rv_hwmgr.c 29.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Copyright 2015 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */
#include "pp_debug.h"
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include "atom-types.h"
#include "atombios.h"
#include "processpptables.h"
#include "cgs_common.h"
#include "smumgr.h"
#include "hwmgr.h"
#include "hardwaremanager.h"
#include "rv_ppsmc.h"
#include "rv_hwmgr.h"
#include "power_state.h"
#include "rv_smumgr.h"
38
#include "pp_soc15.h"
39 40 41 42 43 44 45

#define RAVEN_MAX_DEEPSLEEP_DIVIDER_ID     5
#define RAVEN_MINIMUM_ENGINE_CLOCK         800   //8Mhz, the low boundary of engine clock allowed on this chip
#define SCLK_MIN_DIV_INTV_SHIFT         12
#define RAVEN_DISPCLK_BYPASS_THRESHOLD     10000 //100mhz
#define SMC_RAM_END                     0x40000

46
static const unsigned long PhwRaven_Magic = (unsigned long) PHM_Rv_Magic;
47 48
int rv_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
		struct pp_display_clock_request *clock_req);
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

struct phm_vq_budgeting_record rv_vqtable[] = {
	/* _TBD
	 * CUs, SSP low, SSP High, Min Sclk Low, Min Sclk, High, AWD/non-AWD, DCLK, ECLK, Sustainable Sclk, Sustainable CUs */
	{ 8, 0, 45, 0, 0, VQ_DisplayConfig_NoneAWD, 80000, 120000, 4, 0 },
};

static struct rv_power_state *cast_rv_ps(struct pp_hw_power_state *hw_ps)
{
	if (PhwRaven_Magic != hw_ps->magic)
		return NULL;

	return (struct rv_power_state *)hw_ps;
}

static const struct rv_power_state *cast_const_rv_ps(
				const struct pp_hw_power_state *hw_ps)
{
	if (PhwRaven_Magic != hw_ps->magic)
		return NULL;

	return (struct rv_power_state *)hw_ps;
}

static int rv_init_vq_budget_table(struct pp_hwmgr *hwmgr)
{
	uint32_t table_size, i;
	struct phm_vq_budgeting_table *ptable;
77
	uint32_t num_entries = ARRAY_SIZE(rv_vqtable);
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

	if (hwmgr->dyn_state.vq_budgeting_table != NULL)
		return 0;

	table_size = sizeof(struct phm_vq_budgeting_table) +
			sizeof(struct phm_vq_budgeting_record) * (num_entries - 1);

	ptable = kzalloc(table_size, GFP_KERNEL);
	if (NULL == ptable)
		return -ENOMEM;

	ptable->numEntries = (uint8_t) num_entries;

	for (i = 0; i < ptable->numEntries; i++) {
		ptable->entries[i].ulCUs = rv_vqtable[i].ulCUs;
		ptable->entries[i].ulSustainableSOCPowerLimitLow = rv_vqtable[i].ulSustainableSOCPowerLimitLow;
		ptable->entries[i].ulSustainableSOCPowerLimitHigh = rv_vqtable[i].ulSustainableSOCPowerLimitHigh;
		ptable->entries[i].ulMinSclkLow = rv_vqtable[i].ulMinSclkLow;
		ptable->entries[i].ulMinSclkHigh = rv_vqtable[i].ulMinSclkHigh;
		ptable->entries[i].ucDispConfig = rv_vqtable[i].ucDispConfig;
		ptable->entries[i].ulDClk = rv_vqtable[i].ulDClk;
		ptable->entries[i].ulEClk = rv_vqtable[i].ulEClk;
		ptable->entries[i].ulSustainableSclk = rv_vqtable[i].ulSustainableSclk;
		ptable->entries[i].ulSustainableCUs = rv_vqtable[i].ulSustainableCUs;
	}

	hwmgr->dyn_state.vq_budgeting_table = ptable;

	return 0;
}

static int rv_initialize_dpm_defaults(struct pp_hwmgr *hwmgr)
{
	struct rv_hwmgr *rv_hwmgr = (struct rv_hwmgr *)(hwmgr->backend);
	struct cgs_system_info sys_info = {0};
	int result;

	rv_hwmgr->ddi_power_gating_disabled = 0;
	rv_hwmgr->bapm_enabled = 1;
	rv_hwmgr->dce_slow_sclk_threshold = 30000;
	rv_hwmgr->disable_driver_thermal_policy = 1;
	rv_hwmgr->thermal_auto_throttling_treshold = 0;
	rv_hwmgr->is_nb_dpm_enabled = 1;
	rv_hwmgr->dpm_flags = 1;
	rv_hwmgr->disable_smu_acp_s3_handshake = 1;
	rv_hwmgr->disable_notify_smu_vpu_recovery = 0;
	rv_hwmgr->gfx_off_controled_by_driver = false;

