hugetlbpage.c 25.7 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
B
Becky Bruce 已提交
2
 * PPC Huge TLB Page Support for Kernel.
L
Linus Torvalds 已提交
3 4
 *
 * Copyright (C) 2003 David Gibson, IBM Corporation.
B
Becky Bruce 已提交
5
 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
L
Linus Torvalds 已提交
6 7 8 9 10 11
 *
 * Based on the IA-32 version:
 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
 */

#include <linux/mm.h>
12
#include <linux/io.h>
13
#include <linux/slab.h>
L
Linus Torvalds 已提交
14
#include <linux/hugetlb.h>
15
#include <linux/export.h>
B
Becky Bruce 已提交
16 17 18
#include <linux/of_fdt.h>
#include <linux/memblock.h>
#include <linux/bootmem.h>
19
#include <linux/moduleparam.h>
20
#include <asm/pgtable.h>
L
Linus Torvalds 已提交
21 22
#include <asm/pgalloc.h>
#include <asm/tlb.h>
B
Becky Bruce 已提交
23
#include <asm/setup.h>
24 25 26
#include <asm/hugetlb.h>

#ifdef CONFIG_HUGETLB_PAGE
L
Linus Torvalds 已提交
27

28 29 30
#define PAGE_SHIFT_64K	16
#define PAGE_SHIFT_16M	24
#define PAGE_SHIFT_16G	34
31

B
Becky Bruce 已提交
32
unsigned int HPAGE_SHIFT;
33

B
Becky Bruce 已提交
34 35
/*
 * Tracks gpages after the device tree is scanned and before the
36 37 38 39
 * huge_boot_pages list is ready.  On non-Freescale implementations, this is
 * just used to track 16G pages and so is a single array.  FSL-based
 * implementations may have more than one gpage size, so we need multiple
 * arrays
B
Becky Bruce 已提交
40
 */
41
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
42 43 44 45 46 47
#define MAX_NUMBER_GPAGES	128
struct psize_gpages {
	u64 gpage_list[MAX_NUMBER_GPAGES];
	unsigned int nr_gpages;
};
static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
48 49 50 51
#else
#define MAX_NUMBER_GPAGES	1024
static u64 gpage_freearray[MAX_NUMBER_GPAGES];
static unsigned nr_gpages;
B
Becky Bruce 已提交
52
#endif
53

54 55
#define hugepd_none(hpd)	((hpd).pd == 0)

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
#ifdef CONFIG_PPC_BOOK3S_64
/*
 * At this point we do the placement change only for BOOK3S 64. This would
 * possibly work on other subarchs.
 */

/*
 * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
 * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
 */
int pmd_huge(pmd_t pmd)
{
	/*
	 * leaf pte for huge page, bottom two bits != 00
	 */
	return ((pmd_val(pmd) & 0x3) != 0x0);
}

int pud_huge(pud_t pud)
{
	/*
	 * leaf pte for huge page, bottom two bits != 00
	 */
	return ((pud_val(pud) & 0x3) != 0x0);
}

int pgd_huge(pgd_t pgd)
{
	/*
	 * leaf pte for huge page, bottom two bits != 00
	 */
	return ((pgd_val(pgd) & 0x3) != 0x0);
}
#else
int pmd_huge(pmd_t pmd)
{
	return 0;
}

int pud_huge(pud_t pud)
{
	return 0;
}

int pgd_huge(pgd_t pgd)
{
	return 0;
}
#endif

106 107
pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
108
	/* Only called for hugetlbfs pages, hence can ignore THP */
109 110 111
	return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
}

112
static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
113
			   unsigned long address, unsigned pdshift, unsigned pshift)
114
{
B
Becky Bruce 已提交
115 116 117
	struct kmem_cache *cachep;
	pte_t *new;

118
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
119 120 121
	int i;
	int num_hugepd = 1 << (pshift - pdshift);
	cachep = hugepte_cache;
122 123
#else
	cachep = PGT_CACHE(pdshift - pshift);
B
Becky Bruce 已提交
124 125 126
#endif

	new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
127

128 129 130
	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);

