file.c 44.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
/*
 * This file is part of UBIFS.
 *
 * Copyright (C) 2006-2008 Nokia Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 51
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 *
 * Authors: Artem Bityutskiy (Битюцкий Артём)
 *          Adrian Hunter
 */

/*
 * This file implements VFS file and inode operations of regular files, device
 * nodes and symlinks as well as address space operations.
 *
 * UBIFS uses 2 page flags: PG_private and PG_checked. PG_private is set if the
 * page is dirty and is used for budgeting purposes - dirty pages should not be
 * budgeted. The PG_checked flag is set if full budgeting is required for the
 * page e.g., when it corresponds to a file hole or it is just beyond the file
 * size. The budgeting is done in 'ubifs_write_begin()', because it is OK to
 * fail in this function, and the budget is released in 'ubifs_write_end()'. So
 * the PG_private and PG_checked flags carry the information about how the page
 * was budgeted, to make it possible to release the budget properly.
 *
 * A thing to keep in mind: inode's 'i_mutex' is locked in most VFS operations
 * we implement. However, this is not true for '->writepage()', which might be
 * called with 'i_mutex' unlocked. For example, when pdflush is performing
 * write-back, it calls 'writepage()' with unlocked 'i_mutex', although the
 * inode has 'I_LOCK' flag in this case. At "normal" work-paths 'i_mutex' is
 * locked in '->writepage', e.g. in "sys_write -> alloc_pages -> direct reclaim
 * path'. So, in '->writepage()' we are only guaranteed that the page is
 * locked.
 *
 * Similarly, 'i_mutex' does not have to be locked in readpage(), e.g.,
 * readahead path does not have it locked ("sys_read -> generic_file_aio_read
 * -> ondemand_readahead -> readpage"). In case of readahead, 'I_LOCK' flag is
 * not set as well. However, UBIFS disables readahead.
 *
 * This, for example means that there might be 2 concurrent '->writepage()'
 * calls for the same inode, but different inode dirty pages.
 */

#include "ubifs.h"
#include <linux/mount.h>
56
#include <linux/namei.h>
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

static int read_block(struct inode *inode, void *addr, unsigned int block,
		      struct ubifs_data_node *dn)
{
	struct ubifs_info *c = inode->i_sb->s_fs_info;
	int err, len, out_len;
	union ubifs_key key;
	unsigned int dlen;

	data_key_init(c, &key, inode->i_ino, block);
	err = ubifs_tnc_lookup(c, &key, dn);
	if (err) {
		if (err == -ENOENT)
			/* Not found, so it must be a hole */
			memset(addr, 0, UBIFS_BLOCK_SIZE);
		return err;
	}

75
	ubifs_assert(le64_to_cpu(dn->ch.sqnum) > ubifs_inode(inode)->creat_sqnum);
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

	len = le32_to_cpu(dn->size);
	if (len <= 0 || len > UBIFS_BLOCK_SIZE)
		goto dump;

	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
	out_len = UBIFS_BLOCK_SIZE;
	err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
			       le16_to_cpu(dn->compr_type));
	if (err || len != out_len)
		goto dump;

	/*
	 * Data length can be less than a full block, even for blocks that are
	 * not the last in the file (e.g., as a result of making a hole and
	 * appending data). Ensure that the remainder is zeroed out.
	 */
	if (len < UBIFS_BLOCK_SIZE)
		memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);

	return 0;

dump:
	ubifs_err("bad data node (block %u, inode %lu)",
		  block, inode->i_ino);
	dbg_dump_node(c, dn);
	return -EINVAL;
}

static int do_readpage(struct page *page)
{
	void *addr;
	int err = 0, i;
	unsigned int block, beyond;
	struct ubifs_data_node *dn;
	struct inode *inode = page->mapping->host;
	loff_t i_size = i_size_read(inode);

	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
		inode->i_ino, page->index, i_size, page->flags);
	ubifs_assert(!PageChecked(page));
	ubifs_assert(!PagePrivate(page));

	addr = kmap(page);

	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
	beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
	if (block >= beyond) {
		/* Reading beyond inode */
		SetPageChecked(page);
		memset(addr, 0, PAGE_CACHE_SIZE);
		goto out;
	}

	dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
	if (!dn) {
		err = -ENOMEM;
		goto error;
	}

	i = 0;
	while (1) {
		int ret;

		if (block >= beyond) {
			/* Reading beyond inode */
			err = -ENOENT;
			memset(addr, 0, UBIFS_BLOCK_SIZE);
		} else {
			ret = read_block(inode, addr, block, dn);
			if (ret) {
				err = ret;
				if (err != -ENOENT)
					break;
150 151 152 153 154 155
			} else if (block + 1 == beyond) {
				int dlen = le32_to_cpu(dn->size);
				int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);

				if (ilen && ilen < dlen)
					memset(addr + ilen, 0, dlen - ilen);
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
			}
		}
		if (++i >= UBIFS_BLOCKS_PER_PAGE)
			break;
		block += 1;
		addr += UBIFS_BLOCK_SIZE;
	}
	if (err) {
		if (err == -ENOENT) {
			/* Not found, so it must be a hole */
			SetPageChecked(page);
			dbg_gen("hole");
			goto out_free;
		}
		ubifs_err("cannot read page %lu of inode %lu, error %d",
			  page->index, inode->i_ino, err);
		goto error;
	}

out_free:
	kfree(dn);
out:
	SetPageUptodate(page);
	ClearPageError(page);
	flush_dcache_page(page);
	kunmap(page);
	return 0;

error:
	kfree(dn);
	ClearPageUptodate(page);
	SetPageError(page);
	flush_dcache_page(page);
	kunmap(page);
	return err;
}

