fault.c 15.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  Derived from "arch/i386/mm/fault.c"
 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Modified by Cort Dougan and Paul Mackerras.
 *
 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/highmem.h>
29
#include <linux/extable.h>
30
#include <linux/kprobes.h>
31
#include <linux/kdebug.h>
32
#include <linux/perf_event.h>
33
#include <linux/ratelimit.h>
34
#include <linux/context_tracking.h>
35
#include <linux/hugetlb.h>
36
#include <linux/uaccess.h>
37

38
#include <asm/firmware.h>
39 40 41 42 43 44
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
#include <asm/siginfo.h>
45
#include <asm/debug.h>
46

47 48
#include "icswx.h"

49 50
#ifdef CONFIG_KPROBES
static inline int notify_page_fault(struct pt_regs *regs)
51
{
52 53 54 55 56 57 58 59 60
	int ret = 0;

	/* kprobe_running() needs smp_processor_id() */
	if (!user_mode(regs)) {
		preempt_disable();
		if (kprobe_running() && kprobe_fault_handler(regs, 11))
			ret = 1;
		preempt_enable();
	}
61

62
	return ret;
63 64
}
#else
65
static inline int notify_page_fault(struct pt_regs *regs)
66
{
67
	return 0;
68 69 70
}
#endif

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
/*
 * Check whether the instruction at regs->nip is a store using
 * an update addressing form which will update r1.
 */
static int store_updates_sp(struct pt_regs *regs)
{
	unsigned int inst;

	if (get_user(inst, (unsigned int __user *)regs->nip))
		return 0;
	/* check for 1 in the rA field */
	if (((inst >> 16) & 0x1f) != 1)
		return 0;
	/* check major opcode */
	switch (inst >> 26) {
	case 37:	/* stwu */
	case 39:	/* stbu */
	case 45:	/* sthu */
	case 53:	/* stfsu */
	case 55:	/* stfdu */
		return 1;
	case 62:	/* std or stdu */
		return (inst & 3) == 1;
	case 31:
		/* check minor opcode */
		switch ((inst >> 1) & 0x3ff) {
		case 181:	/* stdux */
		case 183:	/* stwux */
		case 247:	/* stbux */
		case 439:	/* sthux */
		case 695:	/* stfsux */
		case 759:	/* stfdux */
			return 1;
		}
	}
	return 0;
}
108 109 110 111 112 113 114 115
/*
 * do_page_fault error handling helpers
 */

#define MM_FAULT_RETURN		0
#define MM_FAULT_CONTINUE	-1
#define MM_FAULT_ERR(sig)	(sig)

116 117
static int do_sigbus(struct pt_regs *regs, unsigned long address,
		     unsigned int fault)
118 119
{
	siginfo_t info;
120
	unsigned int lsb = 0;
121 122 123

	up_read(&current->mm->mmap_sem);

A
Anton Blanchard 已提交
124 125 126 127 128 129 130 131
	if (!user_mode(regs))
		return MM_FAULT_ERR(SIGBUS);

	current->thread.trap_nr = BUS_ADRERR;
	info.si_signo = SIGBUS;
	info.si_errno = 0;
	info.si_code = BUS_ADRERR;
	info.si_addr = (void __user *)address;
132 133 134 135 136 137
#ifdef CONFIG_MEMORY_FAILURE
	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
			current->comm, current->pid, address);
		info.si_code = BUS_MCEERR_AR;
	}
138 139 140 141 142

	if (fault & VM_FAULT_HWPOISON_LARGE)
		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
	if (fault & VM_FAULT_HWPOISON)
		lsb = PAGE_SHIFT;
143
#endif
144
	info.si_addr_lsb = lsb;
A
Anton Blanchard 已提交
145 146
	force_sig_info(SIGBUS, &info, current);
	return MM_FAULT_RETURN;
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
}

static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
{
	/*
	 * Pagefault was interrupted by SIGKILL. We have no reason to
	 * continue the pagefault.
	 */
	if (fatal_signal_pending(current)) {
		/*
		 * If we have retry set, the mmap semaphore will have
		 * alrady been released in __lock_page_or_retry(). Else
		 * we release it now.
		 */
		if (!(fault & VM_FAULT_RETRY))
			up_read(&current->mm->mmap_sem);
		/* Coming from kernel, we need to deal with uaccess fixups */
		if (user_mode(regs))
			return MM_FAULT_RETURN;
		return MM_FAULT_ERR(SIGKILL);
	}

	/* No fault: be happy */
	if (!(fault & VM_FAULT_ERROR))
		return MM_FAULT_CONTINUE;

