onenand_base.c 70.0 KB
Newer Older
1 2 3
/*
 *  linux/drivers/mtd/onenand/onenand_base.c
 *
4
 *  Copyright (C) 2005-2007 Samsung Electronics
5 6
 *  Kyungmin Park <kyungmin.park@samsung.com>
 *
7 8 9 10 11
 *  Credits:
 *	Adrian Hunter <ext-adrian.hunter@nokia.com>:
 *	auto-placement support, read-while load support, various fixes
 *	Copyright (C) Nokia Corporation, 2007
 *
12 13 14 15 16 17 18 19
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
20
#include <linux/sched.h>
21
#include <linux/interrupt.h>
22
#include <linux/jiffies.h>
23 24 25 26 27 28 29 30 31
#include <linux/mtd/mtd.h>
#include <linux/mtd/onenand.h>
#include <linux/mtd/partitions.h>

#include <asm/io.h>

/**
 * onenand_oob_64 - oob info for large (2KB) page
 */
32
static struct nand_ecclayout onenand_oob_64 = {
33 34 35 36 37 38 39 40 41
	.eccbytes	= 20,
	.eccpos		= {
		8, 9, 10, 11, 12,
		24, 25, 26, 27, 28,
		40, 41, 42, 43, 44,
		56, 57, 58, 59, 60,
		},
	.oobfree	= {
		{2, 3}, {14, 2}, {18, 3}, {30, 2},
42 43
		{34, 3}, {46, 2}, {50, 3}, {62, 2}
	}
44 45 46 47 48
};

/**
 * onenand_oob_32 - oob info for middle (1KB) page
 */
49
static struct nand_ecclayout onenand_oob_32 = {
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
	.eccbytes	= 10,
	.eccpos		= {
		8, 9, 10, 11, 12,
		24, 25, 26, 27, 28,
		},
	.oobfree	= { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
};

static const unsigned char ffchars[] = {
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
};

/**
 * onenand_readw - [OneNAND Interface] Read OneNAND register
 * @param addr		address to read
 *
 * Read OneNAND register
 */
static unsigned short onenand_readw(void __iomem *addr)
{
	return readw(addr);
}

/**
 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
 * @param value		value to write
 * @param addr		address to write
 *
 * Write OneNAND register with value
 */
static void onenand_writew(unsigned short value, void __iomem *addr)
{
	writew(value, addr);
}

/**
 * onenand_block_address - [DEFAULT] Get block address
94
 * @param this		onenand chip data structure
95 96 97 98 99
 * @param block		the block
 * @return		translated block address if DDP, otherwise same
 *
 * Setup Start Address 1 Register (F100h)
 */
100
static int onenand_block_address(struct onenand_chip *this, int block)
101
{
102 103 104
	/* Device Flash Core select, NAND Flash Block Address */
	if (block & this->density_mask)
		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
105 106 107 108 109 110

	return block;
}

/**
 * onenand_bufferram_address - [DEFAULT] Get bufferram address
111
 * @param this		onenand chip data structure
112 113 114 115 116
 * @param block		the block
 * @return		set DBS value if DDP, otherwise 0
 *
 * Setup Start Address 2 Register (F101h) for DDP
 */
117
static int onenand_bufferram_address(struct onenand_chip *this, int block)
118
{
119 120 121
	/* Device BufferRAM Select */
	if (block & this->density_mask)
		return ONENAND_DDP_CHIP1;
122

123
	return ONENAND_DDP_CHIP0;
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
}

/**
 * onenand_page_address - [DEFAULT] Get page address
 * @param page		the page address
 * @param sector	the sector address
 * @return		combined page and sector address
 *
 * Setup Start Address 8 Register (F107h)
 */
static int onenand_page_address(int page, int sector)
{
	/* Flash Page Address, Flash Sector Address */
	int fpa, fsa;

	fpa = page & ONENAND_FPA_MASK;
	fsa = sector & ONENAND_FSA_MASK;

	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
}

/**
 * onenand_buffer_address - [DEFAULT] Get buffer address
 * @param dataram1	DataRAM index
 * @param sectors	the sector address
 * @param count		the number of sectors
 * @return		the start buffer value
 *
 * Setup Start Buffer Register (F200h)
 */
static int onenand_buffer_address(int dataram1, int sectors, int count)
{
	int bsa, bsc;

	/* BufferRAM Sector Address */
	bsa = sectors & ONENAND_BSA_MASK;

	if (dataram1)
		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
	else
		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */

	/* BufferRAM Sector Count */
	bsc = count & ONENAND_BSC_MASK;

	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
}

/**
 * onenand_command - [DEFAULT] Send command to OneNAND device
 * @param mtd		MTD device structure
 * @param cmd		the command to be sent
 * @param addr		offset to read from or write to
 * @param len		number of bytes to read or write
 *
 * Send command to OneNAND device. This function is used for middle/large page
 * devices (1KB/2KB Bytes per page)
 */
static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
{
	struct onenand_chip *this = mtd->priv;
185
	int value, readcmd = 0, block_cmd = 0;
186 187 188 189 190 191 192
	int block, page;

	/* Address translation */
	switch (cmd) {
	case ONENAND_CMD_UNLOCK:
	case ONENAND_CMD_LOCK:
	case ONENAND_CMD_LOCK_TIGHT:
193
	case ONENAND_CMD_UNLOCK_ALL:
194 195 196 197 198 199
		block = -1;
		page = -1;
		break;

	case ONENAND_CMD_ERASE:
	case ONENAND_CMD_BUFFERRAM:
200 201
	case ONENAND_CMD_OTP_ACCESS:
		block_cmd = 1;
202 203 204 205 206 207 208
		block = (int) (addr >> this->erase_shift);
		page = -1;
		break;

	default:
		block = (int) (addr >> this->erase_shift);
		page = (int) (addr >> this->page_shift);
209 210 211 212 213 214 215 216 217

		if (ONENAND_IS_2PLANE(this)) {
			/* Make the even block number */
			block &= ~1;
			/* Is it the odd plane? */
			if (addr & this->writesize)
				block++;
			page >>= 1;
		}
218 219 220 221 222 223 224
		page &= this->page_mask;
		break;
	}

	/* NOTE: The setting order of the registers is very important! */
	if (cmd == ONENAND_CMD_BUFFERRAM) {
		/* Select DataRAM for DDP */
225
		value = onenand_bufferram_address(this, block);
226 227
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);

228 229 230 231 232 233
		if (ONENAND_IS_2PLANE(this))
			/* It is always BufferRAM0 */
			ONENAND_SET_BUFFERRAM0(this);
		else
			/* Switch to the next data buffer */
			ONENAND_SET_NEXT_BUFFERRAM(this);
234 235 236 237 238 239

		return 0;
	}

	if (block != -1) {
		/* Write 'DFS, FBA' of Flash */
240
		value = onenand_block_address(this, block);
241
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
242

K
Kyungmin Park 已提交
243
		if (block_cmd) {
244 245 246 247
			/* Select DataRAM for DDP */
			value = onenand_bufferram_address(this, block);
			this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
		}
248 249 250
	}

	if (page != -1) {
251 252
		/* Now we use page size operation */
		int sectors = 4, count = 4;
253 254 255 256 257 258 259 260 261 262
		int dataram;

		switch (cmd) {
		case ONENAND_CMD_READ:
		case ONENAND_CMD_READOOB:
			dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
			readcmd = 1;
			break;

		default:
263 264
			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
				cmd = ONENAND_CMD_2X_PROG;
265 266 267 268 269 270 271 272 273 274 275
			dataram = ONENAND_CURRENT_BUFFERRAM(this);
			break;
		}

		/* Write 'FPA, FSA' of Flash */
		value = onenand_page_address(page, sectors);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);

		/* Write 'BSA, BSC' of DataRAM */
		value = onenand_buffer_address(dataram, sectors, count);
		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
276

277 278
		if (readcmd) {
			/* Select DataRAM for DDP */
279
			value = onenand_bufferram_address(this, block);
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
			this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
		}
	}

	/* Interrupt clear */
	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);

	/* Write command */
	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);

	return 0;
}

/**
 * onenand_wait - [DEFAULT] wait until the command is done
 * @param mtd		MTD device structure
 * @param state		state to select the max. timeout value
 *
 * Wait for command done. This applies to all OneNAND command
 * Read can take up to 30us, erase up to 2ms and program up to 350us
 * according to general OneNAND specs
 */
static int onenand_wait(struct mtd_info *mtd, int state)
{
	struct onenand_chip * this = mtd->priv;
	unsigned long timeout;
	unsigned int flags = ONENAND_INT_MASTER;
	unsigned int interrupt = 0;
308
	unsigned int ctrl;
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

	/* The 20 msec is enough */
	timeout = jiffies + msecs_to_jiffies(20);
	while (time_before(jiffies, timeout)) {
		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);

		if (interrupt & flags)
			break;

		if (state != FL_READING)
			cond_resched();
	}
	/* To get correct interrupt status in timeout case */
	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);

	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);

	if (ctrl & ONENAND_CTRL_ERROR) {
327
		printk(KERN_ERR "onenand_wait: controller error = 0x%04x\n", ctrl);
328
		if (ctrl & ONENAND_CTRL_LOCK)
329
			printk(KERN_ERR "onenand_wait: it's locked error.\n");
330
		return -EIO;
331 332 333
	}

	if (interrupt & ONENAND_INT_READ) {
334
		int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
335
		if (ecc) {
336
			if (ecc & ONENAND_ECC_2BIT_ALL) {
337
				printk(KERN_ERR "onenand_wait: ECC error = 0x%04x\n", ecc);
338
				mtd->ecc_stats.failed++;
339
				return -EBADMSG;
340 341
			} else if (ecc & ONENAND_ECC_1BIT_ALL) {
				printk(KERN_INFO "onenand_wait: correctable ECC error = 0x%04x\n", ecc);
342
				mtd->ecc_stats.corrected++;
343
			}
344
		}
345 346 347
	} else if (state == FL_READING) {
		printk(KERN_ERR "onenand_wait: read timeout! ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
		return -EIO;
348 349 350 351 352
	}

	return 0;
}

353 354 355 356 357 358 359 360 361
/*
 * onenand_interrupt - [DEFAULT] onenand interrupt handler
 * @param irq		onenand interrupt number
 * @param dev_id	interrupt data
 *
 * complete the work
 */
static irqreturn_t onenand_interrupt(int irq, void *data)
{
362
	struct onenand_chip *this = data;
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409

