
		const struct rsp_ctrl *rc;

		rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc));
		if (!is_new_response(rc, rspq))
			break;

		/*
		 * Figure out what kind of response we've received from the
		 * SGE.
		 */
		rmb();
		rsp_type = RSPD_TYPE(rc->type_gen);
		if (likely(rsp_type == RSP_TYPE_FLBUF)) {
			skb_frag_t *fp;
			struct pkt_gl gl;
			const struct rx_sw_desc *sdesc;
			u32 bufsz, frag;
			u32 len = be32_to_cpu(rc->pldbuflen_qid);

			/*
			 * If we get a "new buffer" message from the SGE we
			 * need to move on to the next Free List buffer.
			 */
			if (len & RSPD_NEWBUF) {
				/*
				 * We get one "new buffer" message when we
				 * first start up a queue so we need to ignore
				 * it when our offset into the buffer is 0.
				 */
				if (likely(rspq->offset > 0)) {
					free_rx_bufs(rspq->adapter, &rxq->fl,
						     1);
					rspq->offset = 0;
				}
				len = RSPD_LEN(len);
			}

			/*
			 * Gather packet fragments.
			 */
			for (frag = 0, fp = gl.frags; /**/; frag++, fp++) {
				BUG_ON(frag >= MAX_SKB_FRAGS);
				BUG_ON(rxq->fl.avail == 0);
				sdesc = &rxq->fl.sdesc[rxq->fl.cidx];
				bufsz = get_buf_size(sdesc);
				fp->page = sdesc->page;
				fp->page_offset = rspq->offset;
				fp->size = min(bufsz, len);
				len -= fp->size;
				if (!len)
					break;
				unmap_rx_buf(rspq->adapter, &rxq->fl);
			}
			gl.nfrags = frag+1;

			/*
			 * Last buffer remains mapped so explicitly make it
			 * coherent for CPU access and start preloading first
			 * cache line ...
			 */
			dma_sync_single_for_cpu(rspq->adapter->pdev_dev,
						get_buf_addr(sdesc),
						fp->size, DMA_FROM_DEVICE);
			gl.va = (page_address(gl.frags[0].page) +
				 gl.frags[0].page_offset);
			prefetch(gl.va);

			/*
			 * Hand the new ingress packet to the handler for
			 * this Response Queue.
			 */
			ret = rspq->handler(rspq, rspq->cur_desc, &gl);
			if (likely(ret == 0))
				rspq->offset += ALIGN(fp->size, FL_ALIGN);
			else
				restore_rx_bufs(&gl, &rxq->fl, frag);
		} else if (likely(rsp_type == RSP_TYPE_CPL)) {
			ret = rspq->handler(rspq, rspq->cur_desc, NULL);
		} else {
			WARN_ON(rsp_type > RSP_TYPE_CPL);
			ret = 0;
		}

		if (unlikely(ret)) {
			/*
			 * Couldn't process descriptor, back off for recovery.
			 * We use the SGE's last timer which has the longest
			 * interrupt coalescing value ...
			 */
			const int NOMEM_TIMER_IDX = SGE_NTIMERS-1;
			rspq->next_intr_params =
				QINTR_TIMER_IDX(NOMEM_TIMER_IDX);
			break;
		}

		rspq_next(rspq);
		budget_left--;
	}

	/*
	 * If this is a Response Queue with an associated Free List and
	 * at least two Egress Queue units available in the Free List
	 * for new buffer pointers, refill the Free List.
	 */
	if (rspq->offset >= 0 &&
	    rxq->fl.size - rxq->fl.avail >= 2*FL_PER_EQ_UNIT)
		__refill_fl(rspq->adapter, &rxq->fl);
	return budget - budget_left;
}