/**
 * release_new_page_budget - release budget of a new page.
 * @c: UBIFS file-system description object
 *
 * This is a helper function which releases budget corresponding to the budget
 * of one new page of data.
 */
static void release_new_page_budget(struct ubifs_info *c)
{
	struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };

	ubifs_release_budget(c, &req);
}

/**
 * release_existing_page_budget - release budget of an existing page.
 * @c: UBIFS file-system description object
 *
 * This is a helper function which releases budget corresponding to the budget
 * of changing one one page of data which already exists on the flash media.
 */
static void release_existing_page_budget(struct ubifs_info *c)
{
	struct ubifs_budget_req req = { .dd_growth = c->page_budget};

	ubifs_release_budget(c, &req);
}

static int write_begin_slow(struct address_space *mapping,
			    loff_t pos, unsigned len, struct page **pagep)
{
	struct inode *inode = mapping->host;
	struct ubifs_info *c = inode->i_sb->s_fs_info;
	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
	struct ubifs_budget_req req = { .new_page = 1 };
	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
	struct page *page;

	dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
		inode->i_ino, pos, len, inode->i_size);

	/*
	 * At the slow path we have to budget before locking the page, because
	 * budgeting may force write-back, which would wait on locked pages and
	 * deadlock if we had the page locked. At this point we do not know
	 * anything about the page, so assume that this is a new page which is
	 * written to a hole. This corresponds to largest budget. Later the
	 * budget will be amended if this is not true.
	 */
	if (appending)
		/* We are appending data, budget for inode change */
		req.dirtied_ino = 1;

	err = ubifs_budget_space(c, &req);
	if (unlikely(err))
		return err;

	page = __grab_cache_page(mapping, index);
	if (unlikely(!page)) {
		ubifs_release_budget(c, &req);
		return -ENOMEM;
	}

	if (!PageUptodate(page)) {
		if (!(pos & PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
			SetPageChecked(page);
		else {
			err = do_readpage(page);
			if (err) {
				unlock_page(page);
				page_cache_release(page);
				return err;
			}
		}

		SetPageUptodate(page);
		ClearPageError(page);
	}

	if (PagePrivate(page))
		/*
		 * The page is dirty, which means it was budgeted twice:
		 *   o first time the budget was allocated by the task which
		 *     made the page dirty and set the PG_private flag;
		 *   o and then we budgeted for it for the second time at the
		 *     very beginning of this function.
		 *
		 * So what we have to do is to release the page budget we
		 * allocated.
		 */
		release_new_page_budget(c);
	else if (!PageChecked(page))
		/*
		 * We are changing a page which already exists on the media.
		 * This means that changing the page does not make the amount
		 * of indexing information larger, and this part of the budget
		 * which we have already acquired may be released.
		 */
		ubifs_convert_page_budget(c);

	if (appending) {
		struct ubifs_inode *ui = ubifs_inode(inode);

		/*
		 * 'ubifs_write_end()' is optimized from the fast-path part of
		 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
		 * if data is appended.
		 */
		mutex_lock(&ui->ui_mutex);
		if (ui->dirty)
			/*
			 * The inode is dirty already, so we may free the
			 * budget we allocated.
			 */
			ubifs_release_dirty_inode_budget(c, ui);
	}

	*pagep = page;
	return 0;
}

/**
 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
 * @c: UBIFS file-system description object
 * @page: page to allocate budget for
 * @ui: UBIFS inode object the page belongs to
 * @appending: non-zero if the page is appended
 *
 * This is a helper function for 'ubifs_write_begin()' which allocates budget
 * for the operation. The budget is allocated differently depending on whether
 * this is appending, whether the page is dirty or not, and so on. This
 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
 * in case of success and %-ENOSPC in case of failure.
 */
static int allocate_budget(struct ubifs_info *c, struct page *page,
			   struct ubifs_inode *ui, int appending)
{
	struct ubifs_budget_req req = { .fast = 1 };

	if (PagePrivate(page)) {
		if (!appending)
			/*
			 * The page is dirty and we are not appending, which
			 * means no budget is needed at all.
			 */
			return 0;

		mutex_lock(&ui->ui_mutex);
		if (ui->dirty)
			/*
			 * The page is dirty and we are appending, so the inode
			 * has to be marked as dirty. However, it is already
			 * dirty, so we do not need any budget. We may return,
			 * but @ui->ui_mutex hast to be left locked because we
			 * should prevent write-back from flushing the inode
			 * and freeing the budget. The lock will be released in
			 * 'ubifs_write_end()'.
			 */
			return 0;