131 132 133 134
	if (! new)
		return -ENOMEM;

	spin_lock(&mm->page_table_lock);
135
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
136 137 138 139 140 141 142 143 144 145
	/*
	 * We have multiple higher-level entries that point to the same
	 * actual pte location.  Fill in each as we go and backtrack on error.
	 * We need all of these so the DTLB pgtable walk code can find the
	 * right higher-level entry without knowing if it's a hugepage or not.
	 */
	for (i = 0; i < num_hugepd; i++, hpdp++) {
		if (unlikely(!hugepd_none(*hpdp)))
			break;
		else
146
			/* We use the old format for PPC_FSL_BOOK3E */
B
Becky Bruce 已提交
147 148 149 150 151 152 153 154
			hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
	}
	/* If we bailed from the for loop early, an error occurred, clean up */
	if (i < num_hugepd) {
		for (i = i - 1 ; i >= 0; i--, hpdp--)
			hpdp->pd = 0;
		kmem_cache_free(cachep, new);
	}
155 156 157
#else
	if (!hugepd_none(*hpdp))
		kmem_cache_free(cachep, new);
158 159 160 161 162
	else {
#ifdef CONFIG_PPC_BOOK3S_64
		hpdp->pd = (unsigned long)new |
			    (shift_to_mmu_psize(pshift) << 2);
#else
163
		hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
164 165
#endif
	}
B
Becky Bruce 已提交
166
#endif
167 168 169 170
	spin_unlock(&mm->page_table_lock);
	return 0;
}

171 172 173 174 175 176 177 178 179 180 181 182
/*
 * These macros define how to determine which level of the page table holds
 * the hpdp.
 */
#ifdef CONFIG_PPC_FSL_BOOK3E
#define HUGEPD_PGD_SHIFT PGDIR_SHIFT
#define HUGEPD_PUD_SHIFT PUD_SHIFT
#else
#define HUGEPD_PGD_SHIFT PUD_SHIFT
#define HUGEPD_PUD_SHIFT PMD_SHIFT
#endif

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
#ifdef CONFIG_PPC_BOOK3S_64
/*
 * At this point we do the placement change only for BOOK3S 64. This would
 * possibly work on other subarchs.
 */
pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
{
	pgd_t *pg;
	pud_t *pu;
	pmd_t *pm;
	hugepd_t *hpdp = NULL;
	unsigned pshift = __ffs(sz);
	unsigned pdshift = PGDIR_SHIFT;

	addr &= ~(sz-1);
	pg = pgd_offset(mm, addr);

	if (pshift == PGDIR_SHIFT)
		/* 16GB huge page */
		return (pte_t *) pg;
	else if (pshift > PUD_SHIFT)
		/*
		 * We need to use hugepd table
		 */
		hpdp = (hugepd_t *)pg;
	else {
		pdshift = PUD_SHIFT;
		pu = pud_alloc(mm, pg, addr);
		if (pshift == PUD_SHIFT)
			return (pte_t *)pu;
		else if (pshift > PMD_SHIFT)
			hpdp = (hugepd_t *)pu;
		else {
			pdshift = PMD_SHIFT;
			pm = pmd_alloc(mm, pu, addr);
			if (pshift == PMD_SHIFT)
				/* 16MB hugepage */
				return (pte_t *)pm;
			else
				hpdp = (hugepd_t *)pm;
		}
	}
	if (!hpdp)
		return NULL;

	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));

	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
		return NULL;

	return hugepte_offset(hpdp, addr, pdshift);
}

#else

238
pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
239
{
240 241 242 243 244 245 246 247 248 249
	pgd_t *pg;
	pud_t *pu;
	pmd_t *pm;
	hugepd_t *hpdp = NULL;
	unsigned pshift = __ffs(sz);
	unsigned pdshift = PGDIR_SHIFT;

	addr &= ~(sz-1);

	pg = pgd_offset(mm, addr);
250 251

	if (pshift >= HUGEPD_PGD_SHIFT) {
252 253 254 255
		hpdp = (hugepd_t *)pg;
	} else {
		pdshift = PUD_SHIFT;
		pu = pud_alloc(mm, pg, addr);
256
		if (pshift >= HUGEPD_PUD_SHIFT) {
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
			hpdp = (hugepd_t *)pu;
		} else {
			pdshift = PMD_SHIFT;
			pm = pmd_alloc(mm, pu, addr);
			hpdp = (hugepd_t *)pm;
		}
	}

	if (!hpdp)
		return NULL;