/**
 *	napi_rx_handler - the NAPI handler for RX processing
 *	@napi: the napi instance
 *	@budget: how many packets we can process in this round
 *
 *	Handler for new data events when using NAPI.  This does not need any
 *	locking or protection from interrupts as data interrupts are off at
 *	this point and other adapter interrupts do not interfere (the latter
 *	in not a concern at all with MSI-X as non-data interrupts then have
 *	a separate handler).
 */
static int napi_rx_handler(struct napi_struct *napi, int budget)
{
	unsigned int intr_params;
	struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi);
	int work_done = process_responses(rspq, budget);

	if (likely(work_done < budget)) {
		napi_complete(napi);
		intr_params = rspq->next_intr_params;
		rspq->next_intr_params = rspq->intr_params;
	} else
		intr_params = QINTR_TIMER_IDX(SGE_TIMER_UPD_CIDX);

	t4_write_reg(rspq->adapter,
		     T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
		     CIDXINC(work_done) |
		     INGRESSQID((u32)rspq->cntxt_id) |
		     SEINTARM(intr_params));
	return work_done;
}

/*
 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
 * (i.e., response queue serviced by NAPI polling).
 */
irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie)
{
	struct sge_rspq *rspq = cookie;

	napi_schedule(&rspq->napi);
	return IRQ_HANDLED;
}

/*
 * Process the indirect interrupt entries in the interrupt queue and kick off
 * NAPI for each queue that has generated an entry.
 */
static unsigned int process_intrq(struct adapter *adapter)
{
	struct sge *s = &adapter->sge;
	struct sge_rspq *intrq = &s->intrq;
	unsigned int work_done;

	spin_lock(&adapter->sge.intrq_lock);
	for (work_done = 0; ; work_done++) {
		const struct rsp_ctrl *rc;
		unsigned int qid, iq_idx;
		struct sge_rspq *rspq;

		/*
		 * Grab the next response from the interrupt queue and bail
		 * out if it's not a new response.
		 */
		rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc));
		if (!is_new_response(rc, intrq))
			break;

		/*
		 * If the response isn't a forwarded interrupt message issue a
		 * error and go on to the next response message.  This should
		 * never happen ...
		 */
		rmb();
		if (unlikely(RSPD_TYPE(rc->type_gen) != RSP_TYPE_INTR)) {
			dev_err(adapter->pdev_dev,
				"Unexpected INTRQ response type %d\n",
				RSPD_TYPE(rc->type_gen));
			continue;
		}

		/*
		 * Extract the Queue ID from the interrupt message and perform
		 * sanity checking to make sure it really refers to one of our
		 * Ingress Queues which is active and matches the queue's ID.
		 * None of these error conditions should ever happen so we may
		 * want to either make them fatal and/or conditionalized under
		 * DEBUG.
		 */
		qid = RSPD_QID(be32_to_cpu(rc->pldbuflen_qid));
		iq_idx = IQ_IDX(s, qid);
		if (unlikely(iq_idx >= MAX_INGQ)) {
			dev_err(adapter->pdev_dev,
				"Ingress QID %d out of range\n", qid);
			continue;
		}
		rspq = s->ingr_map[iq_idx];
		if (unlikely(rspq == NULL)) {
			dev_err(adapter->pdev_dev,
				"Ingress QID %d RSPQ=NULL\n", qid);
			continue;
		}
		if (unlikely(rspq->abs_id != qid)) {
			dev_err(adapter->pdev_dev,
				"Ingress QID %d refers to RSPQ %d\n",
				qid, rspq->abs_id);
			continue;
		}

		/*
		 * Schedule NAPI processing on the indicated Response Queue
		 * and move on to the next entry in the Forwarded Interrupt
		 * Queue.
		 */
		napi_schedule(&rspq->napi);
		rspq_next(intrq);
	}

	t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
		     CIDXINC(work_done) |
		     INGRESSQID(intrq->cntxt_id) |
		     SEINTARM(intrq->intr_params));

	spin_unlock(&adapter->sge.intrq_lock);

	return work_done;
}

/*
 * The MSI interrupt handler handles data events from SGE response queues as
 * well as error and other async events as they all use the same MSI vector.
 */
irqreturn_t t4vf_intr_msi(int irq, void *cookie)
{
	struct adapter *adapter = cookie;

