dma.c 23.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
* Filename: dma.c
*
*
* Authors: Joshua Morris <josh.h.morris@us.ibm.com>
*	Philip Kelleher <pjk1939@linux.vnet.ibm.com>
*
* (C) Copyright 2013 IBM Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/

J
Jens Axboe 已提交
25
#include <linux/slab.h>
26 27 28 29 30
#include "rsxx_priv.h"

struct rsxx_dma {
	struct list_head	 list;
	u8			 cmd;
31
	unsigned int		 laddr;     /* Logical address */
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
	struct {
		u32		 off;
		u32		 cnt;
	} sub_page;
	dma_addr_t		 dma_addr;
	struct page		 *page;
	unsigned int		 pg_off;    /* Page Offset */
	rsxx_dma_cb		 cb;
	void			 *cb_data;
};

/* This timeout is used to detect a stalled DMA channel */
#define DMA_ACTIVITY_TIMEOUT	msecs_to_jiffies(10000)

struct hw_status {
	u8	status;
	u8	tag;
	__le16	count;
	__le32	_rsvd2;
	__le64	_rsvd3;
} __packed;

enum rsxx_dma_status {
	DMA_SW_ERR    = 0x1,
	DMA_HW_FAULT  = 0x2,
	DMA_CANCELLED = 0x4,
};

struct hw_cmd {
	u8	command;
	u8	tag;
	u8	_rsvd;
	u8	sub_page; /* Bit[0:2]: 512byte offset */
			  /* Bit[4:6]: 512byte count */
	__le32	device_addr;
	__le64	host_addr;
} __packed;

enum rsxx_hw_cmd {
	HW_CMD_BLK_DISCARD	= 0x70,
	HW_CMD_BLK_WRITE	= 0x80,
	HW_CMD_BLK_READ		= 0xC0,
	HW_CMD_BLK_RECON_READ	= 0xE0,
};

enum rsxx_hw_status {
	HW_STATUS_CRC		= 0x01,
	HW_STATUS_HARD_ERR	= 0x02,
	HW_STATUS_SOFT_ERR	= 0x04,
	HW_STATUS_FAULT		= 0x08,
};

#define STATUS_BUFFER_SIZE8     4096
#define COMMAND_BUFFER_SIZE8    4096

static struct kmem_cache *rsxx_dma_pool;

struct dma_tracker {
	int			next_tag;
	struct rsxx_dma	*dma;
};

#define DMA_TRACKER_LIST_SIZE8 (sizeof(struct dma_tracker_list) + \
		(sizeof(struct dma_tracker) * RSXX_MAX_OUTSTANDING_CMDS))

struct dma_tracker_list {
	spinlock_t		lock;
	int			head;
	struct dma_tracker	list[0];
};


/*----------------- Misc Utility Functions -------------------*/
105
static unsigned int rsxx_addr8_to_laddr(u64 addr8, struct rsxx_cardinfo *card)
106 107 108 109 110 111 112 113 114 115
{
	unsigned long long tgt_addr8;

	tgt_addr8 = ((addr8 >> card->_stripe.upper_shift) &
		      card->_stripe.upper_mask) |
		    ((addr8) & card->_stripe.lower_mask);
	do_div(tgt_addr8, RSXX_HW_BLK_SIZE);
	return tgt_addr8;
}

116
static unsigned int rsxx_get_dma_tgt(struct rsxx_cardinfo *card, u64 addr8)
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
{
	unsigned int tgt;

	tgt = (addr8 >> card->_stripe.target_shift) & card->_stripe.target_mask;

	return tgt;
}

static void rsxx_dma_queue_reset(struct rsxx_cardinfo *card)
{
	/* Reset all DMA Command/Status Queues */
	iowrite32(DMA_QUEUE_RESET, card->regmap + RESET);
}

static unsigned int get_dma_size(struct rsxx_dma *dma)
{
	if (dma->sub_page.cnt)
		return dma->sub_page.cnt << 9;
	else
		return RSXX_HW_BLK_SIZE;
}