	/* To handle shared interrupt */
	if (!this->complete.done)
		complete(&this->complete);

	return IRQ_HANDLED;
}

/*
 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
 * @param mtd		MTD device structure
 * @param state		state to select the max. timeout value
 *
 * Wait for command done.
 */
static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
{
	struct onenand_chip *this = mtd->priv;

	wait_for_completion(&this->complete);

	return onenand_wait(mtd, state);
}

/*
 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
 * @param mtd		MTD device structure
 * @param state		state to select the max. timeout value
 *
 * Try interrupt based wait (It is used one-time)
 */
static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
{
	struct onenand_chip *this = mtd->priv;
	unsigned long remain, timeout;

	/* We use interrupt wait first */
	this->wait = onenand_interrupt_wait;

	timeout = msecs_to_jiffies(100);
	remain = wait_for_completion_timeout(&this->complete, timeout);
	if (!remain) {
		printk(KERN_INFO "OneNAND: There's no interrupt. "
				"We use the normal wait\n");

		/* Release the irq */
		free_irq(this->irq, this);
D
David Woodhouse 已提交
410

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
		this->wait = onenand_wait;
	}

	return onenand_wait(mtd, state);
}

/*
 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
 * @param mtd		MTD device structure
 *
 * There's two method to wait onenand work
 * 1. polling - read interrupt status register
 * 2. interrupt - use the kernel interrupt method
 */
static void onenand_setup_wait(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;
	int syscfg;

	init_completion(&this->complete);

	if (this->irq <= 0) {
		this->wait = onenand_wait;
		return;
	}

	if (request_irq(this->irq, &onenand_interrupt,
				IRQF_SHARED, "onenand", this)) {
		/* If we can't get irq, use the normal wait */
		this->wait = onenand_wait;
		return;
	}

	/* Enable interrupt */
	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
	syscfg |= ONENAND_SYS_CFG1_IOBE;
	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);

	this->wait = onenand_try_interrupt_wait;
}

452 453 454 455 456 457 458 459 460 461 462 463 464
/**
 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
 * @param mtd		MTD data structure
 * @param area		BufferRAM area
 * @return		offset given area
 *
 * Return BufferRAM offset given area
 */
static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
{
	struct onenand_chip *this = mtd->priv;

	if (ONENAND_CURRENT_BUFFERRAM(this)) {
465
		/* Note: the 'this->writesize' is a real page size */
466
		if (area == ONENAND_DATARAM)
467
			return this->writesize;
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
		if (area == ONENAND_SPARERAM)
			return mtd->oobsize;
	}

	return 0;
}

/**
 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
 * @param mtd		MTD data structure
 * @param area		BufferRAM area
 * @param buffer	the databuffer to put/get data
 * @param offset	offset to read from or write to
 * @param count		number of bytes to read/write
 *
 * Read the BufferRAM area
 */
static int onenand_read_bufferram(struct mtd_info *mtd, int area,
		unsigned char *buffer, int offset, size_t count)
{
	struct onenand_chip *this = mtd->priv;
	void __iomem *bufferram;

	bufferram = this->base + area;

	bufferram += onenand_bufferram_offset(mtd, area);

495 496 497 498 499 500 501 502 503 504 505
	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
		unsigned short word;

		/* Align with word(16-bit) size */
		count--;

		/* Read word and save byte */
		word = this->read_word(bufferram + offset + count);
		buffer[count] = (word & 0xff);
	}

506 507 508 509 510
	memcpy(buffer, bufferram + offset, count);

	return 0;
}

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
/**
 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
 * @param mtd		MTD data structure
 * @param area		BufferRAM area
 * @param buffer	the databuffer to put/get data
 * @param offset	offset to read from or write to
 * @param count		number of bytes to read/write
 *
 * Read the BufferRAM area with Sync. Burst Mode
 */
static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
		unsigned char *buffer, int offset, size_t count)
{
	struct onenand_chip *this = mtd->priv;
	void __iomem *bufferram;

	bufferram = this->base + area;

	bufferram += onenand_bufferram_offset(mtd, area);

	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);

533 534 535 536 537 538 539 540 541 542 543
	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
		unsigned short word;

		/* Align with word(16-bit) size */
		count--;

		/* Read word and save byte */
		word = this->read_word(bufferram + offset + count);
		buffer[count] = (word & 0xff);
	}

544 545 546 547 548 549 550
	memcpy(buffer, bufferram + offset, count);

	this->mmcontrol(mtd, 0);

	return 0;
}

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
/**
 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
 * @param mtd		MTD data structure
 * @param area		BufferRAM area
 * @param buffer	the databuffer to put/get data
 * @param offset	offset to read from or write to
 * @param count		number of bytes to read/write
 *
 * Write the BufferRAM area
 */
static int onenand_write_bufferram(struct mtd_info *mtd, int area,
		const unsigned char *buffer, int offset, size_t count)
{
	struct onenand_chip *this = mtd->priv;
	void __iomem *bufferram;

	bufferram = this->base + area;

	bufferram += onenand_bufferram_offset(mtd, area);

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
		unsigned short word;
		int byte_offset;

		/* Align with word(16-bit) size */
		count--;

		/* Calculate byte access offset */
		byte_offset = offset + count;

		/* Read word and save byte */
		word = this->read_word(bufferram + byte_offset);
		word = (word & ~0xff) | buffer[count];
		this->write_word(word, bufferram + byte_offset);
	}

587 588 589 590 591
	memcpy(bufferram + offset, buffer, count);

	return 0;
}

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
/**
 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
 * @param mtd		MTD data structure
 * @param addr		address to check
 * @return		blockpage address
 *
 * Get blockpage address at 2x program mode
 */
static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
{
	struct onenand_chip *this = mtd->priv;
	int blockpage, block, page;

	/* Calculate the even block number */
	block = (int) (addr >> this->erase_shift) & ~1;
	/* Is it the odd plane? */
	if (addr & this->writesize)
		block++;
	page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
	blockpage = (block << 7) | page;

	return blockpage;
}

616 617 618 619
/**
 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
 * @param mtd		MTD data structure
 * @param addr		address to check
620
 * @return		1 if there are valid data, otherwise 0
621 622 623 624 625 626
 *
 * Check bufferram if there is data we required
 */
static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
{
	struct onenand_chip *this = mtd->priv;
627
	int blockpage, found = 0;
628
	unsigned int i;
629

630 631 632 633
	if (ONENAND_IS_2PLANE(this))
		blockpage = onenand_get_2x_blockpage(mtd, addr);
	else
		blockpage = (int) (addr >> this->page_shift);
634

635
	/* Is there valid data? */
636
	i = ONENAND_CURRENT_BUFFERRAM(this);
637
	if (this->bufferram[i].blockpage == blockpage)
638 639 640 641 642 643 644 645 646
		found = 1;
	else {
		/* Check another BufferRAM */
		i = ONENAND_NEXT_BUFFERRAM(this);
		if (this->bufferram[i].blockpage == blockpage) {
			ONENAND_SET_NEXT_BUFFERRAM(this);
			found = 1;
		}
	}
647

648 649 650 651 652
	if (found && ONENAND_IS_DDP(this)) {
		/* Select DataRAM for DDP */
		int block = (int) (addr >> this->erase_shift);
		int value = onenand_bufferram_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
653
	}
654

655
	return found;
656 657 658 659 660 661 662 663 664 665
}

/**
 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
 * @param mtd		MTD data structure
 * @param addr		address to update
 * @param valid		valid flag
 *
 * Update BufferRAM information
 */
666
static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
667 668 669
		int valid)
{
	struct onenand_chip *this = mtd->priv;
670 671
	int blockpage;
	unsigned int i;
672

673 674 675 676
	if (ONENAND_IS_2PLANE(this))
		blockpage = onenand_get_2x_blockpage(mtd, addr);
	else
		blockpage = (int) (addr >> this->page_shift);
677

678 679
	/* Invalidate another BufferRAM */
	i = ONENAND_NEXT_BUFFERRAM(this);
680
	if (this->bufferram[i].blockpage == blockpage)
681
		this->bufferram[i].blockpage = -1;
682 683 684

	/* Update BufferRAM */
	i = ONENAND_CURRENT_BUFFERRAM(this);
685 686 687 688
	if (valid)
		this->bufferram[i].blockpage = blockpage;
	else
		this->bufferram[i].blockpage = -1;
689 690
}

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
/**
 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
 * @param mtd		MTD data structure
 * @param addr		start address to invalidate
 * @param len		length to invalidate
 *
 * Invalidate BufferRAM information
 */
static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
		unsigned int len)
{
	struct onenand_chip *this = mtd->priv;
	int i;
	loff_t end_addr = addr + len;

	/* Invalidate BufferRAM */
	for (i = 0; i < MAX_BUFFERRAM; i++) {
		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
		if (buf_addr >= addr && buf_addr < end_addr)
			this->bufferram[i].blockpage = -1;
	}
}