	process_intrq(adapter);
	return IRQ_HANDLED;
}

/**
 *	t4vf_intr_handler - select the top-level interrupt handler
 *	@adapter: the adapter
 *
 *	Selects the top-level interrupt handler based on the type of interrupts
 *	(MSI-X or MSI).
 */
irq_handler_t t4vf_intr_handler(struct adapter *adapter)
{
	BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
	if (adapter->flags & USING_MSIX)
		return t4vf_sge_intr_msix;
	else
		return t4vf_intr_msi;
}

/**
 *	sge_rx_timer_cb - perform periodic maintenance of SGE RX queues
 *	@data: the adapter
 *
 *	Runs periodically from a timer to perform maintenance of SGE RX queues.
 *
 *	a) Replenishes RX queues that have run out due to memory shortage.
 *	Normally new RX buffers are added when existing ones are consumed but
 *	when out of memory a queue can become empty.  We schedule NAPI to do
 *	the actual refill.
 */
static void sge_rx_timer_cb(unsigned long data)
{
	struct adapter *adapter = (struct adapter *)data;
	struct sge *s = &adapter->sge;
	unsigned int i;

	/*
	 * Scan the "Starving Free Lists" flag array looking for any Free
	 * Lists in need of more free buffers.  If we find one and it's not
	 * being actively polled, then bump its "starving" counter and attempt
	 * to refill it.  If we're successful in adding enough buffers to push
	 * the Free List over the starving threshold, then we can clear its
	 * "starving" status.
	 */
	for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) {
		unsigned long m;

		for (m = s->starving_fl[i]; m; m &= m - 1) {
			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
			struct sge_fl *fl = s->egr_map[id];

			clear_bit(id, s->starving_fl);
			smp_mb__after_clear_bit();

			/*
			 * Since we are accessing fl without a lock there's a
			 * small probability of a false positive where we
			 * schedule napi but the FL is no longer starving.
			 * No biggie.
			 */
			if (fl_starving(fl)) {
				struct sge_eth_rxq *rxq;

				rxq = container_of(fl, struct sge_eth_rxq, fl);
				if (napi_reschedule(&rxq->rspq.napi))
					fl->starving++;
				else
					set_bit(id, s->starving_fl);
			}
		}
	}

	/*
	 * Reschedule the next scan for starving Free Lists ...
	 */
	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
}

/**
 *	sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
 *	@data: the adapter
 *
 *	Runs periodically from a timer to perform maintenance of SGE TX queues.
 *
 *	b) Reclaims completed Tx packets for the Ethernet queues.  Normally
 *	packets are cleaned up by new Tx packets, this timer cleans up packets
 *	when no new packets are being submitted.  This is essential for pktgen,
 *	at least.
 */
static void sge_tx_timer_cb(unsigned long data)
{
	struct adapter *adapter = (struct adapter *)data;
	struct sge *s = &adapter->sge;
	unsigned int i, budget;

	budget = MAX_TIMER_TX_RECLAIM;
	i = s->ethtxq_rover;
	do {
		struct sge_eth_txq *txq = &s->ethtxq[i];

		if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) {
			int avail = reclaimable(&txq->q);

			if (avail > budget)
				avail = budget;

			free_tx_desc(adapter, &txq->q, avail, true);
			txq->q.in_use -= avail;
			__netif_tx_unlock(txq->txq);

			budget -= avail;
			if (!budget)
				break;
		}

		i++;
		if (i >= s->ethqsets)
			i = 0;
	} while (i != s->ethtxq_rover);
	s->ethtxq_rover = i;

	/*
	 * If we found too many reclaimable packets schedule a timer in the
	 * near future to continue where we left off.  Otherwise the next timer
	 * will be at its normal interval.
	 */
	mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
}