		/*
		 * The page is dirty, we are appending, the inode is clean, so
		 * we need to budget the inode change.
		 */
		req.dirtied_ino = 1;
	} else {
		if (PageChecked(page))
			/*
			 * The page corresponds to a hole and does not
			 * exist on the media. So changing it makes
			 * make the amount of indexing information
			 * larger, and we have to budget for a new
			 * page.
			 */
			req.new_page = 1;
		else
			/*
			 * Not a hole, the change will not add any new
			 * indexing information, budget for page
			 * change.
			 */
			req.dirtied_page = 1;

		if (appending) {
			mutex_lock(&ui->ui_mutex);
			if (!ui->dirty)
				/*
				 * The inode is clean but we will have to mark
				 * it as dirty because we are appending. This
				 * needs a budget.
				 */
				req.dirtied_ino = 1;
		}
	}

	return ubifs_budget_space(c, &req);
}

/*
 * This function is called when a page of data is going to be written. Since
 * the page of data will not necessarily go to the flash straight away, UBIFS
 * has to reserve space on the media for it, which is done by means of
 * budgeting.
 *
 * This is the hot-path of the file-system and we are trying to optimize it as
 * much as possible. For this reasons it is split on 2 parts - slow and fast.
 *
 * There many budgeting cases:
 *     o a new page is appended - we have to budget for a new page and for
 *       changing the inode; however, if the inode is already dirty, there is
 *       no need to budget for it;
 *     o an existing clean page is changed - we have budget for it; if the page
 *       does not exist on the media (a hole), we have to budget for a new
 *       page; otherwise, we may budget for changing an existing page; the
 *       difference between these cases is that changing an existing page does
 *       not introduce anything new to the FS indexing information, so it does
 *       not grow, and smaller budget is acquired in this case;
 *     o an existing dirty page is changed - no need to budget at all, because
 *       the page budget has been acquired by earlier, when the page has been
 *       marked dirty.
 *
 * UBIFS budgeting sub-system may force write-back if it thinks there is no
 * space to reserve. This imposes some locking restrictions and makes it
 * impossible to take into account the above cases, and makes it impossible to
 * optimize budgeting.
 *
 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
 * there is a plenty of flash space and the budget will be acquired quickly,
 * without forcing write-back. The slow path does not make this assumption.
 */
static int ubifs_write_begin(struct file *file, struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned flags,
			     struct page **pagep, void **fsdata)
{
	struct inode *inode = mapping->host;
	struct ubifs_info *c = inode->i_sb->s_fs_info;
	struct ubifs_inode *ui = ubifs_inode(inode);
	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
	struct page *page;


	ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);

	if (unlikely(c->ro_media))
		return -EROFS;

	/* Try out the fast-path part first */
	page = __grab_cache_page(mapping, index);
	if (unlikely(!page))
		return -ENOMEM;

	if (!PageUptodate(page)) {
		/* The page is not loaded from the flash */
		if (!(pos & PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
			/*
			 * We change whole page so no need to load it. But we
			 * have to set the @PG_checked flag to make the further
			 * code the page is new. This might be not true, but it
			 * is better to budget more that to read the page from
			 * the media.
			 */
			SetPageChecked(page);
		else {
			err = do_readpage(page);
			if (err) {
				unlock_page(page);
				page_cache_release(page);
				return err;
			}
		}

		SetPageUptodate(page);
		ClearPageError(page);
	}

	err = allocate_budget(c, page, ui, appending);
	if (unlikely(err)) {
		ubifs_assert(err == -ENOSPC);
		/*
		 * Budgeting failed which means it would have to force
		 * write-back but didn't, because we set the @fast flag in the
		 * request. Write-back cannot be done now, while we have the
		 * page locked, because it would deadlock. Unlock and free
		 * everything and fall-back to slow-path.
		 */
		if (appending) {
			ubifs_assert(mutex_is_locked(&ui->ui_mutex));
			mutex_unlock(&ui->ui_mutex);
		}
		unlock_page(page);
		page_cache_release(page);

		return write_begin_slow(mapping, pos, len, pagep);
	}

	/*
	 * Whee, we aquired budgeting quickly - without involving
	 * garbage-collection, committing or forceing write-back. We return
	 * with @ui->ui_mutex locked if we are appending pages, and unlocked
	 * otherwise. This is an optimization (slightly hacky though).
	 */
	*pagep = page;
	return 0;

}

/**
 * cancel_budget - cancel budget.
 * @c: UBIFS file-system description object
 * @page: page to cancel budget for
 * @ui: UBIFS inode object the page belongs to
 * @appending: non-zero if the page is appended
 *
 * This is a helper function for a page write operation. It unlocks the
 * @ui->ui_mutex in case of appending.
 */
static void cancel_budget(struct ubifs_info *c, struct page *page,
			  struct ubifs_inode *ui, int appending)
{
	if (appending) {
		if (!ui->dirty)
			ubifs_release_dirty_inode_budget(c, ui);
		mutex_unlock(&ui->ui_mutex);
	}
	if (!PagePrivate(page)) {
		if (PageChecked(page))
			release_new_page_budget(c);
		else
			release_existing_page_budget(c);
	}
}

static int ubifs_write_end(struct file *file, struct address_space *mapping,
			   loff_t pos, unsigned len, unsigned copied,
			   struct page *page, void *fsdata)
{
	struct inode *inode = mapping->host;
	struct ubifs_inode *ui = ubifs_inode(inode);
	struct ubifs_info *c = inode->i_sb->s_fs_info;
	loff_t end_pos = pos + len;
	int appending = !!(end_pos > inode->i_size);

	dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
		inode->i_ino, pos, page->index, len, copied, inode->i_size);

	if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) {
		/*
		 * VFS copied less data to the page that it intended and
		 * declared in its '->write_begin()' call via the @len
		 * argument. If the page was not up-to-date, and @len was
		 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
		 * not load it from the media (for optimization reasons). This
		 * means that part of the page contains garbage. So read the
		 * page now.
		 */
		dbg_gen("copied %d instead of %d, read page and repeat",
			copied, len);
		cancel_budget(c, page, ui, appending);