	/* Out of memory */
174 175 176 177 178 179 180 181 182 183 184 185
	if (fault & VM_FAULT_OOM) {
		up_read(&current->mm->mmap_sem);

		/*
		 * We ran out of memory, or some other thing happened to us that
		 * made us unable to handle the page fault gracefully.
		 */
		if (!user_mode(regs))
			return MM_FAULT_ERR(SIGKILL);
		pagefault_out_of_memory();
		return MM_FAULT_RETURN;
	}
186

187 188
	if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE))
		return do_sigbus(regs, addr, fault);
189 190 191 192 193

	/* We don't understand the fault code, this is fatal */
	BUG();
	return MM_FAULT_CONTINUE;
}
194 195 196 197 198 199 200 201 202 203 204 205 206 207

/*
 * For 600- and 800-family processors, the error_code parameter is DSISR
 * for a data fault, SRR1 for an instruction fault. For 400-family processors
 * the error_code parameter is ESR for a data fault, 0 for an instruction
 * fault.
 * For 64-bit processors, the error_code parameter is
 *  - DSISR for a non-SLB data access fault,
 *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
 *  - 0 any SLB fault.
 *
 * The return value is 0 if the fault was handled, or the signal
 * number if this is a kernel fault that can't be handled here.
 */
208
int do_page_fault(struct pt_regs *regs, unsigned long address,
209 210
			    unsigned long error_code)
{
211
	enum ctx_state prev_state = exception_enter();
212 213
	struct vm_area_struct * vma;
	struct mm_struct *mm = current->mm;
214
	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
215
	int code = SEGV_MAPERR;
216
	int is_write = 0;
217 218
	int trap = TRAP(regs);
 	int is_exec = trap == 0x400;
219
	int fault;
220
	int rc = 0, store_update_sp = 0;
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
	/*
	 * Fortunately the bit assignments in SRR1 for an instruction
	 * fault and DSISR for a data fault are mostly the same for the
	 * bits we are interested in.  But there are some bits which
	 * indicate errors in DSISR but can validly be set in SRR1.
	 */
	if (trap == 0x400)
		error_code &= 0x48200000;
	else
		is_write = error_code & DSISR_ISSTORE;
#else
	is_write = error_code & ESR_DST;
#endif /* CONFIG_4xx || CONFIG_BOOKE */

237 238 239 240 241 242 243
#ifdef CONFIG_PPC_ICSWX
	/*
	 * we need to do this early because this "data storage
	 * interrupt" does not update the DAR/DEAR so we don't want to
	 * look at it
	 */
	if (error_code & ICSWX_DSI_UCT) {
244
		rc = acop_handle_fault(regs, address, error_code);
245
		if (rc)
246
			goto bail;
247
	}
248
#endif /* CONFIG_PPC_ICSWX */
249

250
	if (notify_page_fault(regs))
251
		goto bail;
252

253
	if (unlikely(debugger_fault_handler(regs)))
254
		goto bail;
255 256

	/* On a kernel SLB miss we can only check for a valid exception entry */
257 258 259 260
	if (!user_mode(regs) && (address >= TASK_SIZE)) {
		rc = SIGSEGV;
		goto bail;
	}
261

262 263
#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
			     defined(CONFIG_PPC_BOOK3S_64))
264
  	if (error_code & DSISR_DABRMATCH) {
265 266
		/* breakpoint match */
		do_break(regs, address, error_code);
267
		goto bail;
268
	}
269
#endif
270

271 272 273 274
	/* We restore the interrupt state now */
	if (!arch_irq_disabled_regs(regs))
		local_irq_enable();

275
	if (faulthandler_disabled() || mm == NULL) {
276 277 278 279
		if (!user_mode(regs)) {
			rc = SIGSEGV;
			goto bail;
		}
280
		/* faulthandler_disabled() in user mode is really bad,
281
		   as is current->mm == NULL. */
282
		printk(KERN_EMERG "Page fault in user mode with "
283 284
		       "faulthandler_disabled() = %d mm = %p\n",
		       faulthandler_disabled(), mm);
285 286 287 288 289
		printk(KERN_EMERG "NIP = %lx  MSR = %lx\n",
		       regs->nip, regs->msr);
		die("Weird page fault", regs, SIGSEGV);
	}

290
	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
291

292 293 294 295 296 297 298 299
	/*
	 * We want to do this outside mmap_sem, because reading code around nip
	 * can result in fault, which will cause a deadlock when called with
	 * mmap_sem held
	 */
	if (user_mode(regs))
		store_update_sp = store_updates_sp(regs);

300 301 302
	if (user_mode(regs))
		flags |= FAULT_FLAG_USER;