	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));

	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
		return NULL;

	return hugepte_offset(hpdp, addr, pdshift);
274
}
275
#endif
276

277
#ifdef CONFIG_PPC_FSL_BOOK3E
278
/* Build list of addresses of gigantic pages.  This function is used in early
279
 * boot before the buddy allocator is setup.
280
 */
B
Becky Bruce 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
{
	unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
	int i;

	if (addr == 0)
		return;

	gpage_freearray[idx].nr_gpages = number_of_pages;

	for (i = 0; i < number_of_pages; i++) {
		gpage_freearray[idx].gpage_list[i] = addr;
		addr += page_size;
	}
}

/*
 * Moves the gigantic page addresses from the temporary list to the
 * huge_boot_pages list.
 */
int alloc_bootmem_huge_page(struct hstate *hstate)
{
	struct huge_bootmem_page *m;
304
	int idx = shift_to_mmu_psize(huge_page_shift(hstate));
B
Becky Bruce 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	int nr_gpages = gpage_freearray[idx].nr_gpages;

	if (nr_gpages == 0)
		return 0;

#ifdef CONFIG_HIGHMEM
	/*
	 * If gpages can be in highmem we can't use the trick of storing the
	 * data structure in the page; allocate space for this
	 */
	m = alloc_bootmem(sizeof(struct huge_bootmem_page));
	m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
#else
	m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
#endif

	list_add(&m->list, &huge_boot_pages);
	gpage_freearray[idx].nr_gpages = nr_gpages;
	gpage_freearray[idx].gpage_list[nr_gpages] = 0;
	m->hstate = hstate;

	return 1;
}
/*
 * Scan the command line hugepagesz= options for gigantic pages; store those in
 * a list that we use to allocate the memory once all options are parsed.
 */

unsigned long gpage_npages[MMU_PAGE_COUNT];

335 336
static int __init do_gpage_early_setup(char *param, char *val,
				       const char *unused)
B
Becky Bruce 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
{
	static phys_addr_t size;
	unsigned long npages;

	/*
	 * The hugepagesz and hugepages cmdline options are interleaved.  We
	 * use the size variable to keep track of whether or not this was done
	 * properly and skip over instances where it is incorrect.  Other
	 * command-line parsing code will issue warnings, so we don't need to.
	 *
	 */
	if ((strcmp(param, "default_hugepagesz") == 0) ||
	    (strcmp(param, "hugepagesz") == 0)) {
		size = memparse(val, NULL);
	} else if (strcmp(param, "hugepages") == 0) {
		if (size != 0) {
			if (sscanf(val, "%lu", &npages) <= 0)
				npages = 0;
			gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
			size = 0;
		}
	}
	return 0;
}


/*
 * This function allocates physical space for pages that are larger than the
 * buddy allocator can handle.  We want to allocate these in highmem because
 * the amount of lowmem is limited.  This means that this function MUST be
 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
 * allocate to grab highmem.
 */
void __init reserve_hugetlb_gpages(void)
{
	static __initdata char cmdline[COMMAND_LINE_SIZE];
	phys_addr_t size, base;
	int i;

	strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
377 378
	parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
			&do_gpage_early_setup);
B
Becky Bruce 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398

	/*
	 * Walk gpage list in reverse, allocating larger page sizes first.
	 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
	 * When we reach the point in the list where pages are no longer
	 * considered gpages, we're done.
	 */
	for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
		if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
			continue;
		else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
			break;

		size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
		base = memblock_alloc_base(size * gpage_npages[i], size,
					   MEMBLOCK_ALLOC_ANYWHERE);
		add_gpage(base, size, gpage_npages[i]);
	}
}