		/*
		 * Return 0 to force VFS to repeat the whole operation, or the
		 * error code if 'do_readpage()' failes.
		 */
		copied = do_readpage(page);
		goto out;
	}

	if (!PagePrivate(page)) {
		SetPagePrivate(page);
		atomic_long_inc(&c->dirty_pg_cnt);
		__set_page_dirty_nobuffers(page);
	}

	if (appending) {
		i_size_write(inode, end_pos);
		ui->ui_size = end_pos;
		/*
		 * Note, we do not set @I_DIRTY_PAGES (which means that the
		 * inode has dirty pages), this has been done in
		 * '__set_page_dirty_nobuffers()'.
		 */
		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
		ubifs_assert(mutex_is_locked(&ui->ui_mutex));
		mutex_unlock(&ui->ui_mutex);
	}

out:
	unlock_page(page);
	page_cache_release(page);
	return copied;
}

A
Adrian Hunter 已提交
586 587 588 589 590 591 592 593 594 595 596 597
/**
 * populate_page - copy data nodes into a page for bulk-read.
 * @c: UBIFS file-system description object
 * @page: page
 * @bu: bulk-read information
 * @n: next zbranch slot
 *
 * This function returns %0 on success and a negative error code on failure.
 */
static int populate_page(struct ubifs_info *c, struct page *page,
			 struct bu_info *bu, int *n)
{
598
	int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
A
Adrian Hunter 已提交
599 600 601 602 603 604 605 606 607 608 609
	struct inode *inode = page->mapping->host;
	loff_t i_size = i_size_read(inode);
	unsigned int page_block;
	void *addr, *zaddr;
	pgoff_t end_index;

	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
		inode->i_ino, page->index, i_size, page->flags);

	addr = zaddr = kmap(page);

610
	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
A
Adrian Hunter 已提交
611
	if (!i_size || page->index > end_index) {
612
		hole = 1;
A
Adrian Hunter 已提交
613 614 615 616 617 618 619 620
		memset(addr, 0, PAGE_CACHE_SIZE);
		goto out_hole;
	}

	page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
	while (1) {
		int err, len, out_len, dlen;

621 622
		if (nn >= bu->cnt) {
			hole = 1;
A
Adrian Hunter 已提交
623
			memset(addr, 0, UBIFS_BLOCK_SIZE);
624
		} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
A
Adrian Hunter 已提交
625 626 627 628
			struct ubifs_data_node *dn;

			dn = bu->buf + (bu->zbranch[nn].offs - offs);

629
			ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
A
Adrian Hunter 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
				     ubifs_inode(inode)->creat_sqnum);

			len = le32_to_cpu(dn->size);
			if (len <= 0 || len > UBIFS_BLOCK_SIZE)
				goto out_err;

			dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
			out_len = UBIFS_BLOCK_SIZE;
			err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
					       le16_to_cpu(dn->compr_type));
			if (err || len != out_len)
				goto out_err;

			if (len < UBIFS_BLOCK_SIZE)
				memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);

			nn += 1;
			read = (i << UBIFS_BLOCK_SHIFT) + len;
648 649 650 651 652 653
		} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
			nn += 1;
			continue;
		} else {
			hole = 1;
			memset(addr, 0, UBIFS_BLOCK_SIZE);
A
Adrian Hunter 已提交
654 655 656 657 658 659 660 661 662 663
		}
		if (++i >= UBIFS_BLOCKS_PER_PAGE)
			break;
		addr += UBIFS_BLOCK_SIZE;
		page_block += 1;
	}

	if (end_index == page->index) {
		int len = i_size & (PAGE_CACHE_SIZE - 1);

664
		if (len && len < read)
A
Adrian Hunter 已提交
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
			memset(zaddr + len, 0, read - len);
	}

out_hole:
	if (hole) {
		SetPageChecked(page);
		dbg_gen("hole");
	}

	SetPageUptodate(page);
	ClearPageError(page);
	flush_dcache_page(page);
	kunmap(page);
	*n = nn;
	return 0;

out_err:
	ClearPageUptodate(page);
	SetPageError(page);
	flush_dcache_page(page);
	kunmap(page);
	ubifs_err("bad data node (block %u, inode %lu)",
		  page_block, inode->i_ino);
	return -EINVAL;
}