/*----------------- DMA Tracker -------------------*/
static void set_tracker_dma(struct dma_tracker_list *trackers,
			    int tag,
			    struct rsxx_dma *dma)
{
	trackers->list[tag].dma = dma;
}

static struct rsxx_dma *get_tracker_dma(struct dma_tracker_list *trackers,
					    int tag)
{
	return trackers->list[tag].dma;
}

static int pop_tracker(struct dma_tracker_list *trackers)
{
	int tag;

	spin_lock(&trackers->lock);
	tag = trackers->head;
	if (tag != -1) {
		trackers->head = trackers->list[tag].next_tag;
		trackers->list[tag].next_tag = -1;
	}
	spin_unlock(&trackers->lock);

	return tag;
}

static void push_tracker(struct dma_tracker_list *trackers, int tag)
{
	spin_lock(&trackers->lock);
	trackers->list[tag].next_tag = trackers->head;
	trackers->head = tag;
	trackers->list[tag].dma = NULL;
	spin_unlock(&trackers->lock);
}


/*----------------- Interrupt Coalescing -------------*/
/*
 * Interrupt Coalescing Register Format:
 * Interrupt Timer (64ns units) [15:0]
 * Interrupt Count [24:16]
 * Reserved [31:25]
*/
#define INTR_COAL_LATENCY_MASK       (0x0000ffff)

#define INTR_COAL_COUNT_SHIFT        16
#define INTR_COAL_COUNT_BITS         9
#define INTR_COAL_COUNT_MASK         (((1 << INTR_COAL_COUNT_BITS) - 1) << \
					INTR_COAL_COUNT_SHIFT)
#define INTR_COAL_LATENCY_UNITS_NS   64


static u32 dma_intr_coal_val(u32 mode, u32 count, u32 latency)
{
	u32 latency_units = latency / INTR_COAL_LATENCY_UNITS_NS;

	if (mode == RSXX_INTR_COAL_DISABLED)
		return 0;

	return ((count << INTR_COAL_COUNT_SHIFT) & INTR_COAL_COUNT_MASK) |
			(latency_units & INTR_COAL_LATENCY_MASK);

}

static void dma_intr_coal_auto_tune(struct rsxx_cardinfo *card)
{
	int i;
	u32 q_depth = 0;
	u32 intr_coal;

	if (card->config.data.intr_coal.mode != RSXX_INTR_COAL_AUTO_TUNE)
		return;

	for (i = 0; i < card->n_targets; i++)
		q_depth += atomic_read(&card->ctrl[i].stats.hw_q_depth);

	intr_coal = dma_intr_coal_val(card->config.data.intr_coal.mode,
				      q_depth / 2,
				      card->config.data.intr_coal.latency);
	iowrite32(intr_coal, card->regmap + INTR_COAL);
}

/*----------------- RSXX DMA Handling -------------------*/
static void rsxx_complete_dma(struct rsxx_cardinfo *card,
				  struct rsxx_dma *dma,
				  unsigned int status)
{
	if (status & DMA_SW_ERR)
		printk_ratelimited(KERN_ERR
				   "SW Error in DMA(cmd x%02x, laddr x%08x)\n",
				   dma->cmd, dma->laddr);
	if (status & DMA_HW_FAULT)
		printk_ratelimited(KERN_ERR
				   "HW Fault in DMA(cmd x%02x, laddr x%08x)\n",
				   dma->cmd, dma->laddr);
	if (status & DMA_CANCELLED)
		printk_ratelimited(KERN_ERR
				   "DMA Cancelled(cmd x%02x, laddr x%08x)\n",
				   dma->cmd, dma->laddr);

	if (dma->dma_addr)
		pci_unmap_page(card->dev, dma->dma_addr, get_dma_size(dma),
			       dma->cmd == HW_CMD_BLK_WRITE ?
					   PCI_DMA_TODEVICE :
					   PCI_DMA_FROMDEVICE);

	if (dma->cb)
		dma->cb(card, dma->cb_data, status ? 1 : 0);

	kmem_cache_free(rsxx_dma_pool, dma);
}

static void rsxx_requeue_dma(struct rsxx_dma_ctrl *ctrl,
				 struct rsxx_dma *dma)
{
	/*
	 * Requeued DMAs go to the front of the queue so they are issued
	 * first.
	 */
	spin_lock(&ctrl->queue_lock);
	list_add(&dma->list, &ctrl->queue);
	spin_unlock(&ctrl->queue_lock);
}

static void rsxx_handle_dma_error(struct rsxx_dma_ctrl *ctrl,
				      struct rsxx_dma *dma,
				      u8 hw_st)
{
	unsigned int status = 0;
	int requeue_cmd = 0;

	dev_dbg(CARD_TO_DEV(ctrl->card),
		"Handling DMA error(cmd x%02x, laddr x%08x st:x%02x)\n",
		dma->cmd, dma->laddr, hw_st);