399
#else /* !PPC_FSL_BOOK3E */
B
Becky Bruce 已提交
400 401

/* Build list of addresses of gigantic pages.  This function is used in early
402
 * boot before the buddy allocator is setup.
B
Becky Bruce 已提交
403 404
 */
void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
405 406 407 408 409 410 411 412 413 414 415
{
	if (!addr)
		return;
	while (number_of_pages > 0) {
		gpage_freearray[nr_gpages] = addr;
		nr_gpages++;
		number_of_pages--;
		addr += page_size;
	}
}

416
/* Moves the gigantic page addresses from the temporary list to the
417 418 419
 * huge_boot_pages list.
 */
int alloc_bootmem_huge_page(struct hstate *hstate)
420 421 422 423 424 425 426
{
	struct huge_bootmem_page *m;
	if (nr_gpages == 0)
		return 0;
	m = phys_to_virt(gpage_freearray[--nr_gpages]);
	gpage_freearray[nr_gpages] = 0;
	list_add(&m->list, &huge_boot_pages);
427
	m->hstate = hstate;
428 429
	return 1;
}
B
Becky Bruce 已提交
430
#endif
431

432 433 434 435 436
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}

437
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
#define HUGEPD_FREELIST_SIZE \
	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))

struct hugepd_freelist {
	struct rcu_head	rcu;
	unsigned int index;
	void *ptes[0];
};

static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);

static void hugepd_free_rcu_callback(struct rcu_head *head)
{
	struct hugepd_freelist *batch =
		container_of(head, struct hugepd_freelist, rcu);
	unsigned int i;

	for (i = 0; i < batch->index; i++)
		kmem_cache_free(hugepte_cache, batch->ptes[i]);

	free_page((unsigned long)batch);
}

static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
{
	struct hugepd_freelist **batchp;

465
	batchp = this_cpu_ptr(&hugepd_freelist_cur);
B
Becky Bruce 已提交
466 467 468 469 470

	if (atomic_read(&tlb->mm->mm_users) < 2 ||
	    cpumask_equal(mm_cpumask(tlb->mm),
			  cpumask_of(smp_processor_id()))) {
		kmem_cache_free(hugepte_cache, hugepte);
471
        put_cpu_var(hugepd_freelist_cur);
B
Becky Bruce 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484
		return;
	}

	if (*batchp == NULL) {
		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
		(*batchp)->index = 0;
	}

	(*batchp)->ptes[(*batchp)->index++] = hugepte;
	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
		*batchp = NULL;
	}
485
	put_cpu_var(hugepd_freelist_cur);
B
Becky Bruce 已提交
486 487 488
}
#endif

489 490 491
static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
			      unsigned long start, unsigned long end,
			      unsigned long floor, unsigned long ceiling)
492 493
{
	pte_t *hugepte = hugepd_page(*hpdp);
B
Becky Bruce 已提交
494 495
	int i;

496
	unsigned long pdmask = ~((1UL << pdshift) - 1);
B
Becky Bruce 已提交
497 498
	unsigned int num_hugepd = 1;

499 500
#ifdef CONFIG_PPC_FSL_BOOK3E
	/* Note: On fsl the hpdp may be the first of several */
B
Becky Bruce 已提交
501
	num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
502 503
#else
	unsigned int shift = hugepd_shift(*hpdp);
B
Becky Bruce 已提交
504
#endif
505 506 507 508 509 510 511 512 513 514 515

	start &= pdmask;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= pdmask;
		if (! ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;
516

B
Becky Bruce 已提交
517 518 519
	for (i = 0; i < num_hugepd; i++, hpdp++)
		hpdp->pd = 0;

520
	tlb->need_flush = 1;
521 522

#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
523
	hugepd_free(tlb, hugepte);
524 525
#else
	pgtable_free_tlb(tlb, hugepte, pdshift - shift);
B
Becky Bruce 已提交
526
#endif
527 528 529 530
}

static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
				   unsigned long addr, unsigned long end,
531
				   unsigned long floor, unsigned long ceiling)
532 533 534 535 536 537 538
{
	pmd_t *pmd;
	unsigned long next;
	unsigned long start;