	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_DynamicM3Arbiter);

	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_UVDPowerGating);

	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_UVDDynamicPowerGating);

	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_VCEPowerGating);

	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_SamuPowerGating);

	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_ACP);

	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_SclkDeepSleep);

	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_GFXDynamicMGPowerGating);

	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_SclkThrottleLowNotification);

	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
				PHM_PlatformCaps_DisableVoltageIsland);

	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
					PHM_PlatformCaps_DynamicUVDState);

	sys_info.size = sizeof(struct cgs_system_info);
	sys_info.info_id = CGS_SYSTEM_INFO_PG_FLAGS;
	result = cgs_query_system_info(hwmgr->device, &sys_info);
	if (!result) {
		if (sys_info.value & AMD_PG_SUPPORT_GFX_DMG)
			phm_cap_set(hwmgr->platform_descriptor.platformCaps,
				      PHM_PlatformCaps_GFXDynamicMGPowerGating);
	}

	return 0;
}

static int rv_construct_max_power_limits_table(struct pp_hwmgr *hwmgr,
			struct phm_clock_and_voltage_limits *table)
{
	return 0;
}

static int rv_init_dynamic_state_adjustment_rule_settings(
							struct pp_hwmgr *hwmgr)
{
	uint32_t table_size =
		sizeof(struct phm_clock_voltage_dependency_table) +
		(7 * sizeof(struct phm_clock_voltage_dependency_record));

	struct phm_clock_voltage_dependency_table *table_clk_vlt =
					kzalloc(table_size, GFP_KERNEL);

	if (NULL == table_clk_vlt) {
		pr_err("Can not allocate memory!\n");
		return -ENOMEM;
	}

	table_clk_vlt->count = 8;
	table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_0;
	table_clk_vlt->entries[0].v = 0;
	table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_1;
	table_clk_vlt->entries[1].v = 1;
	table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_2;
	table_clk_vlt->entries[2].v = 2;
	table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_3;
	table_clk_vlt->entries[3].v = 3;
	table_clk_vlt->entries[4].clk = PP_DAL_POWERLEVEL_4;
	table_clk_vlt->entries[4].v = 4;
	table_clk_vlt->entries[5].clk = PP_DAL_POWERLEVEL_5;
	table_clk_vlt->entries[5].v = 5;
	table_clk_vlt->entries[6].clk = PP_DAL_POWERLEVEL_6;
	table_clk_vlt->entries[6].v = 6;
	table_clk_vlt->entries[7].clk = PP_DAL_POWERLEVEL_7;
	table_clk_vlt->entries[7].v = 7;
	hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;

	return 0;
}

static int rv_get_system_info_data(struct pp_hwmgr *hwmgr)
{
	struct rv_hwmgr *rv_data = (struct rv_hwmgr *)hwmgr->backend;

	rv_data->sys_info.htc_hyst_lmt = 5;
	rv_data->sys_info.htc_tmp_lmt = 203;

	if (rv_data->thermal_auto_throttling_treshold == 0)
		 rv_data->thermal_auto_throttling_treshold = 203;

	rv_construct_max_power_limits_table (hwmgr,
				    &hwmgr->dyn_state.max_clock_voltage_on_ac);

	rv_init_dynamic_state_adjustment_rule_settings(hwmgr);

	return 0;
}

static int rv_construct_boot_state(struct pp_hwmgr *hwmgr)
{
	return 0;
}

237
static int rv_tf_set_clock_limit(struct pp_hwmgr *hwmgr, void *input,
238 239
				void *output, void *storage, int result)
{
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
	struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
	struct PP_Clocks clocks = {0};
	struct pp_display_clock_request clock_req;

	clocks.dcefClock = hwmgr->display_config.min_dcef_set_clk;
	clocks.dcefClockInSR = hwmgr->display_config.min_dcef_deep_sleep_set_clk;
	clock_req.clock_type = amd_pp_dcf_clock;
	clock_req.clock_freq_in_khz = clocks.dcefClock * 10;

	if (clocks.dcefClock == 0 && clocks.dcefClockInSR == 0)
		clock_req.clock_freq_in_khz = rv_data->dcf_actual_hard_min_freq;