	if (hw_st & HW_STATUS_CRC)
		ctrl->stats.crc_errors++;
	if (hw_st & HW_STATUS_HARD_ERR)
		ctrl->stats.hard_errors++;
	if (hw_st & HW_STATUS_SOFT_ERR)
		ctrl->stats.soft_errors++;

	switch (dma->cmd) {
	case HW_CMD_BLK_READ:
		if (hw_st & (HW_STATUS_CRC | HW_STATUS_HARD_ERR)) {
			if (ctrl->card->scrub_hard) {
				dma->cmd = HW_CMD_BLK_RECON_READ;
				requeue_cmd = 1;
				ctrl->stats.reads_retried++;
			} else {
				status |= DMA_HW_FAULT;
				ctrl->stats.reads_failed++;
			}
		} else if (hw_st & HW_STATUS_FAULT) {
			status |= DMA_HW_FAULT;
			ctrl->stats.reads_failed++;
		}

		break;
	case HW_CMD_BLK_RECON_READ:
		if (hw_st & (HW_STATUS_CRC | HW_STATUS_HARD_ERR)) {
			/* Data could not be reconstructed. */
			status |= DMA_HW_FAULT;
			ctrl->stats.reads_failed++;
		}

		break;
	case HW_CMD_BLK_WRITE:
		status |= DMA_HW_FAULT;
		ctrl->stats.writes_failed++;

		break;
	case HW_CMD_BLK_DISCARD:
		status |= DMA_HW_FAULT;
		ctrl->stats.discards_failed++;

		break;
	default:
		dev_err(CARD_TO_DEV(ctrl->card),
			"Unknown command in DMA!(cmd: x%02x "
			   "laddr x%08x st: x%02x\n",
			   dma->cmd, dma->laddr, hw_st);
		status |= DMA_SW_ERR;

		break;
	}

	if (requeue_cmd)
		rsxx_requeue_dma(ctrl, dma);
	else
		rsxx_complete_dma(ctrl->card, dma, status);
}

static void dma_engine_stalled(unsigned long data)
{
	struct rsxx_dma_ctrl *ctrl = (struct rsxx_dma_ctrl *)data;

	if (atomic_read(&ctrl->stats.hw_q_depth) == 0)
		return;

	if (ctrl->cmd.idx != ioread32(ctrl->regmap + SW_CMD_IDX)) {
		/*
		 * The dma engine was stalled because the SW_CMD_IDX write
		 * was lost. Issue it again to recover.
		 */
		dev_warn(CARD_TO_DEV(ctrl->card),
			"SW_CMD_IDX write was lost, re-writing...\n");
		iowrite32(ctrl->cmd.idx, ctrl->regmap + SW_CMD_IDX);
		mod_timer(&ctrl->activity_timer,
			  jiffies + DMA_ACTIVITY_TIMEOUT);
	} else {
		dev_warn(CARD_TO_DEV(ctrl->card),
			"DMA channel %d has stalled, faulting interface.\n",
			ctrl->id);
		ctrl->card->dma_fault = 1;
	}
}

static void rsxx_issue_dmas(struct work_struct *work)
{
	struct rsxx_dma_ctrl *ctrl;
	struct rsxx_dma *dma;
	int tag;
	int cmds_pending = 0;
	struct hw_cmd *hw_cmd_buf;

	ctrl = container_of(work, struct rsxx_dma_ctrl, issue_dma_work);
	hw_cmd_buf = ctrl->cmd.buf;

	if (unlikely(ctrl->card->halt))
		return;

	while (1) {
		spin_lock(&ctrl->queue_lock);
		if (list_empty(&ctrl->queue)) {
			spin_unlock(&ctrl->queue_lock);
			break;
		}
		spin_unlock(&ctrl->queue_lock);

		tag = pop_tracker(ctrl->trackers);
		if (tag == -1)
			break;

		spin_lock(&ctrl->queue_lock);
		dma = list_entry(ctrl->queue.next, struct rsxx_dma, list);
		list_del(&dma->list);
		ctrl->stats.sw_q_depth--;
		spin_unlock(&ctrl->queue_lock);