714 715 716 717 718 719 720
/**
 * onenand_get_device - [GENERIC] Get chip for selected access
 * @param mtd		MTD device structure
 * @param new_state	the state which is requested
 *
 * Get the device and lock it for exclusive access
 */
721
static int onenand_get_device(struct mtd_info *mtd, int new_state)
722 723 724 725 726 727 728 729 730 731 732 733 734 735
{
	struct onenand_chip *this = mtd->priv;
	DECLARE_WAITQUEUE(wait, current);

	/*
	 * Grab the lock and see if the device is available
	 */
	while (1) {
		spin_lock(&this->chip_lock);
		if (this->state == FL_READY) {
			this->state = new_state;
			spin_unlock(&this->chip_lock);
			break;
		}
736 737 738 739
		if (new_state == FL_PM_SUSPENDED) {
			spin_unlock(&this->chip_lock);
			return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
		}
740 741 742 743 744 745
		set_current_state(TASK_UNINTERRUPTIBLE);
		add_wait_queue(&this->wq, &wait);
		spin_unlock(&this->chip_lock);
		schedule();
		remove_wait_queue(&this->wq, &wait);
	}
746 747

	return 0;
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
}

/**
 * onenand_release_device - [GENERIC] release chip
 * @param mtd		MTD device structure
 *
 * Deselect, release chip lock and wake up anyone waiting on the device
 */
static void onenand_release_device(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;

	/* Release the chip */
	spin_lock(&this->chip_lock);
	this->state = FL_READY;
	wake_up(&this->wq);
	spin_unlock(&this->chip_lock);
}

/**
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
 * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
 * @param mtd		MTD device structure
 * @param buf		destination address
 * @param column	oob offset to read from
 * @param thislen	oob length to read
 */
static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
				int thislen)
{
	struct onenand_chip *this = mtd->priv;
	struct nand_oobfree *free;
	int readcol = column;
	int readend = column + thislen;
	int lastgap = 0;
	unsigned int i;
	uint8_t *oob_buf = this->oob_buf;

	free = this->ecclayout->oobfree;
	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
		if (readcol >= lastgap)
			readcol += free->offset - lastgap;
		if (readend >= lastgap)
			readend += free->offset - lastgap;
		lastgap = free->offset + free->length;
	}
	this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
	free = this->ecclayout->oobfree;
	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
		int free_end = free->offset + free->length;
		if (free->offset < readend && free_end > readcol) {
			int st = max_t(int,free->offset,readcol);
			int ed = min_t(int,free_end,readend);
			int n = ed - st;
			memcpy(buf, oob_buf + st, n);
			buf += n;
		} else if (column == 0)
			break;
	}
	return 0;
}

/**
810
 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
811 812
 * @param mtd		MTD device structure
 * @param from		offset to read from
813
 * @param ops:		oob operation description structure
814
 *
815 816
 * OneNAND read main and/or out-of-band data
 */
817
static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
818
				struct mtd_oob_ops *ops)
819 820
{
	struct onenand_chip *this = mtd->priv;
821
	struct mtd_ecc_stats stats;
822 823 824 825 826 827
	size_t len = ops->len;
	size_t ooblen = ops->ooblen;
	u_char *buf = ops->datbuf;
	u_char *oobbuf = ops->oobbuf;
	int read = 0, column, thislen;
	int oobread = 0, oobcolumn, thisooblen, oobsize;
828
	int ret = 0, boundary = 0;
829
	int writesize = this->writesize;
830

831
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
832 833 834 835 836 837 838

	if (ops->mode == MTD_OOB_AUTO)
		oobsize = this->ecclayout->oobavail;
	else
		oobsize = mtd->oobsize;

	oobcolumn = from & (mtd->oobsize - 1);
839 840 841

	/* Do not allow reads past end of device */
	if ((from + len) > mtd->size) {
842
		printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
843 844
		ops->retlen = 0;
		ops->oobretlen = 0;
845 846 847
		return -EINVAL;
	}

848
	stats = mtd->ecc_stats;
849

850 851 852 853 854
 	/* Read-while-load method */

 	/* Do first load to bufferRAM */
 	if (read < len) {
 		if (!onenand_check_bufferram(mtd, from)) {
855
			this->command(mtd, ONENAND_CMD_READ, from, writesize);
856 857
 			ret = this->wait(mtd, FL_READING);
 			onenand_update_bufferram(mtd, from, !ret);
858 859
			if (ret == -EBADMSG)
				ret = 0;
860 861 862
 		}
 	}

863 864 865 866
	thislen = min_t(int, writesize, len - read);
	column = from & (writesize - 1);
	if (column + thislen > writesize)
		thislen = writesize - column;
867 868 869 870 871

 	while (!ret) {
 		/* If there is more to load then start next load */
 		from += thislen;
 		if (read + thislen < len) {
872
			this->command(mtd, ONENAND_CMD_READ, from, writesize);
873 874 875 876 877
 			/*
 			 * Chip boundary handling in DDP
 			 * Now we issued chip 1 read and pointed chip 1
 			 * bufferam so we have to point chip 0 bufferam.
 			 */
878 879 880
 			if (ONENAND_IS_DDP(this) &&
 			    unlikely(from == (this->chipsize >> 1))) {
 				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
881 882 883
 				boundary = 1;
 			} else
 				boundary = 0;
884 885 886 887
 			ONENAND_SET_PREV_BUFFERRAM(this);
 		}
 		/* While load is going, read from last bufferRAM */
 		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902

		/* Read oob area if needed */
		if (oobbuf) {
			thisooblen = oobsize - oobcolumn;
			thisooblen = min_t(int, thisooblen, ooblen - oobread);

			if (ops->mode == MTD_OOB_AUTO)
				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
			else
				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
			oobread += thisooblen;
			oobbuf += thisooblen;
			oobcolumn = 0;
		}

903 904 905 906 907
 		/* See if we are done */
 		read += thislen;
 		if (read == len)
 			break;
 		/* Set up for next read from bufferRAM */
908
 		if (unlikely(boundary))
909
 			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
910 911
 		ONENAND_SET_NEXT_BUFFERRAM(this);
 		buf += thislen;
912
		thislen = min_t(int, writesize, len - read);
913 914 915 916 917
 		column = 0;
 		cond_resched();
 		/* Now wait for load */
 		ret = this->wait(mtd, FL_READING);
 		onenand_update_bufferram(mtd, from, !ret);
918 919
		if (ret == -EBADMSG)
			ret = 0;
920
 	}
921 922 923 924 925 926

	/*
	 * Return success, if no ECC failures, else -EBADMSG
	 * fs driver will take care of that, because
	 * retlen == desired len and result == -EBADMSG
	 */
927 928
	ops->retlen = read;
	ops->oobretlen = oobread;
929

930 931 932
	if (ret)
		return ret;

933 934 935
	if (mtd->ecc_stats.failed - stats.failed)
		return -EBADMSG;

936
	return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
937 938 939
}

/**
940
 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
941 942
 * @param mtd		MTD device structure
 * @param from		offset to read from
943
 * @param ops:		oob operation description structure
944 945 946
 *
 * OneNAND read out-of-band data from the spare area
 */
947
static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
948
			struct mtd_oob_ops *ops)
949 950
{
	struct onenand_chip *this = mtd->priv;
951
	struct mtd_ecc_stats stats;
952
	int read = 0, thislen, column, oobsize;
953 954 955
	size_t len = ops->ooblen;
	mtd_oob_mode_t mode = ops->mode;
	u_char *buf = ops->oobbuf;
956 957
	int ret = 0;

958 959
	from += ops->ooboffs;

960
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
961 962

	/* Initialize return length value */
963
	ops->oobretlen = 0;
964

965 966 967 968 969 970 971 972
	if (mode == MTD_OOB_AUTO)
		oobsize = this->ecclayout->oobavail;
	else
		oobsize = mtd->oobsize;

	column = from & (mtd->oobsize - 1);

	if (unlikely(column >= oobsize)) {
973
		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
974 975 976
		return -EINVAL;
	}

977
	/* Do not allow reads past end of device */
978 979 980
	if (unlikely(from >= mtd->size ||
		     column + len > ((mtd->size >> this->page_shift) -
				     (from >> this->page_shift)) * oobsize)) {
981
		printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
982 983 984
		return -EINVAL;
	}

985 986
	stats = mtd->ecc_stats;

987
	while (read < len) {
988 989
		cond_resched();

990
		thislen = oobsize - column;
991 992 993 994 995 996 997
		thislen = min_t(int, thislen, len);

		this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);

		onenand_update_bufferram(mtd, from, 0);

		ret = this->wait(mtd, FL_READING);
998 999 1000 1001
		if (ret && ret != -EBADMSG) {
			printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
			break;
		}
1002

1003 1004 1005 1006
		if (mode == MTD_OOB_AUTO)
			onenand_transfer_auto_oob(mtd, buf, column, thislen);
		else
			this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

		read += thislen;

		if (read == len)
			break;

		buf += thislen;

		/* Read more? */
		if (read < len) {
			/* Page size */
J
Joern Engel 已提交
1018
			from += mtd->writesize;
1019 1020 1021 1022
			column = 0;
		}
	}

1023
	ops->oobretlen = read;
1024 1025 1026 1027 1028 1029 1030 1031

	if (ret)
		return ret;

	if (mtd->ecc_stats.failed - stats.failed)
		return -EBADMSG;

	return 0;
1032 1033
}

1034
/**
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
 * onenand_read - [MTD Interface] Read data from flash
 * @param mtd		MTD device structure
 * @param from		offset to read from
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put data
 *
 * Read with ecc
*/
static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
	size_t *retlen, u_char *buf)
{
	struct mtd_oob_ops ops = {
		.len	= len,
		.ooblen	= 0,
		.datbuf	= buf,
		.oobbuf	= NULL,
	};
	int ret;

1055 1056 1057
	onenand_get_device(mtd, FL_READING);
	ret = onenand_read_ops_nolock(mtd, from, &ops);
	onenand_release_device(mtd);
1058