	start = addr;
	do {
539
		pmd = pmd_offset(pud, addr);
540
		next = pmd_addr_end(addr, end);
541 542 543 544 545 546
		if (!is_hugepd(pmd)) {
			/*
			 * if it is not hugepd pointer, we should already find
			 * it cleared.
			 */
			WARN_ON(!pmd_none_or_clear_bad(pmd));
547
			continue;
548
		}
549 550 551 552 553 554 555 556 557
#ifdef CONFIG_PPC_FSL_BOOK3E
		/*
		 * Increment next by the size of the huge mapping since
		 * there may be more than one entry at this level for a
		 * single hugepage, but all of them point to
		 * the same kmem cache that holds the hugepte.
		 */
		next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
#endif
558 559
		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
				  addr, next, floor, ceiling);
560
	} while (addr = next, addr != end);
561 562 563 564 565 566 567 568

	start &= PUD_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PUD_MASK;
		if (!ceiling)
			return;
L
Linus Torvalds 已提交
569
	}
570 571
	if (end - 1 > ceiling - 1)
		return;
L
Linus Torvalds 已提交
572

573 574
	pmd = pmd_offset(pud, start);
	pud_clear(pud);
575
	pmd_free_tlb(tlb, pmd, start);
576 577 578 579 580 581 582 583 584 585 586 587
}

static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
				   unsigned long addr, unsigned long end,
				   unsigned long floor, unsigned long ceiling)
{
	pud_t *pud;
	unsigned long next;
	unsigned long start;

	start = addr;
	do {
588
		pud = pud_offset(pgd, addr);
589
		next = pud_addr_end(addr, end);
590
		if (!is_hugepd(pud)) {
591 592
			if (pud_none_or_clear_bad(pud))
				continue;
593
			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
594
					       ceiling);
595
		} else {
596 597 598 599 600 601 602 603 604
#ifdef CONFIG_PPC_FSL_BOOK3E
			/*
			 * Increment next by the size of the huge mapping since
			 * there may be more than one entry at this level for a
			 * single hugepage, but all of them point to
			 * the same kmem cache that holds the hugepte.
			 */
			next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
#endif
605 606
			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
					  addr, next, floor, ceiling);
607
		}
608
	} while (addr = next, addr != end);
609 610 611 612 613 614 615 616 617 618 619 620 621 622

	start &= PGDIR_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PGDIR_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	pud = pud_offset(pgd, start);
	pgd_clear(pgd);
623
	pud_free_tlb(tlb, pud, start);
624 625 626 627 628
}

/*
 * This function frees user-level page tables of a process.
 */
629
void hugetlb_free_pgd_range(struct mmu_gather *tlb,
630 631 632 633 634 635 636
			    unsigned long addr, unsigned long end,
			    unsigned long floor, unsigned long ceiling)
{
	pgd_t *pgd;
	unsigned long next;

	/*
637 638 639 640 641 642 643 644 645 646
	 * Because there are a number of different possible pagetable
	 * layouts for hugepage ranges, we limit knowledge of how
	 * things should be laid out to the allocation path
	 * (huge_pte_alloc(), above).  Everything else works out the
	 * structure as it goes from information in the hugepd
	 * pointers.  That means that we can't here use the
	 * optimization used in the normal page free_pgd_range(), of
	 * checking whether we're actually covering a large enough
	 * range to have to do anything at the top level of the walk
	 * instead of at the bottom.
647
	 *
648 649 650
	 * To make sense of this, you should probably go read the big
	 * block comment at the top of the normal free_pgd_range(),
	 * too.
651 652 653 654
	 */

	do {
		next = pgd_addr_end(addr, end);
B
Becky Bruce 已提交
655
		pgd = pgd_offset(tlb->mm, addr);
656
		if (!is_hugepd(pgd)) {
657 658 659 660
			if (pgd_none_or_clear_bad(pgd))
				continue;
			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
		} else {
661
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
662 663
			/*
			 * Increment next by the size of the huge mapping since
664 665 666
			 * there may be more than one entry at the pgd level
			 * for a single hugepage, but all of them point to the
			 * same kmem cache that holds the hugepte.
B
Becky Bruce 已提交
667 668 669
			 */
			next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
#endif
670 671
			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
					  addr, next, floor, ceiling);
672
		}
B
Becky Bruce 已提交
673
	} while (addr = next, addr != end);
L
Linus Torvalds 已提交
674 675 676 677 678 679 680
}

struct page *
follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
{
	pte_t *ptep;
	struct page *page;
681 682
	unsigned shift;
	unsigned long mask;
683 684 685 686
	/*
	 * Transparent hugepages are handled by generic code. We can skip them
	 * here.
	 */
687
	ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
L
Linus Torvalds 已提交
688