		/*
		 * This will catch any DMAs that slipped in right before the
		 * fault, but was queued after all the other DMAs were
		 * cancelled.
		 */
		if (unlikely(ctrl->card->dma_fault)) {
			push_tracker(ctrl->trackers, tag);
			rsxx_complete_dma(ctrl->card, dma, DMA_CANCELLED);
			continue;
		}

		set_tracker_dma(ctrl->trackers, tag, dma);
		hw_cmd_buf[ctrl->cmd.idx].command  = dma->cmd;
		hw_cmd_buf[ctrl->cmd.idx].tag      = tag;
		hw_cmd_buf[ctrl->cmd.idx]._rsvd    = 0;
		hw_cmd_buf[ctrl->cmd.idx].sub_page =
					((dma->sub_page.cnt & 0x7) << 4) |
					 (dma->sub_page.off & 0x7);

		hw_cmd_buf[ctrl->cmd.idx].device_addr =
					cpu_to_le32(dma->laddr);

		hw_cmd_buf[ctrl->cmd.idx].host_addr =
					cpu_to_le64(dma->dma_addr);

		dev_dbg(CARD_TO_DEV(ctrl->card),
			"Issue DMA%d(laddr %d tag %d) to idx %d\n",
			ctrl->id, dma->laddr, tag, ctrl->cmd.idx);

		ctrl->cmd.idx = (ctrl->cmd.idx + 1) & RSXX_CS_IDX_MASK;
		cmds_pending++;

		if (dma->cmd == HW_CMD_BLK_WRITE)
			ctrl->stats.writes_issued++;
		else if (dma->cmd == HW_CMD_BLK_DISCARD)
			ctrl->stats.discards_issued++;
		else
			ctrl->stats.reads_issued++;
	}

	/* Let HW know we've queued commands. */
	if (cmds_pending) {
		atomic_add(cmds_pending, &ctrl->stats.hw_q_depth);
		mod_timer(&ctrl->activity_timer,
			  jiffies + DMA_ACTIVITY_TIMEOUT);
		iowrite32(ctrl->cmd.idx, ctrl->regmap + SW_CMD_IDX);
	}
}

static void rsxx_dma_done(struct work_struct *work)
{
	struct rsxx_dma_ctrl *ctrl;
	struct rsxx_dma *dma;
	unsigned long flags;
	u16 count;
	u8 status;
	u8 tag;
	struct hw_status *hw_st_buf;

	ctrl = container_of(work, struct rsxx_dma_ctrl, dma_done_work);
	hw_st_buf = ctrl->status.buf;

	if (unlikely(ctrl->card->halt) ||
	    unlikely(ctrl->card->dma_fault))
		return;

	count = le16_to_cpu(hw_st_buf[ctrl->status.idx].count);

	while (count == ctrl->e_cnt) {
		/*
		 * The read memory-barrier is necessary to keep aggressive
		 * processors/optimizers (such as the PPC Apple G5) from
		 * reordering the following status-buffer tag & status read
		 * *before* the count read on subsequent iterations of the
		 * loop!
		 */
		rmb();

		status = hw_st_buf[ctrl->status.idx].status;
		tag    = hw_st_buf[ctrl->status.idx].tag;

		dma = get_tracker_dma(ctrl->trackers, tag);
		if (dma == NULL) {
			spin_lock_irqsave(&ctrl->card->irq_lock, flags);
			rsxx_disable_ier(ctrl->card, CR_INTR_DMA_ALL);
			spin_unlock_irqrestore(&ctrl->card->irq_lock, flags);

			dev_err(CARD_TO_DEV(ctrl->card),
				"No tracker for tag %d "
				"(idx %d id %d)\n",
				tag, ctrl->status.idx, ctrl->id);
			return;
		}

		dev_dbg(CARD_TO_DEV(ctrl->card),
			"Completing DMA%d"
			"(laddr x%x tag %d st: x%x cnt: x%04x) from idx %d.\n",
			ctrl->id, dma->laddr, tag, status, count,
			ctrl->status.idx);

		atomic_dec(&ctrl->stats.hw_q_depth);

		mod_timer(&ctrl->activity_timer,
			  jiffies + DMA_ACTIVITY_TIMEOUT);

		if (status)
			rsxx_handle_dma_error(ctrl, dma, status);
		else
			rsxx_complete_dma(ctrl->card, dma, 0);

		push_tracker(ctrl->trackers, tag);

		ctrl->status.idx = (ctrl->status.idx + 1) &
				   RSXX_CS_IDX_MASK;
		ctrl->e_cnt++;