303 304
	/* When running in the kernel we expect faults to occur only to
	 * addresses in user space.  All other faults represent errors in the
305 306
	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
	 * erroneous fault occurring in a code path which already holds mmap_sem
307 308 309 310 311 312
	 * we will deadlock attempting to validate the fault against the
	 * address space.  Luckily the kernel only validly references user
	 * space from well defined areas of code, which are listed in the
	 * exceptions table.
	 *
	 * As the vast majority of faults will be valid we will only perform
313
	 * the source reference check when there is a possibility of a deadlock.
314 315 316 317 318 319 320 321
	 * Attempt to lock the address space, if we cannot we then validate the
	 * source.  If this is invalid we can skip the address space check,
	 * thus avoiding the deadlock.
	 */
	if (!down_read_trylock(&mm->mmap_sem)) {
		if (!user_mode(regs) && !search_exception_tables(regs->nip))
			goto bad_area_nosemaphore;

322
retry:
323
		down_read(&mm->mmap_sem);
324 325 326 327 328 329 330
	} else {
		/*
		 * The above down_read_trylock() might have succeeded in
		 * which case we'll have missed the might_sleep() from
		 * down_read():
		 */
		might_sleep();
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
	}

	vma = find_vma(mm, address);
	if (!vma)
		goto bad_area;
	if (vma->vm_start <= address)
		goto good_area;
	if (!(vma->vm_flags & VM_GROWSDOWN))
		goto bad_area;

	/*
	 * N.B. The POWER/Open ABI allows programs to access up to
	 * 288 bytes below the stack pointer.
	 * The kernel signal delivery code writes up to about 1.5kB
	 * below the stack pointer (r1) before decrementing it.
	 * The exec code can write slightly over 640kB to the stack
	 * before setting the user r1.  Thus we allow the stack to
	 * expand to 1MB without further checks.
	 */
	if (address + 0x100000 < vma->vm_end) {
		/* get user regs even if this fault is in kernel mode */
		struct pt_regs *uregs = current->thread.regs;
		if (uregs == NULL)
			goto bad_area;

		/*
		 * A user-mode access to an address a long way below
		 * the stack pointer is only valid if the instruction
		 * is one which would update the stack pointer to the
		 * address accessed if the instruction completed,
		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
		 * (or the byte, halfword, float or double forms).
		 *
		 * If we don't check this then any write to the area
		 * between the last mapped region and the stack will
		 * expand the stack rather than segfaulting.
		 */
368
		if (address + 2048 < uregs->gpr[1] && !store_update_sp)
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
			goto bad_area;
	}
	if (expand_stack(vma, address))
		goto bad_area;

good_area:
	code = SEGV_ACCERR;
#if defined(CONFIG_6xx)
	if (error_code & 0x95700000)
		/* an error such as lwarx to I/O controller space,
		   address matching DABR, eciwx, etc. */
		goto bad_area;
#endif /* CONFIG_6xx */
#if defined(CONFIG_8xx)
        /* The MPC8xx seems to always set 0x80000000, which is
         * "undefined".  Of those that can be set, this is the only
         * one which seems bad.
         */
	if (error_code & 0x10000000)
                /* Guarded storage error. */
		goto bad_area;
#endif /* CONFIG_8xx */

	if (is_exec) {
393 394
		/*
		 * An execution fault + no execute ?
395 396 397 398 399 400 401
		 *
		 * On CPUs that don't have CPU_FTR_COHERENT_ICACHE we
		 * deliberately create NX mappings, and use the fault to do the
		 * cache flush. This is usually handled in hash_page_do_lazy_icache()
		 * but we could end up here if that races with a concurrent PTE
		 * update. In that case we need to fall through here to the VMA
		 * check below.
402
		 */
403 404
		if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
			(regs->msr & SRR1_ISI_N_OR_G))
405 406
			goto bad_area;

407 408 409
		/*
		 * Allow execution from readable areas if the MMU does not
		 * provide separate controls over reading and executing.
410 411 412 413 414 415
		 *
		 * Note: That code used to not be enabled for 4xx/BookE.
		 * It is now as I/D cache coherency for these is done at
		 * set_pte_at() time and I see no reason why the test
		 * below wouldn't be valid on those processors. This -may-
		 * break programs compiled with a really old ABI though.
416 417 418 419
		 */
		if (!(vma->vm_flags & VM_EXEC) &&
		    (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
		     !(vma->vm_flags & (VM_READ | VM_WRITE))))
420
			goto bad_area;
421