/**
 *	t4vf_sge_alloc_rxq - allocate an SGE RX Queue
 *	@adapter: the adapter
 *	@rspq: pointer to to the new rxq's Response Queue to be filled in
 *	@iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue
 *	@dev: the network device associated with the new rspq
 *	@intr_dest: MSI-X vector index (overriden in MSI mode)
 *	@fl: pointer to the new rxq's Free List to be filled in
 *	@hnd: the interrupt handler to invoke for the rspq
 */
int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq,
		       bool iqasynch, struct net_device *dev,
		       int intr_dest,
		       struct sge_fl *fl, rspq_handler_t hnd)
{
	struct port_info *pi = netdev_priv(dev);
	struct fw_iq_cmd cmd, rpl;
	int ret, iqandst, flsz = 0;

	/*
	 * If we're using MSI interrupts and we're not initializing the
	 * Forwarded Interrupt Queue itself, then set up this queue for
	 * indirect interrupts to the Forwarded Interrupt Queue.  Obviously
	 * the Forwarded Interrupt Queue must be set up before any other
	 * ingress queue ...
	 */
	if ((adapter->flags & USING_MSI) && rspq != &adapter->sge.intrq) {
		iqandst = SGE_INTRDST_IQ;
		intr_dest = adapter->sge.intrq.abs_id;
	} else
		iqandst = SGE_INTRDST_PCI;

	/*
	 * Allocate the hardware ring for the Response Queue.  The size needs
	 * to be a multiple of 16 which includes the mandatory status entry
	 * (regardless of whether the Status Page capabilities are enabled or
	 * not).
	 */
	rspq->size = roundup(rspq->size, 16);
	rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len,
				0, &rspq->phys_addr, NULL, 0);
	if (!rspq->desc)
		return -ENOMEM;

	/*
	 * Fill in the Ingress Queue Command.  Note: Ideally this code would
	 * be in t4vf_hw.c but there are so many parameters and dependencies
	 * on our Linux SGE state that we would end up having to pass tons of
	 * parameters.  We'll have to think about how this might be migrated
	 * into OS-independent common code ...
	 */
	memset(&cmd, 0, sizeof(cmd));
	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) |
				    FW_CMD_REQUEST |
				    FW_CMD_WRITE |
				    FW_CMD_EXEC);
	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC |
					 FW_IQ_CMD_IQSTART(1) |
					 FW_LEN16(cmd));
	cmd.type_to_iqandstindex =
		cpu_to_be32(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
			    FW_IQ_CMD_IQASYNCH(iqasynch) |
			    FW_IQ_CMD_VIID(pi->viid) |
			    FW_IQ_CMD_IQANDST(iqandst) |
			    FW_IQ_CMD_IQANUS(1) |
			    FW_IQ_CMD_IQANUD(SGE_UPDATEDEL_INTR) |
			    FW_IQ_CMD_IQANDSTINDEX(intr_dest));
	cmd.iqdroprss_to_iqesize =
		cpu_to_be16(FW_IQ_CMD_IQPCIECH(pi->port_id) |
			    FW_IQ_CMD_IQGTSMODE |
			    FW_IQ_CMD_IQINTCNTTHRESH(rspq->pktcnt_idx) |
			    FW_IQ_CMD_IQESIZE(ilog2(rspq->iqe_len) - 4));
	cmd.iqsize = cpu_to_be16(rspq->size);
	cmd.iqaddr = cpu_to_be64(rspq->phys_addr);

	if (fl) {
		/*
		 * Allocate the ring for the hardware free list (with space
		 * for its status page) along with the associated software
		 * descriptor ring.  The free list size needs to be a multiple
		 * of the Egress Queue Unit.
		 */
		fl->size = roundup(fl->size, FL_PER_EQ_UNIT);
		fl->desc = alloc_ring(adapter->pdev_dev, fl->size,
				      sizeof(__be64), sizeof(struct rx_sw_desc),
				      &fl->addr, &fl->sdesc, STAT_LEN);
		if (!fl->desc) {
			ret = -ENOMEM;
			goto err;
		}