		count = le16_to_cpu(hw_st_buf[ctrl->status.idx].count);
	}

	dma_intr_coal_auto_tune(ctrl->card);

	if (atomic_read(&ctrl->stats.hw_q_depth) == 0)
		del_timer_sync(&ctrl->activity_timer);

	spin_lock_irqsave(&ctrl->card->irq_lock, flags);
	rsxx_enable_ier(ctrl->card, CR_INTR_DMA(ctrl->id));
	spin_unlock_irqrestore(&ctrl->card->irq_lock, flags);

	spin_lock(&ctrl->queue_lock);
	if (ctrl->stats.sw_q_depth)
		queue_work(ctrl->issue_wq, &ctrl->issue_dma_work);
	spin_unlock(&ctrl->queue_lock);
}

static int rsxx_cleanup_dma_queue(struct rsxx_cardinfo *card,
				      struct list_head *q)
{
	struct rsxx_dma *dma;
	struct rsxx_dma *tmp;
	int cnt = 0;

	list_for_each_entry_safe(dma, tmp, q, list) {
		list_del(&dma->list);

		if (dma->dma_addr)
			pci_unmap_page(card->dev, dma->dma_addr,
				       get_dma_size(dma),
				       (dma->cmd == HW_CMD_BLK_WRITE) ?
				       PCI_DMA_TODEVICE :
				       PCI_DMA_FROMDEVICE);
		kmem_cache_free(rsxx_dma_pool, dma);
		cnt++;
	}

	return cnt;
}

static int rsxx_queue_discard(struct rsxx_cardinfo *card,
				  struct list_head *q,
				  unsigned int laddr,
				  rsxx_dma_cb cb,
				  void *cb_data)
{
	struct rsxx_dma *dma;

	dma = kmem_cache_alloc(rsxx_dma_pool, GFP_KERNEL);
	if (!dma)
		return -ENOMEM;

	dma->cmd          = HW_CMD_BLK_DISCARD;
	dma->laddr        = laddr;
	dma->dma_addr     = 0;
	dma->sub_page.off = 0;
	dma->sub_page.cnt = 0;
	dma->page         = NULL;
	dma->pg_off       = 0;
	dma->cb	          = cb;
	dma->cb_data      = cb_data;

	dev_dbg(CARD_TO_DEV(card), "Queuing[D] laddr %x\n", dma->laddr);

	list_add_tail(&dma->list, q);

	return 0;
}

static int rsxx_queue_dma(struct rsxx_cardinfo *card,
			      struct list_head *q,
			      int dir,
			      unsigned int dma_off,
			      unsigned int dma_len,
			      unsigned int laddr,
			      struct page *page,
			      unsigned int pg_off,
			      rsxx_dma_cb cb,
			      void *cb_data)
{
	struct rsxx_dma *dma;

	dma = kmem_cache_alloc(rsxx_dma_pool, GFP_KERNEL);
	if (!dma)
		return -ENOMEM;

	dma->dma_addr = pci_map_page(card->dev, page, pg_off, dma_len,
				     dir ? PCI_DMA_TODEVICE :
				     PCI_DMA_FROMDEVICE);
	if (!dma->dma_addr) {
		kmem_cache_free(rsxx_dma_pool, dma);
		return -ENOMEM;
	}

	dma->cmd          = dir ? HW_CMD_BLK_WRITE : HW_CMD_BLK_READ;
	dma->laddr        = laddr;
	dma->sub_page.off = (dma_off >> 9);
	dma->sub_page.cnt = (dma_len >> 9);
	dma->page         = page;
	dma->pg_off       = pg_off;
	dma->cb	          = cb;
	dma->cb_data      = cb_data;

	dev_dbg(CARD_TO_DEV(card),
		"Queuing[%c] laddr %x off %d cnt %d page %p pg_off %d\n",
		dir ? 'W' : 'R', dma->laddr, dma->sub_page.off,
		dma->sub_page.cnt, dma->page, dma->pg_off);