1059
	*retlen = ops.retlen;
1060 1061 1062 1063 1064
	return ret;
}

/**
 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1065 1066 1067
 * @param mtd:		MTD device structure
 * @param from:		offset to read from
 * @param ops:		oob operation description structure
1068 1069

 * Read main and/or out-of-band
1070 1071 1072 1073
 */
static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
			    struct mtd_oob_ops *ops)
{
1074 1075
	int ret;

1076
	switch (ops->mode) {
1077 1078 1079 1080
	case MTD_OOB_PLACE:
	case MTD_OOB_AUTO:
		break;
	case MTD_OOB_RAW:
1081
		/* Not implemented yet */
1082 1083 1084
	default:
		return -EINVAL;
	}
1085

1086
	onenand_get_device(mtd, FL_READING);
1087
	if (ops->datbuf)
1088 1089 1090 1091
		ret = onenand_read_ops_nolock(mtd, from, ops);
	else
		ret = onenand_read_oob_nolock(mtd, from, ops);
	onenand_release_device(mtd);
1092

1093
	return ret;
1094 1095
}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
/**
 * onenand_bbt_wait - [DEFAULT] wait until the command is done
 * @param mtd		MTD device structure
 * @param state		state to select the max. timeout value
 *
 * Wait for command done.
 */
static int onenand_bbt_wait(struct mtd_info *mtd, int state)
{
	struct onenand_chip *this = mtd->priv;
	unsigned long timeout;
	unsigned int interrupt;
	unsigned int ctrl;

	/* The 20 msec is enough */
	timeout = jiffies + msecs_to_jiffies(20);
	while (time_before(jiffies, timeout)) {
		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
		if (interrupt & ONENAND_INT_MASTER)
			break;
	}
	/* To get correct interrupt status in timeout case */
	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);

	if (ctrl & ONENAND_CTRL_ERROR) {
		printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
		/* Initial bad block case */
		if (ctrl & ONENAND_CTRL_LOAD)
			return ONENAND_BBT_READ_ERROR;
		return ONENAND_BBT_READ_FATAL_ERROR;
	}

	if (interrupt & ONENAND_INT_READ) {
		int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
		if (ecc & ONENAND_ECC_2BIT_ALL)
			return ONENAND_BBT_READ_ERROR;
	} else {
		printk(KERN_ERR "onenand_bbt_wait: read timeout!"
			"ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
		return ONENAND_BBT_READ_FATAL_ERROR;
	}

	return 0;
}

/**
 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
 * @param mtd		MTD device structure
 * @param from		offset to read from
1146
 * @param ops		oob operation description structure
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
 *
 * OneNAND read out-of-band data from the spare area for bbt scan
 */
int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
			    struct mtd_oob_ops *ops)
{
	struct onenand_chip *this = mtd->priv;
	int read = 0, thislen, column;
	int ret = 0;
	size_t len = ops->ooblen;
	u_char *buf = ops->oobbuf;

1159
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

	/* Initialize return value */
	ops->oobretlen = 0;

	/* Do not allow reads past end of device */
	if (unlikely((from + len) > mtd->size)) {
		printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
		return ONENAND_BBT_READ_FATAL_ERROR;
	}

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_READING);

	column = from & (mtd->oobsize - 1);

	while (read < len) {
		cond_resched();

		thislen = mtd->oobsize - column;
		thislen = min_t(int, thislen, len);

		this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);

		onenand_update_bufferram(mtd, from, 0);

		ret = onenand_bbt_wait(mtd, FL_READING);
		if (ret)
			break;

		this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
		read += thislen;
		if (read == len)
			break;

		buf += thislen;

		/* Read more? */
		if (read < len) {
			/* Update Page size */
1199
			from += this->writesize;
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
			column = 0;
		}
	}

	/* Deselect and wake up anyone waiting on the device */
	onenand_release_device(mtd);

	ops->oobretlen = read;
	return ret;
}

1211
#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1212 1213 1214 1215 1216 1217
/**
 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
 * @param mtd		MTD device structure
 * @param buf		the databuffer to verify
 * @param to		offset to read from
 */
1218
static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1219 1220
{
	struct onenand_chip *this = mtd->priv;
1221
	char oobbuf[64];
1222 1223 1224 1225 1226 1227 1228 1229
	int status, i;

	this->command(mtd, ONENAND_CMD_READOOB, to, mtd->oobsize);
	onenand_update_bufferram(mtd, to, 0);
	status = this->wait(mtd, FL_READING);
	if (status)
		return status;

1230 1231 1232
	this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
	for (i = 0; i < mtd->oobsize; i++)
		if (buf[i] != 0xFF && buf[i] != oobbuf[i])
1233 1234 1235 1236 1237
			return -EBADMSG;

	return 0;
}

1238
/**
1239 1240 1241 1242 1243
 * onenand_verify - [GENERIC] verify the chip contents after a write
 * @param mtd          MTD device structure
 * @param buf          the databuffer to verify
 * @param addr         offset to read from
 * @param len          number of bytes to read and compare
1244
 */
1245
static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1246 1247
{
	struct onenand_chip *this = mtd->priv;
1248
	void __iomem *dataram;
1249
	int ret = 0;
1250
	int thislen, column;
1251

1252
	while (len != 0) {
1253 1254 1255 1256
		thislen = min_t(int, this->writesize, len);
		column = addr & (this->writesize - 1);
		if (column + thislen > this->writesize)
			thislen = this->writesize - column;
1257

1258
		this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1259

1260 1261 1262 1263 1264
		onenand_update_bufferram(mtd, addr, 0);

		ret = this->wait(mtd, FL_READING);
		if (ret)
			return ret;
1265

1266
		onenand_update_bufferram(mtd, addr, 1);
1267

1268 1269
		dataram = this->base + ONENAND_DATARAM;
		dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1270

1271 1272 1273 1274 1275 1276 1277
		if (memcmp(buf, dataram + column, thislen))
			return -EBADMSG;

		len -= thislen;
		buf += thislen;
		addr += thislen;
	}
1278

1279 1280 1281
	return 0;
}
#else
1282
#define onenand_verify(...)		(0)
1283
#define onenand_verify_oob(...)		(0)
1284 1285
#endif

1286
#define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
1287 1288

/**
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
 * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
 * @param mtd		MTD device structure
 * @param oob_buf	oob buffer
 * @param buf		source address
 * @param column	oob offset to write to
 * @param thislen	oob length to write
 */
static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
				  const u_char *buf, int column, int thislen)
{
	struct onenand_chip *this = mtd->priv;
	struct nand_oobfree *free;
	int writecol = column;
	int writeend = column + thislen;
	int lastgap = 0;
	unsigned int i;

	free = this->ecclayout->oobfree;
	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
		if (writecol >= lastgap)
			writecol += free->offset - lastgap;
		if (writeend >= lastgap)
			writeend += free->offset - lastgap;
		lastgap = free->offset + free->length;
	}
	free = this->ecclayout->oobfree;
	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
		int free_end = free->offset + free->length;
		if (free->offset < writeend && free_end > writecol) {
			int st = max_t(int,free->offset,writecol);
			int ed = min_t(int,free_end,writeend);
			int n = ed - st;
			memcpy(oob_buf + st, buf, n);
			buf += n;
		} else if (column == 0)
			break;
	}
	return 0;
}

/**
1330
 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1331 1332
 * @param mtd		MTD device structure
 * @param to		offset to write to
1333
 * @param ops		oob operation description structure
1334
 *
1335
 * Write main and/or oob with ECC
1336
 */
1337
static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1338
				struct mtd_oob_ops *ops)
1339 1340
{
	struct onenand_chip *this = mtd->priv;
1341 1342 1343 1344 1345 1346 1347
	int written = 0, column, thislen, subpage;
	int oobwritten = 0, oobcolumn, thisooblen, oobsize;
	size_t len = ops->len;
	size_t ooblen = ops->ooblen;
	const u_char *buf = ops->datbuf;
	const u_char *oob = ops->oobbuf;
	u_char *oobbuf;
1348 1349
	int ret = 0;

1350
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1351 1352

	/* Initialize retlen, in case of early exit */
1353 1354
	ops->retlen = 0;
	ops->oobretlen = 0;
1355 1356 1357

	/* Do not allow writes past end of device */
	if (unlikely((to + len) > mtd->size)) {
1358
		printk(KERN_ERR "onenand_write_ops_nolock: Attempt write to past end of device\n");
1359 1360 1361 1362 1363
		return -EINVAL;
	}

	/* Reject writes, which are not page aligned */
        if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(len))) {
1364
                printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1365 1366 1367
                return -EINVAL;
        }

1368 1369 1370 1371 1372 1373 1374
	if (ops->mode == MTD_OOB_AUTO)
		oobsize = this->ecclayout->oobavail;
	else
		oobsize = mtd->oobsize;

	oobcolumn = to & (mtd->oobsize - 1);

1375 1376
	column = to & (mtd->writesize - 1);

1377 1378
	/* Loop until all data write */
	while (written < len) {
1379 1380
		u_char *wbuf = (u_char *) buf;

1381 1382 1383
		thislen = min_t(int, mtd->writesize - column, len - written);
		thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);

1384 1385
		cond_resched();

1386
		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1387 1388

		/* Partial page write */
1389
		subpage = thislen < mtd->writesize;
1390 1391
		if (subpage) {
			memset(this->page_buf, 0xff, mtd->writesize);
1392
			memcpy(this->page_buf + column, buf, thislen);
1393 1394
			wbuf = this->page_buf;
		}
1395

1396
		this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

		if (oob) {
			oobbuf = this->oob_buf;