	PP_ASSERT_WITH_CODE(!rv_display_clock_voltage_request(hwmgr, &clock_req),
				"Attempt to set DCF Clock Failed!", return -EINVAL);

	if(rv_data->need_min_deep_sleep_dcefclk && 0 != clocks.dcefClockInSR)
		smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_SetMinDeepSleepDcefclk,
					clocks.dcefClockInSR / 100);
	/*
	if(!rv_data->isp_tileA_power_gated || !rv_data->isp_tileB_power_gated) {
		if ((hwmgr->ispArbiter.iclk != 0) && (rv_data->ISPActualHardMinFreq != (hwmgr->ispArbiter.iclk / 100) )) {
			smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_SetHardMinIspclkByFreq, hwmgr->ispArbiter.iclk / 100);
			rv_read_arg_from_smc(hwmgr->smumgr, &rv_data->ISPActualHardMinFreq),
		}
	} */

	if((hwmgr->gfx_arbiter.sclk_hard_min != 0) &&
		((hwmgr->gfx_arbiter.sclk_hard_min / 100) != rv_data->soc_actual_hard_min_freq)) {
		smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_SetHardMinSocclkByFreq,
					hwmgr->gfx_arbiter.sclk_hard_min / 100);
			rv_read_arg_from_smc(hwmgr->smumgr, &rv_data->soc_actual_hard_min_freq);
	}

	if ((hwmgr->gfx_arbiter.gfxclk != 0) &&
		(rv_data->gfx_actual_soft_min_freq != (hwmgr->gfx_arbiter.gfxclk))) {
		smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_SetMinVideoGfxclkFreq,
					hwmgr->gfx_arbiter.gfxclk / 100);
		rv_read_arg_from_smc(hwmgr->smumgr, &rv_data->gfx_actual_soft_min_freq);
	}

	if ((hwmgr->gfx_arbiter.fclk != 0) &&
		(rv_data->fabric_actual_soft_min_freq != (hwmgr->gfx_arbiter.fclk / 100))) {
		smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
					PPSMC_MSG_SetMinVideoFclkFreq,
					hwmgr->gfx_arbiter.fclk / 100);
		rv_read_arg_from_smc(hwmgr->smumgr, &rv_data->fabric_actual_soft_min_freq);
	}

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
	return 0;
}

static int rv_tf_set_num_active_display(struct pp_hwmgr *hwmgr, void *input,
				void *output, void *storage, int result)
{
	uint32_t  num_of_active_displays = 0;
	struct cgs_display_info info = {0};

	cgs_get_active_displays_info(hwmgr->device, &info);
	num_of_active_displays = info.display_count;

	smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
				PPSMC_MSG_SetDisplayCount,
				num_of_active_displays);
	return 0;
}

static const struct phm_master_table_item rv_set_power_state_list[] = {
311
	{ NULL, rv_tf_set_clock_limit },
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
	{ NULL, rv_tf_set_num_active_display },
	{ }
};

static const struct phm_master_table_header rv_set_power_state_master = {
	0,
	PHM_MasterTableFlag_None,
	rv_set_power_state_list
};

static int rv_tf_init_power_gate_state(struct pp_hwmgr *hwmgr, void *input,
				void *output, void *storage, int result)
{
	struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);

	rv_data->vcn_power_gated = true;
	rv_data->isp_tileA_power_gated = true;
	rv_data->isp_tileB_power_gated = true;

	return 0;
}

static const struct phm_master_table_item rv_setup_asic_list[] = {
	{ .tableFunction = rv_tf_init_power_gate_state },
	{ }
};

static const struct phm_master_table_header rv_setup_asic_master = {
	0,
	PHM_MasterTableFlag_None,
	rv_setup_asic_list
};

static int rv_tf_reset_cc6_data(struct pp_hwmgr *hwmgr,
					void *input, void *output,
					void *storage, int result)
{
	struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);

	rv_data->separation_time = 0;
	rv_data->cc6_disable = false;
	rv_data->pstate_disable = false;
	rv_data->cc6_setting_changed = false;

	return 0;
}

static const struct phm_master_table_item rv_power_down_asic_list[] = {
	{ .tableFunction = rv_tf_reset_cc6_data },
	{ }
};

static const struct phm_master_table_header rv_power_down_asic_master = {
	0,
	PHM_MasterTableFlag_None,
	rv_power_down_asic_list
};


static int rv_tf_disable_gfx_off(struct pp_hwmgr *hwmgr,
						void *input, void *output,
						void *storage, int result)
{
	struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);

	if (rv_data->gfx_off_controled_by_driver)
		smum_send_msg_to_smc(hwmgr->smumgr,
						PPSMC_MSG_DisableGfxOff);