		/*
		 * Calculate the size of the hardware free list ring plus
		 * status page (which the SGE will place at the end of the
		 * free list ring) in Egress Queue Units.
		 */
		flsz = (fl->size / FL_PER_EQ_UNIT +
			STAT_LEN / EQ_UNIT);

		/*
		 * Fill in all the relevant firmware Ingress Queue Command
		 * fields for the free list.
		 */
		cmd.iqns_to_fl0congen =
			cpu_to_be32(
				FW_IQ_CMD_FL0HOSTFCMODE(SGE_HOSTFCMODE_NONE) |
				FW_IQ_CMD_FL0PACKEN |
				FW_IQ_CMD_FL0PADEN);
		cmd.fl0dcaen_to_fl0cidxfthresh =
			cpu_to_be16(
				FW_IQ_CMD_FL0FBMIN(SGE_FETCHBURSTMIN_64B) |
				FW_IQ_CMD_FL0FBMAX(SGE_FETCHBURSTMAX_512B));
		cmd.fl0size = cpu_to_be16(flsz);
		cmd.fl0addr = cpu_to_be64(fl->addr);
	}

	/*
	 * Issue the firmware Ingress Queue Command and extract the results if
	 * it completes successfully.
	 */
	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
	if (ret)
		goto err;

	netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64);
	rspq->cur_desc = rspq->desc;
	rspq->cidx = 0;
	rspq->gen = 1;
	rspq->next_intr_params = rspq->intr_params;
	rspq->cntxt_id = be16_to_cpu(rpl.iqid);
	rspq->abs_id = be16_to_cpu(rpl.physiqid);
	rspq->size--;			/* subtract status entry */
	rspq->adapter = adapter;
	rspq->netdev = dev;
	rspq->handler = hnd;

	/* set offset to -1 to distinguish ingress queues without FL */
	rspq->offset = fl ? 0 : -1;

	if (fl) {
		fl->cntxt_id = be16_to_cpu(rpl.fl0id);
		fl->avail = 0;
		fl->pend_cred = 0;
		fl->pidx = 0;
		fl->cidx = 0;
		fl->alloc_failed = 0;
		fl->large_alloc_failed = 0;
		fl->starving = 0;
		refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL);
	}

	return 0;

err:
	/*
	 * An error occurred.  Clean up our partial allocation state and
	 * return the error.
	 */
	if (rspq->desc) {
		dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len,
				  rspq->desc, rspq->phys_addr);
		rspq->desc = NULL;
	}
	if (fl && fl->desc) {
		kfree(fl->sdesc);
		fl->sdesc = NULL;
		dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT,
				  fl->desc, fl->addr);
		fl->desc = NULL;
	}
	return ret;
}

/**
 *	t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue
 *	@adapter: the adapter
 *	@txq: pointer to the new txq to be filled in
 *	@devq: the network TX queue associated with the new txq
 *	@iqid: the relative ingress queue ID to which events relating to
 *		the new txq should be directed
 */
int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq,
			   struct net_device *dev, struct netdev_queue *devq,
			   unsigned int iqid)
{
	int ret, nentries;
	struct fw_eq_eth_cmd cmd, rpl;
	struct port_info *pi = netdev_priv(dev);

	/*
	 * Calculate the size of the hardware TX Queue (including the
	 * status age on the end) in units of TX Descriptors.
	 */
	nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc);

	/*
	 * Allocate the hardware ring for the TX ring (with space for its
	 * status page) along with the associated software descriptor ring.
	 */
	txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size,
				 sizeof(struct tx_desc),
				 sizeof(struct tx_sw_desc),
				 &txq->q.phys_addr, &txq->q.sdesc, STAT_LEN);
	if (!txq->q.desc)
		return -ENOMEM;