689
	/* Verify it is a huge page else bail. */
690
	if (!ptep || !shift || pmd_trans_huge(*(pmd_t *)ptep))
L
Linus Torvalds 已提交
691 692
		return ERR_PTR(-EINVAL);

693
	mask = (1UL << shift) - 1;
L
Linus Torvalds 已提交
694
	page = pte_page(*ptep);
695 696
	if (page)
		page += (address & mask) / PAGE_SIZE;
L
Linus Torvalds 已提交
697 698 699 700 701 702 703 704 705 706 707 708

	return page;
}

struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	BUG();
	return NULL;
}

D
David Gibson 已提交
709 710 711 712 713 714 715
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
				      unsigned long sz)
{
	unsigned long __boundary = (addr + sz) & ~(sz-1);
	return (__boundary - 1 < end - 1) ? __boundary : end;
}

716 717 718 719 720 721
int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
	       unsigned long addr, unsigned long end,
	       int write, struct page **pages, int *nr)
{
	pte_t *ptep;
	unsigned long sz = 1UL << hugepd_shift(*hugepd);
D
David Gibson 已提交
722
	unsigned long next;
723 724 725

	ptep = hugepte_offset(hugepd, addr, pdshift);
	do {
D
David Gibson 已提交
726
		next = hugepte_addr_end(addr, end, sz);
727 728
		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
			return 0;
D
David Gibson 已提交
729
	} while (ptep++, addr = next, addr != end);
730 731 732

	return 1;
}
L
Linus Torvalds 已提交
733

734
#ifdef CONFIG_PPC_MM_SLICES
L
Linus Torvalds 已提交
735 736 737 738
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
					unsigned long len, unsigned long pgoff,
					unsigned long flags)
{
739 740
	struct hstate *hstate = hstate_file(file);
	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
741

742
	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
L
Linus Torvalds 已提交
743
}
744
#endif
L
Linus Torvalds 已提交
745

746 747
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
748
#ifdef CONFIG_PPC_MM_SLICES
749 750 751
	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);

	return 1UL << mmu_psize_to_shift(psize);
B
Becky Bruce 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764
#else
	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	return huge_page_size(hstate_vma(vma));
#endif
}

static inline bool is_power_of_4(unsigned long x)
{
	if (is_power_of_2(x))
		return (__ilog2(x) % 2) ? false : true;
	return false;
765 766
}

767
static int __init add_huge_page_size(unsigned long long size)
768
{
769 770
	int shift = __ffs(size);
	int mmu_psize;
771

772
	/* Check that it is a page size supported by the hardware and
773
	 * that it fits within pagetable and slice limits. */
B
Becky Bruce 已提交
774 775 776 777
#ifdef CONFIG_PPC_FSL_BOOK3E
	if ((size < PAGE_SIZE) || !is_power_of_4(size))
		return -EINVAL;
#else
778 779 780
	if (!is_power_of_2(size)
	    || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
		return -EINVAL;
B
Becky Bruce 已提交
781
#endif
782

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
		return -EINVAL;

#ifdef CONFIG_SPU_FS_64K_LS
	/* Disable support for 64K huge pages when 64K SPU local store
	 * support is enabled as the current implementation conflicts.
	 */
	if (shift == PAGE_SHIFT_64K)
		return -EINVAL;
#endif /* CONFIG_SPU_FS_64K_LS */

	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);

	/* Return if huge page size has already been setup */
	if (size_to_hstate(size))
		return 0;

	hugetlb_add_hstate(shift - PAGE_SHIFT);

	return 0;
803 804 805 806 807 808 809 810
}

static int __init hugepage_setup_sz(char *str)
{
	unsigned long long size;

	size = memparse(str, &str);

811
	if (add_huge_page_size(size) != 0)
812 813 814 815 816 817
		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);

	return 1;
}
__setup("hugepagesz=", hugepage_setup_sz);