	return 0;
}

static const struct phm_master_table_item rv_disable_dpm_list[] = {
	{NULL, rv_tf_disable_gfx_off},
	{ },
};


static const struct phm_master_table_header rv_disable_dpm_master = {
	0,
	PHM_MasterTableFlag_None,
	rv_disable_dpm_list
};

static int rv_tf_enable_gfx_off(struct pp_hwmgr *hwmgr,
						void *input, void *output,
						void *storage, int result)
{
	struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);

	if (rv_data->gfx_off_controled_by_driver)
		smum_send_msg_to_smc(hwmgr->smumgr,
						PPSMC_MSG_EnableGfxOff);

	return 0;
}

static const struct phm_master_table_item rv_enable_dpm_list[] = {
	{NULL, rv_tf_enable_gfx_off},
	{ },
};

static const struct phm_master_table_header rv_enable_dpm_master = {
	0,
	PHM_MasterTableFlag_None,
	rv_enable_dpm_list
};

static int rv_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
				struct pp_power_state  *prequest_ps,
			const struct pp_power_state *pcurrent_ps)
{
	return 0;
}

/* temporary hardcoded clock voltage breakdown tables */
DpmClock_t VddDcfClk[]= {
	{ 300, 2600},
	{ 600, 3200},
	{ 600, 3600},
};

DpmClock_t VddSocClk[]= {
	{ 478, 2600},
	{ 722, 3200},
	{ 722, 3600},
};

DpmClock_t VddFClk[]= {
	{ 400, 2600},
	{1200, 3200},
	{1200, 3600},
};

DpmClock_t VddDispClk[]= {
	{ 435, 2600},
	{ 661, 3200},
	{1086, 3600},
};

DpmClock_t VddDppClk[]= {
	{ 435, 2600},
	{ 661, 3200},
	{ 661, 3600},
};

DpmClock_t VddPhyClk[]= {
	{ 540, 2600},
	{ 810, 3200},
	{ 810, 3600},
};

static int rv_get_clock_voltage_dependency_table(struct pp_hwmgr *hwmgr,
			struct rv_voltage_dependency_table **pptable,
			uint32_t num_entry, DpmClock_t *pclk_dependency_table)
{
	uint32_t table_size, i;
	struct rv_voltage_dependency_table *ptable;

	table_size = sizeof(uint32_t) + sizeof(struct rv_voltage_dependency_table) * num_entry;
	ptable = kzalloc(table_size, GFP_KERNEL);

	if (NULL == ptable)
		return -ENOMEM;

	ptable->count = num_entry;

	for (i = 0; i < ptable->count; i++) {
		ptable->entries[i].clk         = pclk_dependency_table->Freq * 100;
		ptable->entries[i].vol         = pclk_dependency_table->Vol;
		pclk_dependency_table++;
	}

	*pptable = ptable;

	return 0;
}


static int rv_populate_clock_table(struct pp_hwmgr *hwmgr)
{
	int result;

	struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
	DpmClocks_t  *table = &(rv_data->clock_table);
	struct rv_clock_voltage_information *pinfo = &(rv_data->clock_vol_info);

	result = rv_copy_table_from_smc(hwmgr->smumgr, (uint8_t *)table, CLOCKTABLE);

	PP_ASSERT_WITH_CODE((0 == result),
			"Attempt to copy clock table from smc failed",
			return result);

	if (0 == result && table->DcefClocks[0].Freq != 0) {
		rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dcefclk,
						NUM_DCEFCLK_DPM_LEVELS,
						&rv_data->clock_table.DcefClocks[0]);
		rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_socclk,
						NUM_SOCCLK_DPM_LEVELS,
						&rv_data->clock_table.SocClocks[0]);
		rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_fclk,
						NUM_FCLK_DPM_LEVELS,
						&rv_data->clock_table.FClocks[0]);
		rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_mclk,
						NUM_MEMCLK_DPM_LEVELS,
						&rv_data->clock_table.MemClocks[0]);
	} else {
		rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dcefclk,
520 521
						ARRAY_SIZE(VddDcfClk),
						&VddDcfClk[0]);
522
		rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_socclk,
523 524
						ARRAY_SIZE(VddSocClk),
						&VddSocClk[0]);
525
		rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_fclk,
526 527
						ARRAY_SIZE(VddFClk),
						&VddFClk[0]);
528 529
	}
	rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dispclk,
530 531
					ARRAY_SIZE(VddDispClk),
					&VddDispClk[0]);
532
	rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dppclk,
533
					ARRAY_SIZE(VddDppClk), &VddDppClk[0]);
534
	rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_phyclk,
535
					ARRAY_SIZE(VddPhyClk), &VddPhyClk[0]);
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615