	/*
	 * Fill in the Egress Queue Command.  Note: As with the direct use of
	 * the firmware Ingress Queue COmmand above in our RXQ allocation
	 * routine, ideally, this code would be in t4vf_hw.c.  Again, we'll
	 * have to see if there's some reasonable way to parameterize it
	 * into the common code ...
	 */
	memset(&cmd, 0, sizeof(cmd));
	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) |
				    FW_CMD_REQUEST |
				    FW_CMD_WRITE |
				    FW_CMD_EXEC);
	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC |
					 FW_EQ_ETH_CMD_EQSTART |
					 FW_LEN16(cmd));
	cmd.viid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_VIID(pi->viid));
	cmd.fetchszm_to_iqid =
		cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE(SGE_HOSTFCMODE_STPG) |
			    FW_EQ_ETH_CMD_PCIECHN(pi->port_id) |
			    FW_EQ_ETH_CMD_IQID(iqid));
	cmd.dcaen_to_eqsize =
		cpu_to_be32(FW_EQ_ETH_CMD_FBMIN(SGE_FETCHBURSTMIN_64B) |
			    FW_EQ_ETH_CMD_FBMAX(SGE_FETCHBURSTMAX_512B) |
			    FW_EQ_ETH_CMD_CIDXFTHRESH(SGE_CIDXFLUSHTHRESH_32) |
			    FW_EQ_ETH_CMD_EQSIZE(nentries));
	cmd.eqaddr = cpu_to_be64(txq->q.phys_addr);

	/*
	 * Issue the firmware Egress Queue Command and extract the results if
	 * it completes successfully.
	 */
	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
	if (ret) {
		/*
		 * The girmware Ingress Queue Command failed for some reason.
		 * Free up our partial allocation state and return the error.
		 */
		kfree(txq->q.sdesc);
		txq->q.sdesc = NULL;
		dma_free_coherent(adapter->pdev_dev,
				  nentries * sizeof(struct tx_desc),
				  txq->q.desc, txq->q.phys_addr);
		txq->q.desc = NULL;
		return ret;
	}

	txq->q.in_use = 0;
	txq->q.cidx = 0;
	txq->q.pidx = 0;
	txq->q.stat = (void *)&txq->q.desc[txq->q.size];
	txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_GET(be32_to_cpu(rpl.eqid_pkd));
	txq->q.abs_id =
		FW_EQ_ETH_CMD_PHYSEQID_GET(be32_to_cpu(rpl.physeqid_pkd));
	txq->txq = devq;
	txq->tso = 0;
	txq->tx_cso = 0;
	txq->vlan_ins = 0;
	txq->q.stops = 0;
	txq->q.restarts = 0;
	txq->mapping_err = 0;
	return 0;
}

/*
 * Free the DMA map resources associated with a TX queue.
 */
static void free_txq(struct adapter *adapter, struct sge_txq *tq)
{
	dma_free_coherent(adapter->pdev_dev,
			  tq->size * sizeof(*tq->desc) + STAT_LEN,
			  tq->desc, tq->phys_addr);
	tq->cntxt_id = 0;
	tq->sdesc = NULL;
	tq->desc = NULL;
}

/*
 * Free the resources associated with a response queue (possibly including a
 * free list).
 */
static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq,
			 struct sge_fl *fl)
{
	unsigned int flid = fl ? fl->cntxt_id : 0xffff;

	t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP,
		     rspq->cntxt_id, flid, 0xffff);
	dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len,
			  rspq->desc, rspq->phys_addr);
	netif_napi_del(&rspq->napi);
	rspq->netdev = NULL;
	rspq->cntxt_id = 0;
	rspq->abs_id = 0;
	rspq->desc = NULL;

	if (fl) {
		free_rx_bufs(adapter, fl, fl->avail);
		dma_free_coherent(adapter->pdev_dev,
				  fl->size * sizeof(*fl->desc) + STAT_LEN,
				  fl->desc, fl->addr);
		kfree(fl->sdesc);
		fl->sdesc = NULL;
		fl->cntxt_id = 0;
		fl->desc = NULL;
	}
}