/**
 * ubifs_do_bulk_read - do bulk-read.
 * @c: UBIFS file-system description object
A
Artem Bityutskiy 已提交
694 695
 * @bu: bulk-read information
 * @page1: first page to read
A
Adrian Hunter 已提交
696 697 698
 *
 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
 */
A
Artem Bityutskiy 已提交
699 700
static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
			      struct page *page1)
A
Adrian Hunter 已提交
701 702 703 704 705 706
{
	pgoff_t offset = page1->index, end_index;
	struct address_space *mapping = page1->mapping;
	struct inode *inode = mapping->host;
	struct ubifs_inode *ui = ubifs_inode(inode);
	int err, page_idx, page_cnt, ret = 0, n = 0;
A
Artem Bityutskiy 已提交
707
	int allocate = bu->buf ? 0 : 1;
A
Adrian Hunter 已提交
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
	loff_t isize;

	err = ubifs_tnc_get_bu_keys(c, bu);
	if (err)
		goto out_warn;

	if (bu->eof) {
		/* Turn off bulk-read at the end of the file */
		ui->read_in_a_row = 1;
		ui->bulk_read = 0;
	}

	page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
	if (!page_cnt) {
		/*
		 * This happens when there are multiple blocks per page and the
		 * blocks for the first page we are looking for, are not
		 * together. If all the pages were like this, bulk-read would
		 * reduce performance, so we turn it off for a while.
		 */
A
Artem Bityutskiy 已提交
728
		goto out_bu_off;
A
Adrian Hunter 已提交
729 730 731
	}

	if (bu->cnt) {
A
Artem Bityutskiy 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
		if (allocate) {
			/*
			 * Allocate bulk-read buffer depending on how many data
			 * nodes we are going to read.
			 */
			bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
				      bu->zbranch[bu->cnt - 1].len -
				      bu->zbranch[0].offs;
			ubifs_assert(bu->buf_len > 0);
			ubifs_assert(bu->buf_len <= c->leb_size);
			bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
			if (!bu->buf)
				goto out_bu_off;
		}

A
Adrian Hunter 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
		err = ubifs_tnc_bulk_read(c, bu);
		if (err)
			goto out_warn;
	}

	err = populate_page(c, page1, bu, &n);
	if (err)
		goto out_warn;

	unlock_page(page1);
	ret = 1;

	isize = i_size_read(inode);
	if (isize == 0)
		goto out_free;
	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);

	for (page_idx = 1; page_idx < page_cnt; page_idx++) {
		pgoff_t page_offset = offset + page_idx;
		struct page *page;

		if (page_offset > end_index)
			break;
		page = find_or_create_page(mapping, page_offset,
					   GFP_NOFS | __GFP_COLD);
		if (!page)
			break;
		if (!PageUptodate(page))
			err = populate_page(c, page, bu, &n);
		unlock_page(page);
		page_cache_release(page);
		if (err)
			break;
	}

	ui->last_page_read = offset + page_idx - 1;

out_free:
A
Artem Bityutskiy 已提交
785 786
	if (allocate)
		kfree(bu->buf);
A
Adrian Hunter 已提交
787 788 789 790 791
	return ret;

out_warn:
	ubifs_warn("ignoring error %d and skipping bulk-read", err);
	goto out_free;
A
Artem Bityutskiy 已提交
792 793 794 795

out_bu_off:
	ui->read_in_a_row = ui->bulk_read = 0;
	goto out_free;
A
Adrian Hunter 已提交
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
}

/**
 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
 * @page: page from which to start bulk-read.
 *
 * Some flash media are capable of reading sequentially at faster rates. UBIFS
 * bulk-read facility is designed to take advantage of that, by reading in one
 * go consecutive data nodes that are also located consecutively in the same
 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
 */
static int ubifs_bulk_read(struct page *page)
{
	struct inode *inode = page->mapping->host;
	struct ubifs_info *c = inode->i_sb->s_fs_info;
	struct ubifs_inode *ui = ubifs_inode(inode);
	pgoff_t index = page->index, last_page_read = ui->last_page_read;
A
Artem Bityutskiy 已提交
813
	struct bu_info *bu;
814
	int err = 0, allocated = 0;
A
Adrian Hunter 已提交
815 816 817 818

	ui->last_page_read = index;
	if (!c->bulk_read)
		return 0;
A
Artem Bityutskiy 已提交
819

A
Adrian Hunter 已提交
820
	/*
821 822
	 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
	 * so don't bother if we cannot lock the mutex.
A
Adrian Hunter 已提交
823 824 825
	 */
	if (!mutex_trylock(&ui->ui_mutex))
		return 0;
A
Artem Bityutskiy 已提交
826

A
Adrian Hunter 已提交
827 828 829 830 831 832 833
	if (index != last_page_read + 1) {
		/* Turn off bulk-read if we stop reading sequentially */
		ui->read_in_a_row = 1;
		if (ui->bulk_read)
			ui->bulk_read = 0;
		goto out_unlock;
	}
A
Artem Bityutskiy 已提交
834

A
Adrian Hunter 已提交
835 836 837 838 839 840 841
	if (!ui->bulk_read) {
		ui->read_in_a_row += 1;
		if (ui->read_in_a_row < 3)
			goto out_unlock;
		/* Three reads in a row, so switch on bulk-read */
		ui->bulk_read = 1;
	}
A
Artem Bityutskiy 已提交
842