	return 0;
}

static int rv_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
{
	int result = 0;
	struct rv_hwmgr *data;

	data = kzalloc(sizeof(struct rv_hwmgr), GFP_KERNEL);
	if (data == NULL)
		return -ENOMEM;

	hwmgr->backend = data;

	result = rv_initialize_dpm_defaults(hwmgr);
	if (result != 0) {
		pr_err("rv_initialize_dpm_defaults failed\n");
		return result;
	}

	rv_populate_clock_table(hwmgr);

	result = rv_get_system_info_data(hwmgr);
	if (result != 0) {
		pr_err("rv_get_system_info_data failed\n");
		return result;
	}

	rv_construct_boot_state(hwmgr);

	result = phm_construct_table(hwmgr, &rv_setup_asic_master,
				&(hwmgr->setup_asic));
	if (result != 0) {
		pr_err("Fail to construct setup ASIC\n");
		return result;
	}

	result = phm_construct_table(hwmgr, &rv_power_down_asic_master,
				&(hwmgr->power_down_asic));
	if (result != 0) {
		pr_err("Fail to construct power down ASIC\n");
		return result;
	}

	result = phm_construct_table(hwmgr, &rv_set_power_state_master,
				&(hwmgr->set_power_state));
	if (result != 0) {
		pr_err("Fail to construct set_power_state\n");
		return result;
	}

	result = phm_construct_table(hwmgr, &rv_disable_dpm_master,
				&(hwmgr->disable_dynamic_state_management));
	if (result != 0) {
		pr_err("Fail to disable_dynamic_state\n");
		return result;
	}
	result = phm_construct_table(hwmgr, &rv_enable_dpm_master,
				&(hwmgr->enable_dynamic_state_management));
	if (result != 0) {
		pr_err("Fail to enable_dynamic_state\n");
		return result;
	}

	hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
						RAVEN_MAX_HARDWARE_POWERLEVELS;

	hwmgr->platform_descriptor.hardwarePerformanceLevels =
						RAVEN_MAX_HARDWARE_POWERLEVELS;

	hwmgr->platform_descriptor.vbiosInterruptId = 0;

	hwmgr->platform_descriptor.clockStep.engineClock = 500;

	hwmgr->platform_descriptor.clockStep.memoryClock = 500;

	hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;

	rv_init_vq_budget_table(hwmgr);
616

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
	return result;
}

static int rv_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
{
	struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
	struct rv_clock_voltage_information *pinfo = &(rv_data->clock_vol_info);

	phm_destroy_table(hwmgr, &(hwmgr->set_power_state));
	phm_destroy_table(hwmgr, &(hwmgr->enable_dynamic_state_management));
	phm_destroy_table(hwmgr, &(hwmgr->disable_dynamic_state_management));
	phm_destroy_table(hwmgr, &(hwmgr->power_down_asic));
	phm_destroy_table(hwmgr, &(hwmgr->setup_asic));

	if (pinfo->vdd_dep_on_dcefclk) {
		kfree(pinfo->vdd_dep_on_dcefclk);
		pinfo->vdd_dep_on_dcefclk = NULL;
	}
	if (pinfo->vdd_dep_on_socclk) {
		kfree(pinfo->vdd_dep_on_socclk);
		pinfo->vdd_dep_on_socclk = NULL;
	}
	if (pinfo->vdd_dep_on_fclk) {
		kfree(pinfo->vdd_dep_on_fclk);
		pinfo->vdd_dep_on_fclk = NULL;
	}
	if (pinfo->vdd_dep_on_dispclk) {
		kfree(pinfo->vdd_dep_on_dispclk);
		pinfo->vdd_dep_on_dispclk = NULL;
	}
	if (pinfo->vdd_dep_on_dppclk) {
		kfree(pinfo->vdd_dep_on_dppclk);
		pinfo->vdd_dep_on_dppclk = NULL;
	}
	if (pinfo->vdd_dep_on_phyclk) {
		kfree(pinfo->vdd_dep_on_phyclk);
		pinfo->vdd_dep_on_phyclk = NULL;
	}

	kfree(hwmgr->backend);
	hwmgr->backend = NULL;

	return 0;
}

static int rv_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
				enum amd_dpm_forced_level level)
{
	return 0;
}

static int rv_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
{
	return 0;
}

static int rv_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
{
	return 0;
}

static int rv_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
					struct pp_hw_power_state *hw_ps)
{
	return 0;
}