			/* We send data to spare ram with oobsize
			 * to prevent byte access */
			memset(oobbuf, 0xff, mtd->oobsize);
			if (ops->mode == MTD_OOB_AUTO)
				onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
			else
				memcpy(oobbuf + oobcolumn, oob, thisooblen);

			oobwritten += thisooblen;
			oob += thisooblen;
			oobcolumn = 0;
		} else
			oobbuf = (u_char *) ffchars;

		this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1416

J
Joern Engel 已提交
1417
		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1418

1419 1420
		ret = this->wait(mtd, FL_WRITING);

1421
		/* In partial page write we don't update bufferram */
1422
		onenand_update_bufferram(mtd, to, !ret && !subpage);
1423 1424 1425 1426
		if (ONENAND_IS_2PLANE(this)) {
			ONENAND_SET_BUFFERRAM1(this);
			onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
		}
1427 1428

		if (ret) {
1429
			printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1430
			break;
1431 1432 1433
		}

		/* Only check verify write turn on */
1434
		ret = onenand_verify(mtd, buf, to, thislen);
1435
		if (ret) {
1436
			printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1437
			break;
1438 1439
		}

1440
		written += thislen;
1441

1442 1443 1444
		if (written == len)
			break;

1445
		column = 0;
1446 1447 1448 1449
		to += thislen;
		buf += thislen;
	}

1450
	ops->retlen = written;
1451

1452 1453 1454
	return ret;
}

1455

1456
/**
1457
 * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
1458 1459 1460 1461 1462
 * @param mtd		MTD device structure
 * @param to		offset to write to
 * @param len		number of bytes to write
 * @param retlen	pointer to variable to store the number of written bytes
 * @param buf		the data to write
1463
 * @param mode		operation mode
1464 1465 1466
 *
 * OneNAND write out-of-band
 */
1467 1468
static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
				    struct mtd_oob_ops *ops)
1469 1470
{
	struct onenand_chip *this = mtd->priv;
1471
	int column, ret = 0, oobsize;
1472
	int written = 0;
1473
	u_char *oobbuf;
1474 1475 1476 1477 1478
	size_t len = ops->ooblen;
	const u_char *buf = ops->oobbuf;
	mtd_oob_mode_t mode = ops->mode;

	to += ops->ooboffs;
1479

1480
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1481 1482

	/* Initialize retlen, in case of early exit */
1483
	ops->oobretlen = 0;
1484

1485 1486 1487 1488 1489 1490 1491 1492
	if (mode == MTD_OOB_AUTO)
		oobsize = this->ecclayout->oobavail;
	else
		oobsize = mtd->oobsize;

	column = to & (mtd->oobsize - 1);

	if (unlikely(column >= oobsize)) {
1493
		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1494 1495 1496
		return -EINVAL;
	}

1497
	/* For compatibility with NAND: Do not allow write past end of page */
1498
	if (unlikely(column + len > oobsize)) {
1499
		printk(KERN_ERR "onenand_write_oob_nolock: "
1500 1501 1502 1503
		      "Attempt to write past end of page\n");
		return -EINVAL;
	}

1504 1505 1506 1507
	/* Do not allow reads past end of device */
	if (unlikely(to >= mtd->size ||
		     column + len > ((mtd->size >> this->page_shift) -
				     (to >> this->page_shift)) * oobsize)) {
1508
		printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1509 1510 1511
		return -EINVAL;
	}

1512
	oobbuf = this->oob_buf;
1513

1514 1515
	/* Loop until all data write */
	while (written < len) {
1516
		int thislen = min_t(int, oobsize, len - written);
1517

1518 1519
		cond_resched();

1520 1521
		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);

1522 1523
		/* We send data to spare ram with oobsize
		 * to prevent byte access */
1524
		memset(oobbuf, 0xff, mtd->oobsize);
1525
		if (mode == MTD_OOB_AUTO)
1526
			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1527
		else
1528 1529
			memcpy(oobbuf + column, buf, thislen);
		this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1530 1531 1532 1533

		this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);

		onenand_update_bufferram(mtd, to, 0);
1534 1535 1536 1537
		if (ONENAND_IS_2PLANE(this)) {
			ONENAND_SET_BUFFERRAM1(this);
			onenand_update_bufferram(mtd, to + this->writesize, 0);
		}
1538

1539 1540
		ret = this->wait(mtd, FL_WRITING);
		if (ret) {
1541
			printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1542
			break;
1543 1544
		}

1545
		ret = onenand_verify_oob(mtd, oobbuf, to);
1546
		if (ret) {
1547
			printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1548
			break;
1549
		}
1550 1551 1552 1553 1554

		written += thislen;
		if (written == len)
			break;

1555
		to += mtd->writesize;
1556
		buf += thislen;
1557
		column = 0;
1558 1559
	}

1560
	ops->oobretlen = written;
1561

1562
	return ret;
1563 1564
}

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
/**
 * onenand_write - [MTD Interface] write buffer to FLASH
 * @param mtd		MTD device structure
 * @param to		offset to write to
 * @param len		number of bytes to write
 * @param retlen	pointer to variable to store the number of written bytes
 * @param buf		the data to write
 *
 * Write with ECC
 */
static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
	size_t *retlen, const u_char *buf)
{
	struct mtd_oob_ops ops = {
		.len	= len,
		.ooblen	= 0,
		.datbuf	= (u_char *) buf,
		.oobbuf	= NULL,
	};
	int ret;

1586 1587 1588
	onenand_get_device(mtd, FL_WRITING);
	ret = onenand_write_ops_nolock(mtd, to, &ops);
	onenand_release_device(mtd);
1589

1590
	*retlen = ops.retlen;
1591 1592 1593
	return ret;
}

1594 1595
/**
 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1596 1597 1598
 * @param mtd:		MTD device structure
 * @param to:		offset to write
 * @param ops:		oob operation description structure
1599 1600 1601 1602
 */
static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
			     struct mtd_oob_ops *ops)
{
1603 1604
	int ret;

1605
	switch (ops->mode) {
1606 1607 1608 1609
	case MTD_OOB_PLACE:
	case MTD_OOB_AUTO:
		break;
	case MTD_OOB_RAW:
1610
		/* Not implemented yet */
1611 1612 1613
	default:
		return -EINVAL;
	}
1614

1615
	onenand_get_device(mtd, FL_WRITING);
1616
	if (ops->datbuf)
1617 1618 1619 1620
		ret = onenand_write_ops_nolock(mtd, to, ops);
	else
		ret = onenand_write_oob_nolock(mtd, to, ops);
	onenand_release_device(mtd);
1621

1622
	return ret;
1623 1624
}

1625
/**
1626
 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1627 1628 1629 1630 1631 1632 1633
 * @param mtd		MTD device structure
 * @param ofs		offset from device start
 * @param allowbbt	1, if its allowed to access the bbt area
 *
 * Check, if the block is bad. Either by reading the bad block table or
 * calling of the scan function.
 */
1634
static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1635 1636 1637 1638 1639 1640 1641 1642
{
	struct onenand_chip *this = mtd->priv;
	struct bbm_info *bbm = this->bbm;

	/* Return info from the table */
	return bbm->isbad_bbt(mtd, ofs, allowbbt);
}

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
/**
 * onenand_erase - [MTD Interface] erase block(s)
 * @param mtd		MTD device structure
 * @param instr		erase instruction
 *
 * Erase one ore more blocks
 */
static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	struct onenand_chip *this = mtd->priv;
	unsigned int block_size;
	loff_t addr;
	int len;
	int ret = 0;

	DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);

	block_size = (1 << this->erase_shift);

	/* Start address must align on block boundary */
	if (unlikely(instr->addr & (block_size - 1))) {
1664
		printk(KERN_ERR "onenand_erase: Unaligned address\n");
1665 1666 1667 1668 1669
		return -EINVAL;
	}

	/* Length must align on block boundary */
	if (unlikely(instr->len & (block_size - 1))) {
1670
		printk(KERN_ERR "onenand_erase: Length not block aligned\n");
1671 1672 1673 1674 1675
		return -EINVAL;
	}

	/* Do not allow erase past end of device */
	if (unlikely((instr->len + instr->addr) > mtd->size)) {
1676
		printk(KERN_ERR "onenand_erase: Erase past end of device\n");
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
		return -EINVAL;
	}

	instr->fail_addr = 0xffffffff;

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_ERASING);

	/* Loop throught the pages */
	len = instr->len;
	addr = instr->addr;

	instr->state = MTD_ERASING;

	while (len) {
1692
		cond_resched();
1693

1694
		/* Check if we have a bad block, we do not erase bad blocks */
1695
		if (onenand_block_isbad_nolock(mtd, addr, 0)) {
1696 1697 1698 1699
			printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%08x\n", (unsigned int) addr);
			instr->state = MTD_ERASE_FAILED;
			goto erase_exit;
		}
1700 1701 1702

		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);

1703 1704
		onenand_invalidate_bufferram(mtd, addr, block_size);

1705 1706 1707
		ret = this->wait(mtd, FL_ERASING);
		/* Check, if it is write protected */
		if (ret) {
1708
			printk(KERN_ERR "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift));
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
			instr->state = MTD_ERASE_FAILED;
			instr->fail_addr = addr;
			goto erase_exit;
		}

		len -= block_size;
		addr += block_size;
	}

	instr->state = MTD_ERASE_DONE;

erase_exit:

	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;

	/* Deselect and wake up anyone waiting on the device */
	onenand_release_device(mtd);

1727 1728 1729 1730
	/* Do call back function */
	if (!ret)
		mtd_erase_callback(instr);

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
	return ret;
}

/**
 * onenand_sync - [MTD Interface] sync
 * @param mtd		MTD device structure
 *
 * Sync is actually a wait for chip ready function
 */
static void onenand_sync(struct mtd_info *mtd)
{
	DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");

	/* Grab the lock and see if the device is available */
	onenand_get_device(mtd, FL_SYNCING);

	/* Release it and go back */
	onenand_release_device(mtd);
}

/**
 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
1755 1756
 *
 * Check whether the block is bad
1757 1758 1759
 */
static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
{
1760 1761
	int ret;