843 844 845 846 847 848 849 850 851 852 853 854 855 856
	/*
	 * If possible, try to use pre-allocated bulk-read information, which
	 * is protected by @c->bu_mutex.
	 */
	if (mutex_trylock(&c->bu_mutex))
		bu = &c->bu;
	else {
		bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
		if (!bu)
			goto out_unlock;

		bu->buf = NULL;
		allocated = 1;
	}
A
Artem Bityutskiy 已提交
857 858 859 860 861

	bu->buf_len = c->max_bu_buf_len;
	data_key_init(c, &bu->key, inode->i_ino,
		      page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
	err = ubifs_do_bulk_read(c, bu, page);
862 863 864 865 866

	if (!allocated)
		mutex_unlock(&c->bu_mutex);
	else
		kfree(bu);
A
Artem Bityutskiy 已提交
867

A
Adrian Hunter 已提交
868 869
out_unlock:
	mutex_unlock(&ui->ui_mutex);
A
Artem Bityutskiy 已提交
870
	return err;
A
Adrian Hunter 已提交
871 872
}

873 874
static int ubifs_readpage(struct file *file, struct page *page)
{
A
Adrian Hunter 已提交
875 876
	if (ubifs_bulk_read(page))
		return 0;
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	do_readpage(page);
	unlock_page(page);
	return 0;
}

static int do_writepage(struct page *page, int len)
{
	int err = 0, i, blen;
	unsigned int block;
	void *addr;
	union ubifs_key key;
	struct inode *inode = page->mapping->host;
	struct ubifs_info *c = inode->i_sb->s_fs_info;

#ifdef UBIFS_DEBUG
	spin_lock(&ui->ui_lock);
	ubifs_assert(page->index <= ui->synced_i_size << PAGE_CACHE_SIZE);
	spin_unlock(&ui->ui_lock);
#endif

	/* Update radix tree tags */
	set_page_writeback(page);

	addr = kmap(page);
	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
	i = 0;
	while (len) {
		blen = min_t(int, len, UBIFS_BLOCK_SIZE);
		data_key_init(c, &key, inode->i_ino, block);
		err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
		if (err)
			break;
		if (++i >= UBIFS_BLOCKS_PER_PAGE)
			break;
		block += 1;
		addr += blen;
		len -= blen;
	}
	if (err) {
		SetPageError(page);
		ubifs_err("cannot write page %lu of inode %lu, error %d",
			  page->index, inode->i_ino, err);
		ubifs_ro_mode(c, err);
	}

	ubifs_assert(PagePrivate(page));
	if (PageChecked(page))
		release_new_page_budget(c);
	else
		release_existing_page_budget(c);

	atomic_long_dec(&c->dirty_pg_cnt);
	ClearPagePrivate(page);
	ClearPageChecked(page);

	kunmap(page);
	unlock_page(page);
	end_page_writeback(page);
	return err;
}

/*
 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
 * situation when a we have an inode with size 0, then a megabyte of data is
 * appended to the inode, then write-back starts and flushes some amount of the
 * dirty pages, the journal becomes full, commit happens and finishes, and then
 * an unclean reboot happens. When the file system is mounted next time, the
 * inode size would still be 0, but there would be many pages which are beyond
 * the inode size, they would be indexed and consume flash space. Because the
 * journal has been committed, the replay would not be able to detect this
 * situation and correct the inode size. This means UBIFS would have to scan
 * whole index and correct all inode sizes, which is long an unacceptable.
 *
 * To prevent situations like this, UBIFS writes pages back only if they are
 * within last synchronized inode size, i.e. the the size which has been
 * written to the flash media last time. Otherwise, UBIFS forces inode
 * write-back, thus making sure the on-flash inode contains current inode size,
 * and then keeps writing pages back.
 *
 * Some locking issues explanation. 'ubifs_writepage()' first is called with
 * the page locked, and it locks @ui_mutex. However, write-back does take inode
 * @i_mutex, which means other VFS operations may be run on this inode at the
 * same time. And the problematic one is truncation to smaller size, from where
 * we have to call 'vmtruncate()', which first changes @inode->i_size, then
 * drops the truncated pages. And while dropping the pages, it takes the page
 * lock. This means that 'do_truncation()' cannot call 'vmtruncate()' with
 * @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. This
 * means that @inode->i_size is changed while @ui_mutex is unlocked.
 *
 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
 * inode size. How do we do this if @inode->i_size may became smaller while we
 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
 * internally and updates it under @ui_mutex.
 *
 * Q: why we do not worry that if we race with truncation, we may end up with a
 * situation when the inode is truncated while we are in the middle of
 * 'do_writepage()', so we do write beyond inode size?
 * A: If we are in the middle of 'do_writepage()', truncation would be locked
 * on the page lock and it would not write the truncated inode node to the
 * journal before we have finished.
 */
static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	struct ubifs_inode *ui = ubifs_inode(inode);
	loff_t i_size =  i_size_read(inode), synced_i_size;
	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
	int err, len = i_size & (PAGE_CACHE_SIZE - 1);
	void *kaddr;

	dbg_gen("ino %lu, pg %lu, pg flags %#lx",
		inode->i_ino, page->index, page->flags);
	ubifs_assert(PagePrivate(page));

	/* Is the page fully outside @i_size? (truncate in progress) */
	if (page->index > end_index || (page->index == end_index && !len)) {
		err = 0;
		goto out_unlock;
	}

	spin_lock(&ui->ui_lock);
	synced_i_size = ui->synced_i_size;
	spin_unlock(&ui->ui_lock);