	/* Queue the DMA */
	list_add_tail(&dma->list, q);

	return 0;
}

int rsxx_dma_queue_bio(struct rsxx_cardinfo *card,
			   struct bio *bio,
			   atomic_t *n_dmas,
			   rsxx_dma_cb cb,
			   void *cb_data)
{
	struct list_head dma_list[RSXX_MAX_TARGETS];
	struct bio_vec *bvec;
	unsigned long long addr8;
	unsigned int laddr;
	unsigned int bv_len;
	unsigned int bv_off;
	unsigned int dma_off;
	unsigned int dma_len;
	int dma_cnt[RSXX_MAX_TARGETS];
	int tgt;
	int st;
	int i;

	addr8 = bio->bi_sector << 9; /* sectors are 512 bytes */
	atomic_set(n_dmas, 0);

	for (i = 0; i < card->n_targets; i++) {
		INIT_LIST_HEAD(&dma_list[i]);
		dma_cnt[i] = 0;
	}

	if (bio->bi_rw & REQ_DISCARD) {
		bv_len = bio->bi_size;

		while (bv_len > 0) {
			tgt   = rsxx_get_dma_tgt(card, addr8);
			laddr = rsxx_addr8_to_laddr(addr8, card);

			st = rsxx_queue_discard(card, &dma_list[tgt], laddr,
						    cb, cb_data);
			if (st)
				goto bvec_err;

			dma_cnt[tgt]++;
			atomic_inc(n_dmas);
			addr8  += RSXX_HW_BLK_SIZE;
			bv_len -= RSXX_HW_BLK_SIZE;
		}
	} else {
		bio_for_each_segment(bvec, bio, i) {
			bv_len = bvec->bv_len;
			bv_off = bvec->bv_offset;

			while (bv_len > 0) {
				tgt   = rsxx_get_dma_tgt(card, addr8);
				laddr = rsxx_addr8_to_laddr(addr8, card);
				dma_off = addr8 & RSXX_HW_BLK_MASK;
				dma_len = min(bv_len,
					      RSXX_HW_BLK_SIZE - dma_off);

				st = rsxx_queue_dma(card, &dma_list[tgt],
							bio_data_dir(bio),
							dma_off, dma_len,
							laddr, bvec->bv_page,
							bv_off, cb, cb_data);
				if (st)
					goto bvec_err;

				dma_cnt[tgt]++;
				atomic_inc(n_dmas);
				addr8  += dma_len;
				bv_off += dma_len;
				bv_len -= dma_len;
			}
		}
	}

	for (i = 0; i < card->n_targets; i++) {
		if (!list_empty(&dma_list[i])) {
			spin_lock(&card->ctrl[i].queue_lock);
			card->ctrl[i].stats.sw_q_depth += dma_cnt[i];
			list_splice_tail(&dma_list[i], &card->ctrl[i].queue);
			spin_unlock(&card->ctrl[i].queue_lock);

			queue_work(card->ctrl[i].issue_wq,
				   &card->ctrl[i].issue_dma_work);
		}
	}

	return 0;

bvec_err:
	for (i = 0; i < card->n_targets; i++)
		rsxx_cleanup_dma_queue(card, &dma_list[i]);

	return st;
}


/*----------------- DMA Engine Initialization & Setup -------------------*/
static int rsxx_dma_ctrl_init(struct pci_dev *dev,
				  struct rsxx_dma_ctrl *ctrl)
{
	int i;

	memset(&ctrl->stats, 0, sizeof(ctrl->stats));

	ctrl->status.buf = pci_alloc_consistent(dev, STATUS_BUFFER_SIZE8,
						&ctrl->status.dma_addr);
	ctrl->cmd.buf = pci_alloc_consistent(dev, COMMAND_BUFFER_SIZE8,
					     &ctrl->cmd.dma_addr);
	if (ctrl->status.buf == NULL || ctrl->cmd.buf == NULL)
		return -ENOMEM;

	ctrl->trackers = vmalloc(DMA_TRACKER_LIST_SIZE8);
	if (!ctrl->trackers)
		return -ENOMEM;

	ctrl->trackers->head = 0;
	for (i = 0; i < RSXX_MAX_OUTSTANDING_CMDS; i++) {
		ctrl->trackers->list[i].next_tag = i + 1;
		ctrl->trackers->list[i].dma = NULL;
	}
	ctrl->trackers->list[RSXX_MAX_OUTSTANDING_CMDS-1].next_tag = -1;
	spin_lock_init(&ctrl->trackers->lock);

	spin_lock_init(&ctrl->queue_lock);
	INIT_LIST_HEAD(&ctrl->queue);

	setup_timer(&ctrl->activity_timer, dma_engine_stalled,
750
					(unsigned long)ctrl);
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793

	ctrl->issue_wq = alloc_ordered_workqueue(DRIVER_NAME"_issue", 0);
	if (!ctrl->issue_wq)
		return -ENOMEM;

	ctrl->done_wq = alloc_ordered_workqueue(DRIVER_NAME"_done", 0);
	if (!ctrl->done_wq)
		return -ENOMEM;