1762 1763 1764 1765
	/* Check for invalid offset */
	if (ofs > mtd->size)
		return -EINVAL;

1766 1767 1768 1769
	onenand_get_device(mtd, FL_READING);
	ret = onenand_block_isbad_nolock(mtd, ofs, 0);
	onenand_release_device(mtd);
	return ret;
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
}

/**
 * onenand_default_block_markbad - [DEFAULT] mark a block bad
 * @param mtd		MTD device structure
 * @param ofs		offset from device start
 *
 * This is the default implementation, which can be overridden by
 * a hardware specific driver.
 */
static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
	struct onenand_chip *this = mtd->priv;
	struct bbm_info *bbm = this->bbm;
	u_char buf[2] = {0, 0};
1785 1786 1787 1788 1789 1790
	struct mtd_oob_ops ops = {
		.mode = MTD_OOB_PLACE,
		.ooblen = 2,
		.oobbuf = buf,
		.ooboffs = 0,
	};
1791 1792 1793 1794 1795 1796 1797 1798 1799
	int block;

	/* Get block number */
	block = ((int) ofs) >> bbm->bbt_erase_shift;
        if (bbm->bbt)
                bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);

        /* We write two bytes, so we dont have to mess with 16 bit access */
        ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1800
        return onenand_write_oob_nolock(mtd, ofs, &ops);
1801 1802 1803 1804 1805 1806
}

/**
 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
1807 1808
 *
 * Mark the block as bad
1809 1810 1811
 */
static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	struct onenand_chip *this = mtd->priv;
	int ret;

	ret = onenand_block_isbad(mtd, ofs);
	if (ret) {
		/* If it was bad already, return success and do nothing */
		if (ret > 0)
			return 0;
		return ret;
	}

1823 1824 1825 1826
	onenand_get_device(mtd, FL_WRITING);
	ret = this->block_markbad(mtd, ofs);
	onenand_release_device(mtd);
	return ret;
1827 1828 1829
}

/**
K
Kyungmin Park 已提交
1830
 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1831 1832
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
K
Kyungmin Park 已提交
1833
 * @param len		number of bytes to lock or unlock
1834
 * @param cmd		lock or unlock command
1835
 *
K
Kyungmin Park 已提交
1836
 * Lock or unlock one or more blocks
1837
 */
K
Kyungmin Park 已提交
1838
static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1839 1840 1841
{
	struct onenand_chip *this = mtd->priv;
	int start, end, block, value, status;
K
Kyungmin Park 已提交
1842
	int wp_status_mask;
1843 1844 1845 1846

	start = ofs >> this->erase_shift;
	end = len >> this->erase_shift;

K
Kyungmin Park 已提交
1847 1848 1849 1850 1851
	if (cmd == ONENAND_CMD_LOCK)
		wp_status_mask = ONENAND_WP_LS;
	else
		wp_status_mask = ONENAND_WP_US;

1852
	/* Continuous lock scheme */
1853
	if (this->options & ONENAND_HAS_CONT_LOCK) {
1854 1855 1856
		/* Set start block address */
		this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
		/* Set end block address */
1857
		this->write_word(start + end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
K
Kyungmin Park 已提交
1858 1859
		/* Write lock command */
		this->command(mtd, cmd, 0, 0);
1860 1861

		/* There's no return value */
K
Kyungmin Park 已提交
1862
		this->wait(mtd, FL_LOCKING);
1863 1864 1865 1866 1867 1868 1869 1870

		/* Sanity check */
		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
		    & ONENAND_CTRL_ONGO)
			continue;

		/* Check lock status */
		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
K
Kyungmin Park 已提交
1871
		if (!(status & wp_status_mask))
1872 1873 1874 1875 1876 1877
			printk(KERN_ERR "wp status = 0x%x\n", status);

		return 0;
	}

	/* Block lock scheme */
1878
	for (block = start; block < start + end; block++) {
1879 1880 1881 1882 1883 1884
		/* Set block address */
		value = onenand_block_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
		/* Select DataRAM for DDP */
		value = onenand_bufferram_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1885 1886
		/* Set start block address */
		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
K
Kyungmin Park 已提交
1887 1888
		/* Write lock command */
		this->command(mtd, cmd, 0, 0);
1889 1890

		/* There's no return value */
K
Kyungmin Park 已提交
1891
		this->wait(mtd, FL_LOCKING);
1892 1893 1894 1895 1896 1897 1898 1899

		/* Sanity check */
		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
		    & ONENAND_CTRL_ONGO)
			continue;

		/* Check lock status */
		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
K
Kyungmin Park 已提交
1900
		if (!(status & wp_status_mask))
1901 1902
			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
	}
1903

1904 1905 1906
	return 0;
}

K
Kyungmin Park 已提交
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
/**
 * onenand_lock - [MTD Interface] Lock block(s)
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
 * @param len		number of bytes to unlock
 *
 * Lock one or more blocks
 */
static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
{
1917 1918 1919 1920 1921 1922
	int ret;

	onenand_get_device(mtd, FL_LOCKING);
	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
	onenand_release_device(mtd);
	return ret;
K
Kyungmin Park 已提交
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
}

/**
 * onenand_unlock - [MTD Interface] Unlock block(s)
 * @param mtd		MTD device structure
 * @param ofs		offset relative to mtd start
 * @param len		number of bytes to unlock
 *
 * Unlock one or more blocks
 */
static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
{
1935 1936 1937 1938 1939 1940
	int ret;

	onenand_get_device(mtd, FL_LOCKING);
	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
	onenand_release_device(mtd);
	return ret;
K
Kyungmin Park 已提交
1941 1942
}

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
/**
 * onenand_check_lock_status - [OneNAND Interface] Check lock status
 * @param this		onenand chip data structure
 *
 * Check lock status
 */
static void onenand_check_lock_status(struct onenand_chip *this)
{
	unsigned int value, block, status;
	unsigned int end;

	end = this->chipsize >> this->erase_shift;
	for (block = 0; block < end; block++) {
		/* Set block address */
		value = onenand_block_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
		/* Select DataRAM for DDP */
		value = onenand_bufferram_address(this, block);
		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
		/* Set start block address */
		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);

		/* Check lock status */
		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
		if (!(status & ONENAND_WP_US))
			printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
	}
}

/**
 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
 * @param mtd		MTD device structure
 *
 * Unlock all blocks
 */
static int onenand_unlock_all(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;

	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
1983 1984
		/* Set start block address */
		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1985 1986 1987 1988
		/* Write unlock command */
		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);

		/* There's no return value */
K
Kyungmin Park 已提交
1989
		this->wait(mtd, FL_LOCKING);
1990 1991 1992 1993 1994 1995 1996

		/* Sanity check */
		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
		    & ONENAND_CTRL_ONGO)
			continue;

		/* Workaround for all block unlock in DDP */
1997
		if (ONENAND_IS_DDP(this)) {
1998
			/* 1st block on another chip */
1999 2000
			loff_t ofs = this->chipsize >> 1;
			size_t len = mtd->erasesize;
2001

2002
			onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2003 2004 2005 2006 2007 2008 2009
		}

		onenand_check_lock_status(this);

		return 0;
	}

2010
	onenand_do_lock_cmd(mtd, 0x0, this->chipsize, ONENAND_CMD_UNLOCK);
2011 2012 2013 2014

	return 0;
}

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
#ifdef CONFIG_MTD_ONENAND_OTP

/* Interal OTP operation */
typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
		size_t *retlen, u_char *buf);

/**
 * do_otp_read - [DEFAULT] Read OTP block area
 * @param mtd		MTD device structure
 * @param from		The offset to read
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of readbytes
 * @param buf		the databuffer to put/get data
 *
 * Read OTP block area.
 */
static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
		size_t *retlen, u_char *buf)
{
	struct onenand_chip *this = mtd->priv;
2035 2036 2037 2038 2039 2040
	struct mtd_oob_ops ops = {
		.len	= len,
		.ooblen	= 0,
		.datbuf	= buf,
		.oobbuf	= NULL,
	};
2041 2042 2043 2044 2045 2046
	int ret;

	/* Enter OTP access mode */
	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
	this->wait(mtd, FL_OTPING);

2047
	ret = onenand_read_ops_nolock(mtd, from, &ops);
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058

	/* Exit OTP access mode */
	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
	this->wait(mtd, FL_RESETING);

	return ret;
}

/**
 * do_otp_write - [DEFAULT] Write OTP block area
 * @param mtd		MTD device structure
2059
 * @param to		The offset to write
2060 2061 2062 2063 2064 2065
 * @param len		number of bytes to write
 * @param retlen	pointer to variable to store the number of write bytes
 * @param buf		the databuffer to put/get data
 *
 * Write OTP block area.
 */
2066
static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
2067 2068 2069 2070 2071
		size_t *retlen, u_char *buf)
{
	struct onenand_chip *this = mtd->priv;
	unsigned char *pbuf = buf;
	int ret;
2072
	struct mtd_oob_ops ops;
2073 2074

	/* Force buffer page aligned */
J
Joern Engel 已提交
2075
	if (len < mtd->writesize) {
2076
		memcpy(this->page_buf, buf, len);
J
Joern Engel 已提交
2077
		memset(this->page_buf + len, 0xff, mtd->writesize - len);
2078
		pbuf = this->page_buf;
J
Joern Engel 已提交
2079
		len = mtd->writesize;
2080 2081 2082 2083 2084 2085
	}

	/* Enter OTP access mode */
	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
	this->wait(mtd, FL_OTPING);

2086 2087
	ops.len = len;
	ops.ooblen = 0;
2088
	ops.datbuf = pbuf;
2089 2090 2091
	ops.oobbuf = NULL;
	ret = onenand_write_ops_nolock(mtd, to, &ops);
	*retlen = ops.retlen;
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113