	/* Is the page fully inside @i_size? */
	if (page->index < end_index) {
		if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) {
			err = inode->i_sb->s_op->write_inode(inode, 1);
			if (err)
				goto out_unlock;
			/*
			 * The inode has been written, but the write-buffer has
			 * not been synchronized, so in case of an unclean
			 * reboot we may end up with some pages beyond inode
			 * size, but they would be in the journal (because
			 * commit flushes write buffers) and recovery would deal
			 * with this.
			 */
		}
		return do_writepage(page, PAGE_CACHE_SIZE);
	}

	/*
	 * The page straddles @i_size. It must be zeroed out on each and every
	 * writepage invocation because it may be mmapped. "A file is mapped
	 * in multiples of the page size. For a file that is not a multiple of
	 * the page size, the remaining memory is zeroed when mapped, and
	 * writes to that region are not written out to the file."
	 */
	kaddr = kmap_atomic(page, KM_USER0);
	memset(kaddr + len, 0, PAGE_CACHE_SIZE - len);
	flush_dcache_page(page);
	kunmap_atomic(kaddr, KM_USER0);

	if (i_size > synced_i_size) {
		err = inode->i_sb->s_op->write_inode(inode, 1);
		if (err)
			goto out_unlock;
	}

	return do_writepage(page, len);

out_unlock:
	unlock_page(page);
	return err;
}

/**
 * do_attr_changes - change inode attributes.
 * @inode: inode to change attributes for
 * @attr: describes attributes to change
 */
static void do_attr_changes(struct inode *inode, const struct iattr *attr)
{
	if (attr->ia_valid & ATTR_UID)
		inode->i_uid = attr->ia_uid;
	if (attr->ia_valid & ATTR_GID)
		inode->i_gid = attr->ia_gid;
	if (attr->ia_valid & ATTR_ATIME)
		inode->i_atime = timespec_trunc(attr->ia_atime,
						inode->i_sb->s_time_gran);
	if (attr->ia_valid & ATTR_MTIME)
		inode->i_mtime = timespec_trunc(attr->ia_mtime,
						inode->i_sb->s_time_gran);
	if (attr->ia_valid & ATTR_CTIME)
		inode->i_ctime = timespec_trunc(attr->ia_ctime,
						inode->i_sb->s_time_gran);
	if (attr->ia_valid & ATTR_MODE) {
		umode_t mode = attr->ia_mode;

		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
			mode &= ~S_ISGID;
		inode->i_mode = mode;
	}
}

/**
 * do_truncation - truncate an inode.
 * @c: UBIFS file-system description object
 * @inode: inode to truncate
 * @attr: inode attribute changes description
 *
 * This function implements VFS '->setattr()' call when the inode is truncated
 * to a smaller size. Returns zero in case of success and a negative error code
 * in case of failure.
 */
static int do_truncation(struct ubifs_info *c, struct inode *inode,
			 const struct iattr *attr)
{
	int err;
	struct ubifs_budget_req req;
	loff_t old_size = inode->i_size, new_size = attr->ia_size;
1091
	int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	struct ubifs_inode *ui = ubifs_inode(inode);

	dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
	memset(&req, 0, sizeof(struct ubifs_budget_req));

	/*
	 * If this is truncation to a smaller size, and we do not truncate on a
	 * block boundary, budget for changing one data block, because the last
	 * block will be re-written.
	 */
	if (new_size & (UBIFS_BLOCK_SIZE - 1))
		req.dirtied_page = 1;

	req.dirtied_ino = 1;
	/* A funny way to budget for truncation node */
	req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
	err = ubifs_budget_space(c, &req);
1109 1110 1111 1112 1113 1114 1115 1116 1117
	if (err) {
		/*
		 * Treat truncations to zero as deletion and always allow them,
		 * just like we do for '->unlink()'.
		 */
		if (new_size || err != -ENOSPC)
			return err;
		budgeted = 0;
	}
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

	err = vmtruncate(inode, new_size);
	if (err)
		goto out_budg;

	if (offset) {
		pgoff_t index = new_size >> PAGE_CACHE_SHIFT;
		struct page *page;

		page = find_lock_page(inode->i_mapping, index);
		if (page) {
			if (PageDirty(page)) {
				/*
				 * 'ubifs_jnl_truncate()' will try to truncate
				 * the last data node, but it contains
				 * out-of-date data because the page is dirty.
				 * Write the page now, so that
				 * 'ubifs_jnl_truncate()' will see an already
				 * truncated (and up to date) data node.
				 */
				ubifs_assert(PagePrivate(page));

				clear_page_dirty_for_io(page);
				if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
					offset = new_size &
						 (PAGE_CACHE_SIZE - 1);
				err = do_writepage(page, offset);
				page_cache_release(page);
				if (err)
					goto out_budg;
				/*
				 * We could now tell 'ubifs_jnl_truncate()' not
				 * to read the last block.
				 */
			} else {
				/*
				 * We could 'kmap()' the page and pass the data
				 * to 'ubifs_jnl_truncate()' to save it from
				 * having to read it.
				 */
				unlock_page(page);
				page_cache_release(page);
			}
		}
	}

	mutex_lock(&ui->ui_mutex);
	ui->ui_size = inode->i_size;
	/* Truncation changes inode [mc]time */
	inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
	/* The other attributes may be changed at the same time as well */
	do_attr_changes(inode, attr);

	err = ubifs_jnl_truncate(c, inode, old_size, new_size);
	mutex_unlock(&ui->ui_mutex);
out_budg:
1174 1175 1176 1177 1178 1179
	if (budgeted)
		ubifs_release_budget(c, &req);
	else {
		c->nospace = c->nospace_rp = 0;
		smp_wmb();
	}
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
	return err;
}