422 423 424 425 426 427 428 429
#ifdef CONFIG_PPC_STD_MMU
		/*
		 * protfault should only happen due to us
		 * mapping a region readonly temporarily. PROT_NONE
		 * is also covered by the VMA check above.
		 */
		WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
#endif /* CONFIG_PPC_STD_MMU */
430 431 432 433
	/* a write */
	} else if (is_write) {
		if (!(vma->vm_flags & VM_WRITE))
			goto bad_area;
434
		flags |= FAULT_FLAG_WRITE;
435 436
	/* a read */
	} else {
437
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
438
			goto bad_area;
439
		WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
440 441 442 443 444 445 446
	}

	/*
	 * If for any reason at all we couldn't handle the fault,
	 * make sure we exit gracefully rather than endlessly redo
	 * the fault.
	 */
447
	fault = handle_mm_fault(vma, address, flags);
448
	if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
449 450
		if (fault & VM_FAULT_SIGSEGV)
			goto bad_area;
451
		rc = mm_fault_error(regs, address, fault);
452
		if (rc >= MM_FAULT_RETURN)
453 454 455
			goto bail;
		else
			rc = 0;
456
	}
457 458 459 460 461 462 463 464 465 466 467

	/*
	 * Major/minor page fault accounting is only done on the
	 * initial attempt. If we go through a retry, it is extremely
	 * likely that the page will be found in page cache at that point.
	 */
	if (flags & FAULT_FLAG_ALLOW_RETRY) {
		if (fault & VM_FAULT_MAJOR) {
			current->maj_flt++;
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
				      regs, address);
468
#ifdef CONFIG_PPC_SMLPAR
469
			if (firmware_has_feature(FW_FEATURE_CMO)) {
470 471
				u32 page_ins;

472
				preempt_disable();
473 474 475
				page_ins = be32_to_cpu(get_lppaca()->page_ins);
				page_ins += 1 << PAGE_FACTOR;
				get_lppaca()->page_ins = cpu_to_be32(page_ins);
476 477 478 479 480 481 482 483 484 485 486 487
				preempt_enable();
			}
#endif /* CONFIG_PPC_SMLPAR */
		} else {
			current->min_flt++;
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
				      regs, address);
		}
		if (fault & VM_FAULT_RETRY) {
			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
			 * of starvation. */
			flags &= ~FAULT_FLAG_ALLOW_RETRY;
488
			flags |= FAULT_FLAG_TRIED;
489
			goto retry;
490
		}
491
	}
492

493
	up_read(&mm->mmap_sem);
494
	goto bail;
495 496 497 498 499 500 501 502

bad_area:
	up_read(&mm->mmap_sem);

bad_area_nosemaphore:
	/* User mode accesses cause a SIGSEGV */
	if (user_mode(regs)) {
		_exception(SIGSEGV, regs, code, address);
503
		goto bail;
504 505
	}

506 507 508
	if (is_exec && (error_code & DSISR_PROTFAULT))
		printk_ratelimited(KERN_CRIT "kernel tried to execute NX-protected"
				   " page (%lx) - exploit attempt? (uid: %d)\n",
509
				   address, from_kuid(&init_user_ns, current_uid()));
510

511 512 513 514 515
	rc = SIGSEGV;

bail:
	exception_exit(prev_state);
	return rc;
516
}
517
NOKPROBE_SYMBOL(do_page_fault);
518 519 520 521 522 523 524 525 526 527 528 529

/*
 * bad_page_fault is called when we have a bad access from the kernel.
 * It is called from the DSI and ISI handlers in head.S and from some
 * of the procedures in traps.c.
 */
void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
{
	const struct exception_table_entry *entry;

	/* Are we prepared to handle this fault?  */
	if ((entry = search_exception_tables(regs->nip)) != NULL) {
530
		regs->nip = extable_fixup(entry);
531 532 533 534
		return;
	}

	/* kernel has accessed a bad area */
535 536

	switch (regs->trap) {
537 538 539 540 541 542 543 544 545 546
	case 0x300:
	case 0x380:
		printk(KERN_ALERT "Unable to handle kernel paging request for "
			"data at address 0x%08lx\n", regs->dar);
		break;
	case 0x400:
	case 0x480:
		printk(KERN_ALERT "Unable to handle kernel paging request for "
			"instruction fetch\n");
		break;
547 548 549 550
	case 0x600:
		printk(KERN_ALERT "Unable to handle kernel paging request for "
			"unaligned access at address 0x%08lx\n", regs->dar);
		break;
551 552 553 554
	default:
		printk(KERN_ALERT "Unable to handle kernel paging request for "
			"unknown fault\n");
		break;
555 556 557 558
	}
	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
		regs->nip);

559
	if (task_stack_end_corrupted(current))
560 561
		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");

562 563
	die("Kernel access of bad area", regs, sig);
}