	/* Exit OTP access mode */
	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
	this->wait(mtd, FL_RESETING);

	return ret;
}

/**
 * do_otp_lock - [DEFAULT] Lock OTP block area
 * @param mtd		MTD device structure
 * @param from		The offset to lock
 * @param len		number of bytes to lock
 * @param retlen	pointer to variable to store the number of lock bytes
 * @param buf		the databuffer to put/get data
 *
 * Lock OTP block area.
 */
static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
		size_t *retlen, u_char *buf)
{
	struct onenand_chip *this = mtd->priv;
2114 2115 2116 2117 2118 2119
	struct mtd_oob_ops ops = {
		.mode = MTD_OOB_PLACE,
		.ooblen = len,
		.oobbuf = buf,
		.ooboffs = 0,
	};
2120 2121 2122 2123 2124 2125
	int ret;

	/* Enter OTP access mode */
	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
	this->wait(mtd, FL_OTPING);

2126
	ret = onenand_write_oob_nolock(mtd, from, &ops);
2127 2128

	*retlen = ops.oobretlen;
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166

	/* Exit OTP access mode */
	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
	this->wait(mtd, FL_RESETING);

	return ret;
}

/**
 * onenand_otp_walk - [DEFAULT] Handle OTP operation
 * @param mtd		MTD device structure
 * @param from		The offset to read/write
 * @param len		number of bytes to read/write
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put/get data
 * @param action	do given action
 * @param mode		specify user and factory
 *
 * Handle OTP operation.
 */
static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
			size_t *retlen, u_char *buf,
			otp_op_t action, int mode)
{
	struct onenand_chip *this = mtd->priv;
	int otp_pages;
	int density;
	int ret = 0;

	*retlen = 0;

	density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
	if (density < ONENAND_DEVICE_DENSITY_512Mb)
		otp_pages = 20;
	else
		otp_pages = 10;

	if (mode == MTD_OTP_FACTORY) {
J
Joern Engel 已提交
2167
		from += mtd->writesize * otp_pages;
2168 2169 2170 2171
		otp_pages = 64 - otp_pages;
	}

	/* Check User/Factory boundary */
J
Joern Engel 已提交
2172
	if (((mtd->writesize * otp_pages) - (from + len)) < 0)
2173 2174
		return 0;

2175
	onenand_get_device(mtd, FL_OTPING);
2176 2177 2178 2179 2180
	while (len > 0 && otp_pages > 0) {
		if (!action) {	/* OTP Info functions */
			struct otp_info *otpinfo;

			len -= sizeof(struct otp_info);
2181 2182 2183 2184
			if (len <= 0) {
				ret = -ENOSPC;
				break;
			}
2185 2186 2187

			otpinfo = (struct otp_info *) buf;
			otpinfo->start = from;
J
Joern Engel 已提交
2188
			otpinfo->length = mtd->writesize;
2189 2190
			otpinfo->locked = 0;

J
Joern Engel 已提交
2191
			from += mtd->writesize;
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
			buf += sizeof(struct otp_info);
			*retlen += sizeof(struct otp_info);
		} else {
			size_t tmp_retlen;
			int size = len;

			ret = action(mtd, from, len, &tmp_retlen, buf);

			buf += size;
			len -= size;
			*retlen += size;

2204 2205
			if (ret)
				break;
2206 2207 2208
		}
		otp_pages--;
	}
2209
	onenand_release_device(mtd);
2210

2211
	return ret;
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
}

/**
 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
 * @param mtd		MTD device structure
 * @param buf		the databuffer to put/get data
 * @param len		number of bytes to read
 *
 * Read factory OTP info.
 */
static int onenand_get_fact_prot_info(struct mtd_info *mtd,
			struct otp_info *buf, size_t len)
{
	size_t retlen;
	int ret;

	ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);

	return ret ? : retlen;
}

/**
 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
 * @param mtd		MTD device structure
 * @param from		The offset to read
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put/get data
 *
 * Read factory OTP area.
 */
static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
			size_t len, size_t *retlen, u_char *buf)
{
	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
}

/**
 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
 * @param mtd		MTD device structure
 * @param buf		the databuffer to put/get data
 * @param len		number of bytes to read
 *
 * Read user OTP info.
 */
static int onenand_get_user_prot_info(struct mtd_info *mtd,
			struct otp_info *buf, size_t len)
{
	size_t retlen;
	int ret;

	ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);

	return ret ? : retlen;
}

/**
 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
 * @param mtd		MTD device structure
 * @param from		The offset to read
 * @param len		number of bytes to read
 * @param retlen	pointer to variable to store the number of read bytes
 * @param buf		the databuffer to put/get data
 *
 * Read user OTP area.
 */
static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
			size_t len, size_t *retlen, u_char *buf)
{
	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
}

/**
 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
 * @param mtd		MTD device structure
 * @param from		The offset to write
 * @param len		number of bytes to write
 * @param retlen	pointer to variable to store the number of write bytes
 * @param buf		the databuffer to put/get data
 *
 * Write user OTP area.
 */
static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
			size_t len, size_t *retlen, u_char *buf)
{
	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
}

/**
 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
 * @param mtd		MTD device structure
 * @param from		The offset to lock
 * @param len		number of bytes to unlock
 *
 * Write lock mark on spare area in page 0 in OTP block
 */
static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
			size_t len)
{
	unsigned char oob_buf[64];
	size_t retlen;
	int ret;

	memset(oob_buf, 0xff, mtd->oobsize);
	/*
	 * Note: OTP lock operation
	 *       OTP block : 0xXXFC
	 *       1st block : 0xXXF3 (If chip support)
	 *       Both      : 0xXXF0 (If chip support)
	 */
	oob_buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;

	/*
	 * Write lock mark to 8th word of sector0 of page0 of the spare0.
	 * We write 16 bytes spare area instead of 2 bytes.
	 */
	from = 0;
	len = 16;

	ret = onenand_otp_walk(mtd, from, len, &retlen, oob_buf, do_otp_lock, MTD_OTP_USER);

	return ret ? : retlen;
}
#endif	/* CONFIG_MTD_ONENAND_OTP */

2337
/**
2338
 * onenand_check_features - Check and set OneNAND features
2339 2340
 * @param mtd		MTD data structure
 *
2341 2342
 * Check and set OneNAND features
 * - lock scheme
2343
 * - two plane
2344
 */
2345
static void onenand_check_features(struct mtd_info *mtd)
2346 2347 2348 2349 2350 2351 2352 2353 2354
{
	struct onenand_chip *this = mtd->priv;
	unsigned int density, process;

	/* Lock scheme depends on density and process */
	density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;

	/* Lock scheme */
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
	switch (density) {
	case ONENAND_DEVICE_DENSITY_4Gb:
		this->options |= ONENAND_HAS_2PLANE;

	case ONENAND_DEVICE_DENSITY_2Gb:
		/* 2Gb DDP don't have 2 plane */
		if (!ONENAND_IS_DDP(this))
			this->options |= ONENAND_HAS_2PLANE;
		this->options |= ONENAND_HAS_UNLOCK_ALL;

	case ONENAND_DEVICE_DENSITY_1Gb:
2366
		/* A-Die has all block unlock */
2367
		if (process)
2368
			this->options |= ONENAND_HAS_UNLOCK_ALL;
2369 2370 2371 2372 2373
		break;

	default:
		/* Some OneNAND has continuous lock scheme */
		if (!process)
2374
			this->options |= ONENAND_HAS_CONT_LOCK;
2375
		break;
2376
	}
2377 2378 2379 2380 2381 2382 2383

	if (this->options & ONENAND_HAS_CONT_LOCK)
		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
	if (this->options & ONENAND_HAS_UNLOCK_ALL)
		printk(KERN_DEBUG "Chip support all block unlock\n");
	if (this->options & ONENAND_HAS_2PLANE)
		printk(KERN_DEBUG "Chip has 2 plane\n");
2384 2385
}

2386
/**
2387
 * onenand_print_device_info - Print device & version ID
2388
 * @param device        device ID
2389
 * @param version	version ID
2390
 *
2391
 * Print device & version ID
2392
 */
2393
static void onenand_print_device_info(int device, int version)
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
{
        int vcc, demuxed, ddp, density;

        vcc = device & ONENAND_DEVICE_VCC_MASK;
        demuxed = device & ONENAND_DEVICE_IS_DEMUX;
        ddp = device & ONENAND_DEVICE_IS_DDP;
        density = device >> ONENAND_DEVICE_DENSITY_SHIFT;
        printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
                demuxed ? "" : "Muxed ",
                ddp ? "(DDP)" : "",
                (16 << density),
                vcc ? "2.65/3.3" : "1.8",
                device);
2407
	printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
}

static const struct onenand_manufacturers onenand_manuf_ids[] = {
        {ONENAND_MFR_SAMSUNG, "Samsung"},
};

/**
 * onenand_check_maf - Check manufacturer ID
 * @param manuf         manufacturer ID
 *
 * Check manufacturer ID
 */
static int onenand_check_maf(int manuf)
{
2422 2423
	int size = ARRAY_SIZE(onenand_manuf_ids);
	char *name;
2424 2425
        int i;

2426
	for (i = 0; i < size; i++)
2427 2428 2429
                if (manuf == onenand_manuf_ids[i].id)
                        break;

2430 2431 2432 2433 2434 2435
	if (i < size)
		name = onenand_manuf_ids[i].name;
	else
		name = "Unknown";

	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2436

2437
	return (i == size);
2438 2439 2440 2441 2442 2443 2444
}

/**
 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
 * @param mtd		MTD device structure
 *
 * OneNAND detection method:
2445
 *   Compare the values from command with ones from register
2446 2447 2448 2449
 */
static int onenand_probe(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;
2450
	int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
2451
	int density;
K
Kyungmin Park 已提交
2452 2453 2454 2455 2456 2457
	int syscfg;