static int rv_dpm_get_pp_table_entry_callback(
						     struct pp_hwmgr *hwmgr,
					   struct pp_hw_power_state *hw_ps,
							  unsigned int index,
						     const void *clock_info)
{
	struct rv_power_state *rv_ps = cast_rv_ps(hw_ps);

	const ATOM_PPLIB_CZ_CLOCK_INFO *rv_clock_info = clock_info;

	struct phm_clock_voltage_dependency_table *table =
				    hwmgr->dyn_state.vddc_dependency_on_sclk;
	uint8_t clock_info_index = rv_clock_info->index;

	if (clock_info_index > (uint8_t)(hwmgr->platform_descriptor.hardwareActivityPerformanceLevels - 1))
		clock_info_index = (uint8_t)(hwmgr->platform_descriptor.hardwareActivityPerformanceLevels - 1);

	rv_ps->levels[index].engine_clock = table->entries[clock_info_index].clk;
	rv_ps->levels[index].vddc_index = (uint8_t)table->entries[clock_info_index].v;

	rv_ps->level = index + 1;

	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
		rv_ps->levels[index].ds_divider_index = 5;
		rv_ps->levels[index].ss_divider_index = 5;
	}

	return 0;
}

static int rv_dpm_get_num_of_pp_table_entries(struct pp_hwmgr *hwmgr)
{
	int result;
	unsigned long ret = 0;

	result = pp_tables_get_num_of_entries(hwmgr, &ret);

	return result ? 0 : ret;
}

static int rv_dpm_get_pp_table_entry(struct pp_hwmgr *hwmgr,
		    unsigned long entry, struct pp_power_state *ps)
{
	int result;
	struct rv_power_state *rv_ps;

	ps->hardware.magic = PhwRaven_Magic;

	rv_ps = cast_rv_ps(&(ps->hardware));

	result = pp_tables_get_entry(hwmgr, entry, ps,
			rv_dpm_get_pp_table_entry_callback);

	rv_ps->uvd_clocks.vclk = ps->uvd_clocks.VCLK;
	rv_ps->uvd_clocks.dclk = ps->uvd_clocks.DCLK;

	return result;
}

static int rv_get_power_state_size(struct pp_hwmgr *hwmgr)
{
	return sizeof(struct rv_power_state);
}

static int rv_set_cpu_power_state(struct pp_hwmgr *hwmgr)
{
	return 0;
}


static int rv_store_cc6_data(struct pp_hwmgr *hwmgr, uint32_t separation_time,
			bool cc6_disable, bool pstate_disable, bool pstate_switch_disable)
{
	return 0;
}

static int rv_get_dal_power_level(struct pp_hwmgr *hwmgr,
		struct amd_pp_simple_clock_info *info)
{
	return -EINVAL;
}

static int rv_force_clock_level(struct pp_hwmgr *hwmgr,
		enum pp_clock_type type, uint32_t mask)
{
	return 0;
}

static int rv_print_clock_levels(struct pp_hwmgr *hwmgr,
		enum pp_clock_type type, char *buf)
{
	return 0;
}

static int rv_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
				PHM_PerformanceLevelDesignation designation, uint32_t index,
				PHM_PerformanceLevel *level)
{
	const struct rv_power_state *ps;
	struct rv_hwmgr *data;
	uint32_t level_index;
	uint32_t i;
786
	uint32_t vol_dep_record_index = 0;
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805

	if (level == NULL || hwmgr == NULL || state == NULL)
		return -EINVAL;

	data = (struct rv_hwmgr *)(hwmgr->backend);
	ps = cast_const_rv_ps(state);

	level_index = index > ps->level - 1 ? ps->level - 1 : index;
	level->coreClock = ps->levels[level_index].engine_clock;

	if (designation == PHM_PerformanceLevelDesignation_PowerContainment) {
		for (i = 1; i < ps->level; i++) {
			if (ps->levels[i].engine_clock > data->dce_slow_sclk_threshold) {
				level->coreClock = ps->levels[i].engine_clock;
				break;
			}
		}
	}

806 807 808 809 810 811 812
	if (level_index == 0) {
		vol_dep_record_index = data->clock_vol_info.vdd_dep_on_fclk->count - 1;
		level->memory_clock =
			data->clock_vol_info.vdd_dep_on_fclk->entries[vol_dep_record_index].clk;
	} else
		level->memory_clock = data->clock_vol_info.vdd_dep_on_fclk->entries[0].clk;

