circular-buffers.txt 8.2 KB
Newer Older
1 2 3
================
Circular Buffers
================
4

5 6
:Author: David Howells <dhowells@redhat.com>
:Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22


Linux provides a number of features that can be used to implement circular
buffering.  There are two sets of such features:

 (1) Convenience functions for determining information about power-of-2 sized
     buffers.

 (2) Memory barriers for when the producer and the consumer of objects in the
     buffer don't want to share a lock.

To use these facilities, as discussed below, there needs to be just one
producer and just one consumer.  It is possible to handle multiple producers by
serialising them, and to handle multiple consumers by serialising them.


23
.. Contents:
24 25 26 27 28 29 30 31 32 33

 (*) What is a circular buffer?

 (*) Measuring power-of-2 buffers.

 (*) Using memory barriers with circular buffers.
     - The producer.
     - The consumer.


34 35

What is a circular buffer?
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
==========================

First of all, what is a circular buffer?  A circular buffer is a buffer of
fixed, finite size into which there are two indices:

 (1) A 'head' index - the point at which the producer inserts items into the
     buffer.

 (2) A 'tail' index - the point at which the consumer finds the next item in
     the buffer.

Typically when the tail pointer is equal to the head pointer, the buffer is
empty; and the buffer is full when the head pointer is one less than the tail
pointer.

The head index is incremented when items are added, and the tail index when
items are removed.  The tail index should never jump the head index, and both
indices should be wrapped to 0 when they reach the end of the buffer, thus
allowing an infinite amount of data to flow through the buffer.

Typically, items will all be of the same unit size, but this isn't strictly
required to use the techniques below.  The indices can be increased by more
than 1 if multiple items or variable-sized items are to be included in the
buffer, provided that neither index overtakes the other.  The implementer must
be careful, however, as a region more than one unit in size may wrap the end of
the buffer and be broken into two segments.

63
Measuring power-of-2 buffers
64 65 66 67 68 69 70 71
============================

Calculation of the occupancy or the remaining capacity of an arbitrarily sized
circular buffer would normally be a slow operation, requiring the use of a
modulus (divide) instruction.  However, if the buffer is of a power-of-2 size,
then a much quicker bitwise-AND instruction can be used instead.

Linux provides a set of macros for handling power-of-2 circular buffers.  These
72
can be made use of by::
73 74 75 76 77

	#include <linux/circ_buf.h>

The macros are:

78
 (#) Measure the remaining capacity of a buffer::
79 80 81 82 83 84 85

	CIRC_SPACE(head_index, tail_index, buffer_size);

     This returns the amount of space left in the buffer[1] into which items
     can be inserted.


86
 (#) Measure the maximum consecutive immediate space in a buffer::
87 88 89 90 91 92 93 94

	CIRC_SPACE_TO_END(head_index, tail_index, buffer_size);

     This returns the amount of consecutive space left in the buffer[1] into
     which items can be immediately inserted without having to wrap back to the
     beginning of the buffer.


95
 (#) Measure the occupancy of a buffer::
96 97 98 99 100 101

	CIRC_CNT(head_index, tail_index, buffer_size);

     This returns the number of items currently occupying a buffer[2].


102
 (#) Measure the non-wrapping occupancy of a buffer::
103 104 105 106 107 108 109 110 111 112

	CIRC_CNT_TO_END(head_index, tail_index, buffer_size);

     This returns the number of consecutive items[2] that can be extracted from
     the buffer without having to wrap back to the beginning of the buffer.


Each of these macros will nominally return a value between 0 and buffer_size-1,
however:

113
 (1) CIRC_SPACE*() are intended to be used in the producer.  To the producer
114 115 116 117 118 119 120
     they will return a lower bound as the producer controls the head index,
     but the consumer may still be depleting the buffer on another CPU and
     moving the tail index.

     To the consumer it will show an upper bound as the producer may be busy
     depleting the space.

121
 (2) CIRC_CNT*() are intended to be used in the consumer.  To the consumer they
122 123 124 125 126 127 128
     will return a lower bound as the consumer controls the tail index, but the
     producer may still be filling the buffer on another CPU and moving the
     head index.