818
#ifdef CONFIG_PPC_FSL_BOOK3E
B
Becky Bruce 已提交
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
struct kmem_cache *hugepte_cache;
static int __init hugetlbpage_init(void)
{
	int psize;

	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
		unsigned shift;

		if (!mmu_psize_defs[psize].shift)
			continue;

		shift = mmu_psize_to_shift(psize);

		/* Don't treat normal page sizes as huge... */
		if (shift != PAGE_SHIFT)
			if (add_huge_page_size(1ULL << shift) < 0)
				continue;
	}

	/*
	 * Create a kmem cache for hugeptes.  The bottom bits in the pte have
	 * size information encoded in them, so align them to allow this
	 */
	hugepte_cache =  kmem_cache_create("hugepte-cache", sizeof(pte_t),
					   HUGEPD_SHIFT_MASK + 1, 0, NULL);
	if (hugepte_cache == NULL)
		panic("%s: Unable to create kmem cache for hugeptes\n",
		      __func__);

	/* Default hpage size = 4M */
	if (mmu_psize_defs[MMU_PAGE_4M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
	else
		panic("%s: Unable to set default huge page size\n", __func__);


	return 0;
}
#else
858 859
static int __init hugetlbpage_init(void)
{
860
	int psize;
861

862
	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
863
		return -ENODEV;
864

865 866 867
	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
		unsigned shift;
		unsigned pdshift;
868

869 870
		if (!mmu_psize_defs[psize].shift)
			continue;
871

872 873 874 875 876 877 878 879 880 881 882
		shift = mmu_psize_to_shift(psize);

		if (add_huge_page_size(1ULL << shift) < 0)
			continue;

		if (shift < PMD_SHIFT)
			pdshift = PMD_SHIFT;
		else if (shift < PUD_SHIFT)
			pdshift = PUD_SHIFT;
		else
			pdshift = PGDIR_SHIFT;
883 884 885 886 887 888 889 890 891 892
		/*
		 * if we have pdshift and shift value same, we don't
		 * use pgt cache for hugepd.
		 */
		if (pdshift != shift) {
			pgtable_cache_add(pdshift - shift, NULL);
			if (!PGT_CACHE(pdshift - shift))
				panic("hugetlbpage_init(): could not create "
				      "pgtable cache for %d bit pagesize\n", shift);
		}
893
	}
894

895 896 897 898 899 900 901 902
	/* Set default large page size. Currently, we pick 16M or 1M
	 * depending on what is available
	 */
	if (mmu_psize_defs[MMU_PAGE_16M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;

903 904
	return 0;
}
B
Becky Bruce 已提交
905
#endif
906
module_init(hugetlbpage_init);
907 908 909 910

void flush_dcache_icache_hugepage(struct page *page)
{
	int i;
B
Becky Bruce 已提交
911
	void *start;
912 913 914

	BUG_ON(!PageCompound(page));

B
Becky Bruce 已提交
915 916 917 918
	for (i = 0; i < (1UL << compound_order(page)); i++) {
		if (!PageHighMem(page)) {
			__flush_dcache_icache(page_address(page+i));
		} else {
919
			start = kmap_atomic(page+i);
B
Becky Bruce 已提交
920
			__flush_dcache_icache(start);
921
			kunmap_atomic(start);
B
Becky Bruce 已提交
922 923
		}
	}
924
}
925 926 927 928 929 930 931 932 933

#endif /* CONFIG_HUGETLB_PAGE */

/*
 * We have 4 cases for pgds and pmds:
 * (1) invalid (all zeroes)
 * (2) pointer to next table, as normal; bottom 6 bits == 0
 * (3) leaf pte for huge page, bottom two bits != 00
 * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table
934 935 936
 *
 * So long as we atomically load page table pointers we are safe against teardown,
 * we can follow the address down to the the page and take a ref on it.
937
 */
938

939 940
pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
{
941 942 943
	pgd_t pgd, *pgdp;
	pud_t pud, *pudp;
	pmd_t pmd, *pmdp;
944 945 946 947 948 949 950
	pte_t *ret_pte;
	hugepd_t *hpdp = NULL;
	unsigned pdshift = PGDIR_SHIFT;

	if (shift)
		*shift = 0;