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
	level->nonLocalMemoryFreq = 0;
	level->nonLocalMemoryWidth = 0;

	return 0;
}

static int rv_get_current_shallow_sleep_clocks(struct pp_hwmgr *hwmgr,
	const struct pp_hw_power_state *state, struct pp_clock_info *clock_info)
{
	const struct rv_power_state *ps = cast_const_rv_ps(state);

	clock_info->min_eng_clk = ps->levels[0].engine_clock / (1 << (ps->levels[0].ss_divider_index));
	clock_info->max_eng_clk = ps->levels[ps->level - 1].engine_clock / (1 << (ps->levels[ps->level - 1].ss_divider_index));

	return 0;
}

#define MEM_FREQ_LOW_LATENCY        25000
#define MEM_FREQ_HIGH_LATENCY       80000
#define MEM_LATENCY_HIGH            245
#define MEM_LATENCY_LOW             35
#define MEM_LATENCY_ERR             0xFFFF


static uint32_t rv_get_mem_latency(struct pp_hwmgr *hwmgr,
		uint32_t clock)
{
	if (clock >= MEM_FREQ_LOW_LATENCY &&
			clock < MEM_FREQ_HIGH_LATENCY)
		return MEM_LATENCY_HIGH;
	else if (clock >= MEM_FREQ_HIGH_LATENCY)
		return MEM_LATENCY_LOW;
	else
		return MEM_LATENCY_ERR;
}

849 850
static int rv_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
		enum amd_pp_clock_type type,
851 852 853 854 855
		struct pp_clock_levels_with_latency *clocks)
{
	uint32_t i;
	struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
	struct rv_clock_voltage_information *pinfo = &(rv_data->clock_vol_info);
856 857
	struct rv_voltage_dependency_table *pclk_vol_table;
	bool latency_required = false;
858

859 860
	if (pinfo == NULL)
		return -EINVAL;
861 862 863

	switch (type) {
	case amd_pp_mem_clock:
864 865
		pclk_vol_table = pinfo->vdd_dep_on_mclk;
		latency_required = true;
866
		break;
867 868 869
	case amd_pp_f_clock:
		pclk_vol_table = pinfo->vdd_dep_on_fclk;
		latency_required = true;
870
		break;
871 872
	case amd_pp_dcf_clock:
		pclk_vol_table = pinfo->vdd_dep_on_dcefclk;
873
		break;
874 875 876 877 878 879 880 881
	case amd_pp_disp_clock:
		pclk_vol_table = pinfo->vdd_dep_on_dispclk;
		break;
	case amd_pp_phy_clock:
		pclk_vol_table = pinfo->vdd_dep_on_phyclk;
		break;
	case amd_pp_dpp_clock:
		pclk_vol_table = pinfo->vdd_dep_on_dppclk;
882
	default:
883 884 885 886 887 888 889 890 891 892 893 894 895 896
		return -EINVAL;
	}

	if (pclk_vol_table == NULL || pclk_vol_table->count == 0)
		return -EINVAL;

	clocks->num_levels = 0;
	for (i = 0; i < pclk_vol_table->count; i++) {
		clocks->data[i].clocks_in_khz = pclk_vol_table->entries[i].clk;
		clocks->data[i].latency_in_us = latency_required ?
						rv_get_mem_latency(hwmgr,
						pclk_vol_table->entries[i].clk) :
						0;
		clocks->num_levels++;
897 898 899 900 901 902 903 904 905 906 907 908
	}

	return 0;
}

static int rv_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr,
		enum amd_pp_clock_type type,
		struct pp_clock_levels_with_voltage *clocks)
{
	uint32_t i;
	struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
	struct rv_clock_voltage_information *pinfo = &(rv_data->clock_vol_info);
909 910 911 912
	struct rv_voltage_dependency_table *pclk_vol_table = NULL;

	if (pinfo == NULL)
		return -EINVAL;
913 914 915 916 917

	switch (type) {
	case amd_pp_mem_clock:
		pclk_vol_table = pinfo->vdd_dep_on_mclk;
		break;
918 919
	case amd_pp_f_clock:
		pclk_vol_table = pinfo->vdd_dep_on_fclk;
920
		break;
921 922
	case amd_pp_dcf_clock:
		pclk_vol_table = pinfo->vdd_dep_on_dcefclk;
923
		break;
924 925
	case amd_pp_soc_clock:
		pclk_vol_table = pinfo->vdd_dep_on_socclk;
926 927 928 929 930
		break;
	default:
		return -EINVAL;
	}

931
	if (pclk_vol_table == NULL || pclk_vol_table->count == 0)
932 933
		return -EINVAL;