/**
 *	t4vf_free_sge_resources - free SGE resources
 *	@adapter: the adapter
 *
 *	Frees resources used by the SGE queue sets.
 */
void t4vf_free_sge_resources(struct adapter *adapter)
{
	struct sge *s = &adapter->sge;
	struct sge_eth_rxq *rxq = s->ethrxq;
	struct sge_eth_txq *txq = s->ethtxq;
	struct sge_rspq *evtq = &s->fw_evtq;
	struct sge_rspq *intrq = &s->intrq;
	int qs;

	for (qs = 0; qs < adapter->sge.ethqsets; qs++) {
		if (rxq->rspq.desc)
			free_rspq_fl(adapter, &rxq->rspq, &rxq->fl);
		if (txq->q.desc) {
			t4vf_eth_eq_free(adapter, txq->q.cntxt_id);
			free_tx_desc(adapter, &txq->q, txq->q.in_use, true);
			kfree(txq->q.sdesc);
			free_txq(adapter, &txq->q);
		}
	}
	if (evtq->desc)
		free_rspq_fl(adapter, evtq, NULL);
	if (intrq->desc)
		free_rspq_fl(adapter, intrq, NULL);
}

/**
 *	t4vf_sge_start - enable SGE operation
 *	@adapter: the adapter
 *
 *	Start tasklets and timers associated with the DMA engine.
 */
void t4vf_sge_start(struct adapter *adapter)
{
	adapter->sge.ethtxq_rover = 0;
	mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
	mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
}

/**
 *	t4vf_sge_stop - disable SGE operation
 *	@adapter: the adapter
 *
 *	Stop tasklets and timers associated with the DMA engine.  Note that
 *	this is effective only if measures have been taken to disable any HW
 *	events that may restart them.
 */
void t4vf_sge_stop(struct adapter *adapter)
{
	struct sge *s = &adapter->sge;

	if (s->rx_timer.function)
		del_timer_sync(&s->rx_timer);
	if (s->tx_timer.function)
		del_timer_sync(&s->tx_timer);
}

/**
 *	t4vf_sge_init - initialize SGE
 *	@adapter: the adapter
 *
 *	Performs SGE initialization needed every time after a chip reset.
 *	We do not initialize any of the queue sets here, instead the driver
 *	top-level must request those individually.  We also do not enable DMA
 *	here, that should be done after the queues have been set up.
 */
int t4vf_sge_init(struct adapter *adapter)
{
	struct sge_params *sge_params = &adapter->params.sge;
	u32 fl0 = sge_params->sge_fl_buffer_size[0];
	u32 fl1 = sge_params->sge_fl_buffer_size[1];
	struct sge *s = &adapter->sge;

	/*
	 * Start by vetting the basic SGE parameters which have been set up by
	 * the Physical Function Driver.  Ideally we should be able to deal
	 * with _any_ configuration.  Practice is different ...
	 */
	if (fl0 != PAGE_SIZE || (fl1 != 0 && fl1 <= fl0)) {
		dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
			fl0, fl1);
		return -EINVAL;
	}
	if ((sge_params->sge_control & RXPKTCPLMODE) == 0) {
		dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
		return -EINVAL;
	}

	/*
	 * Now translate the adapter parameters into our internal forms.
	 */
	if (fl1)
		FL_PG_ORDER = ilog2(fl1) - PAGE_SHIFT;
	STAT_LEN = ((sge_params->sge_control & EGRSTATUSPAGESIZE) ? 128 : 64);
	PKTSHIFT = PKTSHIFT_GET(sge_params->sge_control);
	FL_ALIGN = 1 << (INGPADBOUNDARY_GET(sge_params->sge_control) +
2435
			 SGE_INGPADBOUNDARY_SHIFT);
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449

	/*
	 * Set up tasklet timers.
	 */
	setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adapter);
	setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adapter);

	/*
	 * Initialize Forwarded Interrupt Queue lock.
	 */
	spin_lock_init(&s->intrq_lock);

	return 0;
}