	/* Save system configuration 1 */
	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
	/* Clear Sync. Burst Read mode to read BootRAM */
	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), this->base + ONENAND_REG_SYS_CFG1);
2458 2459 2460 2461 2462 2463 2464 2465

	/* Send the command for reading device ID from BootRAM */
	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);

	/* Read manufacturer and device IDs from BootRAM */
	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);

K
Kyungmin Park 已提交
2466 2467 2468 2469 2470 2471 2472 2473
	/* Reset OneNAND to read default register values */
	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
	/* Wait reset */
	this->wait(mtd, FL_RESETING);

	/* Restore system configuration 1 */
	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);

2474 2475 2476 2477 2478 2479 2480
	/* Check manufacturer ID */
	if (onenand_check_maf(bram_maf_id))
		return -ENXIO;

	/* Read manufacturer and device IDs from Register */
	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2481
	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2482 2483 2484 2485 2486 2487

	/* Check OneNAND device */
	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
		return -ENXIO;

	/* Flash device information */
2488
	onenand_print_device_info(dev_id, ver_id);
2489
	this->device_id = dev_id;
2490
	this->version_id = ver_id;
2491 2492 2493

	density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
	this->chipsize = (16 << density) << 20;
2494
	/* Set density mask. it is used for DDP */
2495 2496 2497 2498
	if (ONENAND_IS_DDP(this))
		this->density_mask = (1 << (density + 6));
	else
		this->density_mask = 0;
2499 2500 2501

	/* OneNAND page size & block size */
	/* The data buffer size is equal to page size */
J
Joern Engel 已提交
2502 2503
	mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
	mtd->oobsize = mtd->writesize >> 5;
2504
	/* Pages per a block are always 64 in OneNAND */
J
Joern Engel 已提交
2505
	mtd->erasesize = mtd->writesize << 6;
2506 2507

	this->erase_shift = ffs(mtd->erasesize) - 1;
J
Joern Engel 已提交
2508
	this->page_shift = ffs(mtd->writesize) - 1;
2509
	this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
2510 2511
	/* It's real page size */
	this->writesize = mtd->writesize;
2512 2513 2514 2515 2516

	/* REVIST: Multichip handling */

	mtd->size = this->chipsize;

2517 2518
	/* Check OneNAND features */
	onenand_check_features(mtd);
2519

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
	/*
	 * We emulate the 4KiB page and 256KiB erase block size
	 * But oobsize is still 64 bytes.
	 * It is only valid if you turn on 2X program support,
	 * Otherwise it will be ignored by compiler.
	 */
	if (ONENAND_IS_2PLANE(this)) {
		mtd->writesize <<= 1;
		mtd->erasesize <<= 1;
	}

2531 2532 2533
	return 0;
}

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
/**
 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
 * @param mtd		MTD device structure
 */
static int onenand_suspend(struct mtd_info *mtd)
{
	return onenand_get_device(mtd, FL_PM_SUSPENDED);
}

/**
 * onenand_resume - [MTD Interface] Resume the OneNAND flash
 * @param mtd		MTD device structure
 */
static void onenand_resume(struct mtd_info *mtd)
{
	struct onenand_chip *this = mtd->priv;

	if (this->state == FL_PM_SUSPENDED)
		onenand_release_device(mtd);
	else
		printk(KERN_ERR "resume() called for the chip which is not"
				"in suspended state\n");
}

2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
/**
 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
 * @param mtd		MTD device structure
 * @param maxchips	Number of chips to scan for
 *
 * This fills out all the not initialized function pointers
 * with the defaults.
 * The flash ID is read and the mtd/chip structures are
 * filled with the appropriate values.
 */
int onenand_scan(struct mtd_info *mtd, int maxchips)
{
2570
	int i;
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
	struct onenand_chip *this = mtd->priv;

	if (!this->read_word)
		this->read_word = onenand_readw;
	if (!this->write_word)
		this->write_word = onenand_writew;

	if (!this->command)
		this->command = onenand_command;
	if (!this->wait)
2581
		onenand_setup_wait(mtd);
2582 2583 2584 2585 2586 2587

	if (!this->read_bufferram)
		this->read_bufferram = onenand_read_bufferram;
	if (!this->write_bufferram)
		this->write_bufferram = onenand_write_bufferram;

2588 2589 2590 2591 2592
	if (!this->block_markbad)
		this->block_markbad = onenand_default_block_markbad;
	if (!this->scan_bbt)
		this->scan_bbt = onenand_default_bbt;

2593 2594 2595
	if (onenand_probe(mtd))
		return -ENXIO;

2596 2597 2598 2599 2600 2601
	/* Set Sync. Burst Read after probing */
	if (this->mmcontrol) {
		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
		this->read_bufferram = onenand_sync_read_bufferram;
	}

2602 2603
	/* Allocate buffers, if necessary */
	if (!this->page_buf) {
2604
		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2605 2606 2607 2608 2609 2610
		if (!this->page_buf) {
			printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
			return -ENOMEM;
		}
		this->options |= ONENAND_PAGEBUF_ALLOC;
	}
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
	if (!this->oob_buf) {
		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
		if (!this->oob_buf) {
			printk(KERN_ERR "onenand_scan(): Can't allocate oob_buf\n");
			if (this->options & ONENAND_PAGEBUF_ALLOC) {
				this->options &= ~ONENAND_PAGEBUF_ALLOC;
				kfree(this->page_buf);
			}
			return -ENOMEM;
		}
		this->options |= ONENAND_OOBBUF_ALLOC;
	}
2623

2624 2625 2626 2627
	this->state = FL_READY;
	init_waitqueue_head(&this->wq);
	spin_lock_init(&this->chip_lock);

2628 2629 2630
	/*
	 * Allow subpage writes up to oobsize.
	 */
2631 2632
	switch (mtd->oobsize) {
	case 64:
2633
		this->ecclayout = &onenand_oob_64;
2634
		mtd->subpage_sft = 2;
2635 2636 2637
		break;

	case 32:
2638
		this->ecclayout = &onenand_oob_32;
2639
		mtd->subpage_sft = 1;
2640 2641 2642 2643 2644
		break;

	default:
		printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
			mtd->oobsize);
2645
		mtd->subpage_sft = 0;
2646
		/* To prevent kernel oops */
2647
		this->ecclayout = &onenand_oob_32;
2648 2649 2650
		break;
	}

2651
	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2652 2653 2654 2655 2656 2657

	/*
	 * The number of bytes available for a client to place data into
	 * the out of band area
	 */
	this->ecclayout->oobavail = 0;
2658 2659
	for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
	    this->ecclayout->oobfree[i].length; i++)
2660 2661
		this->ecclayout->oobavail +=
			this->ecclayout->oobfree[i].length;
V
Vitaly Wool 已提交
2662
	mtd->oobavail = this->ecclayout->oobavail;
2663

2664
	mtd->ecclayout = this->ecclayout;
2665

2666 2667
	/* Fill in remaining MTD driver data */
	mtd->type = MTD_NANDFLASH;
J
Joern Engel 已提交
2668
	mtd->flags = MTD_CAP_NANDFLASH;
2669 2670 2671 2672 2673 2674 2675
	mtd->erase = onenand_erase;
	mtd->point = NULL;
	mtd->unpoint = NULL;
	mtd->read = onenand_read;
	mtd->write = onenand_write;
	mtd->read_oob = onenand_read_oob;
	mtd->write_oob = onenand_write_oob;
2676 2677 2678 2679 2680 2681 2682 2683
#ifdef CONFIG_MTD_ONENAND_OTP
	mtd->get_fact_prot_info = onenand_get_fact_prot_info;
	mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
	mtd->get_user_prot_info = onenand_get_user_prot_info;
	mtd->read_user_prot_reg = onenand_read_user_prot_reg;
	mtd->write_user_prot_reg = onenand_write_user_prot_reg;
	mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
#endif
2684
	mtd->sync = onenand_sync;
K
Kyungmin Park 已提交
2685
	mtd->lock = onenand_lock;
2686
	mtd->unlock = onenand_unlock;
2687 2688
	mtd->suspend = onenand_suspend;
	mtd->resume = onenand_resume;
2689 2690 2691 2692 2693
	mtd->block_isbad = onenand_block_isbad;
	mtd->block_markbad = onenand_block_markbad;
	mtd->owner = THIS_MODULE;

	/* Unlock whole block */
2694
	onenand_unlock_all(mtd);
2695

2696
	return this->scan_bbt(mtd);
2697 2698 2699 2700 2701 2702 2703 2704
}

/**
 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
 * @param mtd		MTD device structure
 */
void onenand_release(struct mtd_info *mtd)
{
2705 2706
	struct onenand_chip *this = mtd->priv;

2707 2708 2709 2710 2711 2712
#ifdef CONFIG_MTD_PARTITIONS
	/* Deregister partitions */
	del_mtd_partitions (mtd);
#endif
	/* Deregister the device */
	del_mtd_device (mtd);
2713 2714

	/* Free bad block table memory, if allocated */
2715 2716 2717
	if (this->bbm) {
		struct bbm_info *bbm = this->bbm;
		kfree(bbm->bbt);
2718
		kfree(this->bbm);
2719
	}
2720
	/* Buffers allocated by onenand_scan */
2721 2722
	if (this->options & ONENAND_PAGEBUF_ALLOC)
		kfree(this->page_buf);
2723 2724
	if (this->options & ONENAND_OOBBUF_ALLOC)
		kfree(this->oob_buf);
2725 2726 2727 2728 2729 2730 2731 2732
}

EXPORT_SYMBOL_GPL(onenand_scan);
EXPORT_SYMBOL_GPL(onenand_release);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
MODULE_DESCRIPTION("Generic OneNAND flash driver code");