     To the producer it will show an upper bound as the consumer may be busy
     emptying the buffer.

129
 (3) To a third party, the order in which the writes to the indices by the
130 131 132 133
     producer and consumer become visible cannot be guaranteed as they are
     independent and may be made on different CPUs - so the result in such a
     situation will merely be a guess, and may even be negative.

134
Using memory barriers with circular buffers
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
===========================================

By using memory barriers in conjunction with circular buffers, you can avoid
the need to:

 (1) use a single lock to govern access to both ends of the buffer, thus
     allowing the buffer to be filled and emptied at the same time; and

 (2) use atomic counter operations.

There are two sides to this: the producer that fills the buffer, and the
consumer that empties it.  Only one thing should be filling a buffer at any one
time, and only one thing should be emptying a buffer at any one time, but the
two sides can operate simultaneously.


151
The producer
152 153
------------

154
The producer will look something like this::
155 156 157 158

	spin_lock(&producer_lock);

	unsigned long head = buffer->head;
159
	/* The spin_unlock() and next spin_lock() provide needed ordering. */
160
	unsigned long tail = READ_ONCE(buffer->tail);
161 162 163 164 165 166 167

	if (CIRC_SPACE(head, tail, buffer->size) >= 1) {
		/* insert one item into the buffer */
		struct item *item = buffer[head];

		produce_item(item);

168 169
		smp_store_release(buffer->head,
				  (head + 1) & (buffer->size - 1));
170 171 172 173 174 175 176 177 178 179 180 181

		/* wake_up() will make sure that the head is committed before
		 * waking anyone up */
		wake_up(consumer);
	}

	spin_unlock(&producer_lock);

This will instruct the CPU that the contents of the new item must be written
before the head index makes it available to the consumer and then instructs the
CPU that the revised head index must be written before the consumer is woken.

182 183 184 185 186 187 188 189
Note that wake_up() does not guarantee any sort of barrier unless something
is actually awakened.  We therefore cannot rely on it for ordering.  However,
there is always one element of the array left empty.  Therefore, the
producer must produce two elements before it could possibly corrupt the
element currently being read by the consumer.  Therefore, the unlock-lock
pair between consecutive invocations of the consumer provides the necessary
ordering between the read of the index indicating that the consumer has
vacated a given element and the write by the producer to that same element.
190 191


192
The Consumer
193 194
------------

195
The consumer will look something like this::
196 197 198

	spin_lock(&consumer_lock);

199 200
	/* Read index before reading contents at that index. */
	unsigned long head = smp_load_acquire(buffer->head);
201 202 203 204 205 206 207 208 209
	unsigned long tail = buffer->tail;

	if (CIRC_CNT(head, tail, buffer->size) >= 1) {

		/* extract one item from the buffer */
		struct item *item = buffer[tail];

		consume_item(item);

210 211 212
		/* Finish reading descriptor before incrementing tail. */
		smp_store_release(buffer->tail,
				  (tail + 1) & (buffer->size - 1));
213 214 215 216 217 218 219 220
	}

	spin_unlock(&consumer_lock);

This will instruct the CPU to make sure the index is up to date before reading
the new item, and then it shall make sure the CPU has finished reading the item
before it writes the new tail pointer, which will erase the item.

221
Note the use of READ_ONCE() and smp_load_acquire() to read the
222
opposition index.  This prevents the compiler from discarding and
223
reloading its cached value.  This isn't strictly needed if you can
224 225 226 227 228 229 230
be sure that the opposition index will _only_ be used the once.
The smp_load_acquire() additionally forces the CPU to order against
subsequent memory references.  Similarly, smp_store_release() is used
in both algorithms to write the thread's index.  This documents the
fact that we are writing to something that can be read concurrently,
prevents the compiler from tearing the store, and enforces ordering
against previous accesses.
231 232


233
Further reading
234 235 236 237
===============

See also Documentation/memory-barriers.txt for a description of Linux's memory
barrier facilities.