	INIT_WORK(&ctrl->issue_dma_work, rsxx_issue_dmas);
	INIT_WORK(&ctrl->dma_done_work, rsxx_dma_done);

	memset(ctrl->status.buf, 0xac, STATUS_BUFFER_SIZE8);
	iowrite32(lower_32_bits(ctrl->status.dma_addr),
		  ctrl->regmap + SB_ADD_LO);
	iowrite32(upper_32_bits(ctrl->status.dma_addr),
		  ctrl->regmap + SB_ADD_HI);

	memset(ctrl->cmd.buf, 0x83, COMMAND_BUFFER_SIZE8);
	iowrite32(lower_32_bits(ctrl->cmd.dma_addr), ctrl->regmap + CB_ADD_LO);
	iowrite32(upper_32_bits(ctrl->cmd.dma_addr), ctrl->regmap + CB_ADD_HI);

	ctrl->status.idx = ioread32(ctrl->regmap + HW_STATUS_CNT);
	if (ctrl->status.idx > RSXX_MAX_OUTSTANDING_CMDS) {
		dev_crit(&dev->dev, "Failed reading status cnt x%x\n",
			 ctrl->status.idx);
		return -EINVAL;
	}
	iowrite32(ctrl->status.idx, ctrl->regmap + HW_STATUS_CNT);
	iowrite32(ctrl->status.idx, ctrl->regmap + SW_STATUS_CNT);

	ctrl->cmd.idx = ioread32(ctrl->regmap + HW_CMD_IDX);
	if (ctrl->cmd.idx > RSXX_MAX_OUTSTANDING_CMDS) {
		dev_crit(&dev->dev, "Failed reading cmd cnt x%x\n",
			 ctrl->status.idx);
		return -EINVAL;
	}
	iowrite32(ctrl->cmd.idx, ctrl->regmap + HW_CMD_IDX);
	iowrite32(ctrl->cmd.idx, ctrl->regmap + SW_CMD_IDX);

	return 0;
}

794
static int rsxx_dma_stripe_setup(struct rsxx_cardinfo *card,
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
			      unsigned int stripe_size8)
{
	if (!is_power_of_2(stripe_size8)) {
		dev_err(CARD_TO_DEV(card),
			"stripe_size is NOT a power of 2!\n");
		return -EINVAL;
	}

	card->_stripe.lower_mask = stripe_size8 - 1;

	card->_stripe.upper_mask  = ~(card->_stripe.lower_mask);
	card->_stripe.upper_shift = ffs(card->n_targets) - 1;

	card->_stripe.target_mask = card->n_targets - 1;
	card->_stripe.target_shift = ffs(stripe_size8) - 1;

	dev_dbg(CARD_TO_DEV(card), "_stripe.lower_mask   = x%016llx\n",
		card->_stripe.lower_mask);
	dev_dbg(CARD_TO_DEV(card), "_stripe.upper_shift  = x%016llx\n",
		card->_stripe.upper_shift);
	dev_dbg(CARD_TO_DEV(card), "_stripe.upper_mask   = x%016llx\n",
		card->_stripe.upper_mask);
	dev_dbg(CARD_TO_DEV(card), "_stripe.target_mask  = x%016llx\n",
		card->_stripe.target_mask);
	dev_dbg(CARD_TO_DEV(card), "_stripe.target_shift = x%016llx\n",
		card->_stripe.target_shift);

	return 0;
}

825
static int rsxx_dma_configure(struct rsxx_cardinfo *card)
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
{
	u32 intr_coal;

	intr_coal = dma_intr_coal_val(card->config.data.intr_coal.mode,
				      card->config.data.intr_coal.count,
				      card->config.data.intr_coal.latency);
	iowrite32(intr_coal, card->regmap + INTR_COAL);

	return rsxx_dma_stripe_setup(card, card->config.data.stripe_size);
}

int rsxx_dma_setup(struct rsxx_cardinfo *card)
{
	unsigned long flags;
	int st;
	int i;

	dev_info(CARD_TO_DEV(card),
		"Initializing %d DMA targets\n",
		card->n_targets);

	/* Regmap is divided up into 4K chunks. One for each DMA channel */
	for (i = 0; i < card->n_targets; i++)
		card->ctrl[i].regmap = card->regmap + (i * 4096);

	card->dma_fault = 0;