951 952
	pgdp = pgdir + pgd_index(ea);
	pgd  = ACCESS_ONCE(*pgdp);
953
	/*
954 955 956 957
	 * Always operate on the local stack value. This make sure the
	 * value don't get updated by a parallel THP split/collapse,
	 * page fault or a page unmap. The return pte_t * is still not
	 * stable. So should be checked there for above conditions.
958
	 */
959
	if (pgd_none(pgd))
960
		return NULL;
961 962
	else if (pgd_huge(pgd)) {
		ret_pte = (pte_t *) pgdp;
963
		goto out;
964 965
	} else if (is_hugepd(&pgd))
		hpdp = (hugepd_t *)&pgd;
966
	else {
967 968 969 970 971
		/*
		 * Even if we end up with an unmap, the pgtable will not
		 * be freed, because we do an rcu free and here we are
		 * irq disabled
		 */
972
		pdshift = PUD_SHIFT;
973 974
		pudp = pud_offset(&pgd, ea);
		pud  = ACCESS_ONCE(*pudp);
975

976
		if (pud_none(pud))
977
			return NULL;
978 979
		else if (pud_huge(pud)) {
			ret_pte = (pte_t *) pudp;
980
			goto out;
981 982
		} else if (is_hugepd(&pud))
			hpdp = (hugepd_t *)&pud;
983
		else {
984
			pdshift = PMD_SHIFT;
985 986
			pmdp = pmd_offset(&pud, ea);
			pmd  = ACCESS_ONCE(*pmdp);
987 988 989 990 991 992 993 994 995
			/*
			 * A hugepage collapse is captured by pmd_none, because
			 * it mark the pmd none and do a hpte invalidate.
			 *
			 * A hugepage split is captured by pmd_trans_splitting
			 * because we mark the pmd trans splitting and do a
			 * hpte invalidate
			 *
			 */
996
			if (pmd_none(pmd) || pmd_trans_splitting(pmd))
997
				return NULL;
998

999 1000
			if (pmd_huge(pmd) || pmd_large(pmd)) {
				ret_pte = (pte_t *) pmdp;
1001
				goto out;
1002 1003
			} else if (is_hugepd(&pmd))
				hpdp = (hugepd_t *)&pmd;
1004
			else
1005
				return pte_offset_kernel(&pmd, ea);
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
		}
	}
	if (!hpdp)
		return NULL;

	ret_pte = hugepte_offset(hpdp, ea, pdshift);
	pdshift = hugepd_shift(*hpdp);
out:
	if (shift)
		*shift = pdshift;
	return ret_pte;
}
EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte);

int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
		unsigned long end, int write, struct page **pages, int *nr)
{
	unsigned long mask;
	unsigned long pte_end;
	struct page *head, *page, *tail;
	pte_t pte;
	int refs;

	pte_end = (addr + sz) & ~(sz-1);
	if (pte_end < end)
		end = pte_end;

1033
	pte = ACCESS_ONCE(*ptep);
1034 1035 1036 1037 1038 1039 1040
	mask = _PAGE_PRESENT | _PAGE_USER;
	if (write)
		mask |= _PAGE_RW;

	if ((pte_val(pte) & mask) != mask)
		return 0;

1041 1042 1043 1044 1045 1046 1047 1048
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	/*
	 * check for splitting here
	 */
	if (pmd_trans_splitting(pte_pmd(pte)))
		return 0;
#endif

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	/* hugepages are never "special" */
	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));

	refs = 0;
	head = pte_page(pte);

	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
	tail = page;
	do {
		VM_BUG_ON(compound_head(page) != head);
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

	if (!page_cache_add_speculative(head, refs)) {
		*nr -= refs;
		return 0;
	}

	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
		/* Could be optimized better */
		*nr -= refs;
		while (refs--)
			put_page(head);
		return 0;
	}

	/*
	 * Any tail page need their mapcount reference taken before we
	 * return.
	 */
	while (refs--) {
		if (PageTail(tail))
			get_huge_page_tail(tail);
		tail++;
	}

	return 1;
}