934
	clocks->num_levels = 0;
935 936 937 938 939 940 941 942 943 944 945 946 947
	for (i = 0; i < pclk_vol_table->count; i++) {
		clocks->data[i].clocks_in_khz = pclk_vol_table->entries[i].clk;
		clocks->data[i].voltage_in_mv = pclk_vol_table->entries[i].vol;
		clocks->num_levels++;
	}

	return 0;
}

int rv_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
		struct pp_display_clock_request *clock_req)
{
	int result = 0;
948
	struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend);
949
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
950
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
951 952 953
	PPSMC_Msg        msg;

	switch (clk_type) {
954 955 956
	case amd_pp_dcf_clock:
		if (clk_freq == rv_data->dcf_actual_hard_min_freq)
			return 0;
957
		msg =  PPSMC_MSG_SetHardMinDcefclkByFreq;
958
		rv_data->dcf_actual_hard_min_freq = clk_freq;
959 960 961 962
		break;
	case amd_pp_soc_clock:
		 msg = PPSMC_MSG_SetHardMinSocclkByFreq;
		break;
963 964 965 966
	case amd_pp_f_clock:
		if (clk_freq == rv_data->f_actual_hard_min_freq)
			return 0;
		rv_data->f_actual_hard_min_freq = clk_freq;
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
		msg = PPSMC_MSG_SetHardMinFclkByFreq;
		break;
	default:
		pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!");
		return -EINVAL;
	}

	result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, msg,
							clk_freq);

	return result;
}

static int rv_get_max_high_clocks(struct pp_hwmgr *hwmgr, struct amd_pp_simple_clock_info *clocks)
{
	return -EINVAL;
}

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
static int rv_thermal_get_temperature(struct pp_hwmgr *hwmgr)
{
	uint32_t reg_offset = soc15_get_register_offset(THM_HWID, 0,
			mmTHM_TCON_CUR_TMP_BASE_IDX, mmTHM_TCON_CUR_TMP);
	uint32_t reg_value = cgs_read_register(hwmgr->device, reg_offset);
	int cur_temp =
		(reg_value & THM_TCON_CUR_TMP__CUR_TEMP_MASK) >> THM_TCON_CUR_TMP__CUR_TEMP__SHIFT;

	if (cur_temp & THM_TCON_CUR_TMP__CUR_TEMP_RANGE_SEL_MASK)
		cur_temp = ((cur_temp / 8) - 49) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	else
		cur_temp = (cur_temp / 8) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES;

	return cur_temp;
}

1001 1002 1003
static int rv_read_sensor(struct pp_hwmgr *hwmgr, int idx,
			  void *value, int *size)
{
1004 1005 1006 1007 1008 1009 1010
	switch (idx) {
	case AMDGPU_PP_SENSOR_GPU_TEMP:
		*((uint32_t *)value) = rv_thermal_get_temperature(hwmgr);
		return 0;
	default:
		return -EINVAL;
	}
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
}

static const struct pp_hwmgr_func rv_hwmgr_funcs = {
	.backend_init = rv_hwmgr_backend_init,
	.backend_fini = rv_hwmgr_backend_fini,
	.asic_setup = NULL,
	.apply_state_adjust_rules = rv_apply_state_adjust_rules,
	.force_dpm_level = rv_dpm_force_dpm_level,
	.get_power_state_size = rv_get_power_state_size,
	.powerdown_uvd = NULL,
	.powergate_uvd = NULL,
	.powergate_vce = NULL,
	.get_mclk = rv_dpm_get_mclk,
	.get_sclk = rv_dpm_get_sclk,
	.patch_boot_state = rv_dpm_patch_boot_state,
	.get_pp_table_entry = rv_dpm_get_pp_table_entry,
	.get_num_of_pp_table_entries = rv_dpm_get_num_of_pp_table_entries,
	.set_cpu_power_state = rv_set_cpu_power_state,
	.store_cc6_data = rv_store_cc6_data,
	.force_clock_level = rv_force_clock_level,
	.print_clock_levels = rv_print_clock_levels,
	.get_dal_power_level = rv_get_dal_power_level,
	.get_performance_level = rv_get_performance_level,
	.get_current_shallow_sleep_clocks = rv_get_current_shallow_sleep_clocks,
	.get_clock_by_type_with_latency = rv_get_clock_by_type_with_latency,
	.get_clock_by_type_with_voltage = rv_get_clock_by_type_with_voltage,
	.get_max_high_clocks = rv_get_max_high_clocks,
	.read_sensor = rv_read_sensor,
};

int rv_init_function_pointers(struct pp_hwmgr *hwmgr)
{
	hwmgr->hwmgr_func = &rv_hwmgr_funcs;
	hwmgr->pptable_func = &pptable_funcs;
	return 0;
}