	/* Reset the DMA queues */
	rsxx_dma_queue_reset(card);

	/************* Setup DMA Control *************/
	for (i = 0; i < card->n_targets; i++) {
		st = rsxx_dma_ctrl_init(card->dev, &card->ctrl[i]);
		if (st)
			goto failed_dma_setup;

		card->ctrl[i].card = card;
		card->ctrl[i].id = i;
	}

	card->scrub_hard = 1;

	if (card->config_valid)
		rsxx_dma_configure(card);

	/* Enable the interrupts after all setup has completed. */
	for (i = 0; i < card->n_targets; i++) {
		spin_lock_irqsave(&card->irq_lock, flags);
		rsxx_enable_ier_and_isr(card, CR_INTR_DMA(i));
		spin_unlock_irqrestore(&card->irq_lock, flags);
	}

	return 0;

failed_dma_setup:
	for (i = 0; i < card->n_targets; i++) {
		struct rsxx_dma_ctrl *ctrl = &card->ctrl[i];

		if (ctrl->issue_wq) {
			destroy_workqueue(ctrl->issue_wq);
			ctrl->issue_wq = NULL;
		}

		if (ctrl->done_wq) {
			destroy_workqueue(ctrl->done_wq);
			ctrl->done_wq = NULL;
		}

		if (ctrl->trackers)
			vfree(ctrl->trackers);

		if (ctrl->status.buf)
			pci_free_consistent(card->dev, STATUS_BUFFER_SIZE8,
					    ctrl->status.buf,
					    ctrl->status.dma_addr);
		if (ctrl->cmd.buf)
			pci_free_consistent(card->dev, COMMAND_BUFFER_SIZE8,
					    ctrl->cmd.buf, ctrl->cmd.dma_addr);
	}

	return st;
}


void rsxx_dma_destroy(struct rsxx_cardinfo *card)
{
	struct rsxx_dma_ctrl *ctrl;
	struct rsxx_dma *dma;
	int i, j;
	int cnt = 0;

	for (i = 0; i < card->n_targets; i++) {
		ctrl = &card->ctrl[i];

		if (ctrl->issue_wq) {
			destroy_workqueue(ctrl->issue_wq);
			ctrl->issue_wq = NULL;
		}

		if (ctrl->done_wq) {
			destroy_workqueue(ctrl->done_wq);
			ctrl->done_wq = NULL;
		}

		if (timer_pending(&ctrl->activity_timer))
			del_timer_sync(&ctrl->activity_timer);

		/* Clean up the DMA queue */
		spin_lock(&ctrl->queue_lock);
		cnt = rsxx_cleanup_dma_queue(card, &ctrl->queue);
		spin_unlock(&ctrl->queue_lock);

		if (cnt)
			dev_info(CARD_TO_DEV(card),
				"Freed %d queued DMAs on channel %d\n",
				cnt, i);

		/* Clean up issued DMAs */
		for (j = 0; j < RSXX_MAX_OUTSTANDING_CMDS; j++) {
			dma = get_tracker_dma(ctrl->trackers, j);
			if (dma) {
				pci_unmap_page(card->dev, dma->dma_addr,
					       get_dma_size(dma),
					       (dma->cmd == HW_CMD_BLK_WRITE) ?
					       PCI_DMA_TODEVICE :
					       PCI_DMA_FROMDEVICE);
				kmem_cache_free(rsxx_dma_pool, dma);
				cnt++;
			}
		}

		if (cnt)
			dev_info(CARD_TO_DEV(card),
				"Freed %d pending DMAs on channel %d\n",
				cnt, i);

		vfree(ctrl->trackers);

		pci_free_consistent(card->dev, STATUS_BUFFER_SIZE8,
				    ctrl->status.buf, ctrl->status.dma_addr);
		pci_free_consistent(card->dev, COMMAND_BUFFER_SIZE8,
				    ctrl->cmd.buf, ctrl->cmd.dma_addr);
	}
}


int rsxx_dma_init(void)
{
	rsxx_dma_pool = KMEM_CACHE(rsxx_dma, SLAB_HWCACHE_ALIGN);
	if (!rsxx_dma_pool)
		return -ENOMEM;

	return 0;
}


void rsxx_dma_cleanup(void)
{
	kmem_cache_destroy(rsxx_dma_pool);
}