/**
 * do_setattr - change inode attributes.
 * @c: UBIFS file-system description object
 * @inode: inode to change attributes for
 * @attr: inode attribute changes description
 *
 * This function implements VFS '->setattr()' call for all cases except
 * truncations to smaller size. Returns zero in case of success and a negative
 * error code in case of failure.
 */
static int do_setattr(struct ubifs_info *c, struct inode *inode,
		      const struct iattr *attr)
{
	int err, release;
	loff_t new_size = attr->ia_size;
	struct ubifs_inode *ui = ubifs_inode(inode);
	struct ubifs_budget_req req = { .dirtied_ino = 1,
1200
				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250

	err = ubifs_budget_space(c, &req);
	if (err)
		return err;

	if (attr->ia_valid & ATTR_SIZE) {
		dbg_gen("size %lld -> %lld", inode->i_size, new_size);
		err = vmtruncate(inode, new_size);
		if (err)
			goto out;
	}

	mutex_lock(&ui->ui_mutex);
	if (attr->ia_valid & ATTR_SIZE) {
		/* Truncation changes inode [mc]time */
		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
		/* 'vmtruncate()' changed @i_size, update @ui_size */
		ui->ui_size = inode->i_size;
	}

	do_attr_changes(inode, attr);

	release = ui->dirty;
	if (attr->ia_valid & ATTR_SIZE)
		/*
		 * Inode length changed, so we have to make sure
		 * @I_DIRTY_DATASYNC is set.
		 */
		 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
	else
		mark_inode_dirty_sync(inode);
	mutex_unlock(&ui->ui_mutex);

	if (release)
		ubifs_release_budget(c, &req);
	if (IS_SYNC(inode))
		err = inode->i_sb->s_op->write_inode(inode, 1);
	return err;

out:
	ubifs_release_budget(c, &req);
	return err;
}

int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
{
	int err;
	struct inode *inode = dentry->d_inode;
	struct ubifs_info *c = inode->i_sb->s_fs_info;

A
Artem Bityutskiy 已提交
1251 1252
	dbg_gen("ino %lu, mode %#x, ia_valid %#x",
		inode->i_ino, inode->i_mode, attr->ia_valid);
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	err = inode_change_ok(inode, attr);
	if (err)
		return err;

	err = dbg_check_synced_i_size(inode);
	if (err)
		return err;

	if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
		/* Truncation to a smaller size */
		err = do_truncation(c, inode, attr);
	else
		err = do_setattr(c, inode, attr);

	return err;
}

static void ubifs_invalidatepage(struct page *page, unsigned long offset)
{
	struct inode *inode = page->mapping->host;
	struct ubifs_info *c = inode->i_sb->s_fs_info;

	ubifs_assert(PagePrivate(page));
	if (offset)
		/* Partial page remains dirty */
		return;

	if (PageChecked(page))
		release_new_page_budget(c);
	else
		release_existing_page_budget(c);

	atomic_long_dec(&c->dirty_pg_cnt);
	ClearPagePrivate(page);
	ClearPageChecked(page);
}

static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd)
{
	struct ubifs_inode *ui = ubifs_inode(dentry->d_inode);

	nd_set_link(nd, ui->data);
	return NULL;
}

int ubifs_fsync(struct file *file, struct dentry *dentry, int datasync)
{
	struct inode *inode = dentry->d_inode;
	struct ubifs_info *c = inode->i_sb->s_fs_info;
	int err;

	dbg_gen("syncing inode %lu", inode->i_ino);

	/*
	 * VFS has already synchronized dirty pages for this inode. Synchronize
	 * the inode unless this is a 'datasync()' call.
	 */
	if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
		err = inode->i_sb->s_op->write_inode(inode, 1);
		if (err)
			return err;
	}

	/*
	 * Nodes related to this inode may still sit in a write-buffer. Flush
	 * them.
	 */
	err = ubifs_sync_wbufs_by_inode(c, inode);
	if (err)
		return err;

	return 0;
}

/**
 * mctime_update_needed - check if mtime or ctime update is needed.
 * @inode: the inode to do the check for
 * @now: current time
 *
 * This helper function checks if the inode mtime/ctime should be updated or
 * not. If current values of the time-stamps are within the UBIFS inode time
 * granularity, they are not updated. This is an optimization.
 */
static inline int mctime_update_needed(const struct inode *inode,
				       const struct timespec *now)
{
	if (!timespec_equal(&inode->i_mtime, now) ||
	    !timespec_equal(&inode->i_ctime, now))
		return 1;
	return 0;
}

/**
 * update_ctime - update mtime and ctime of an inode.
 * @c: UBIFS file-system description object
 * @inode: inode to update
 *
 * This function updates mtime and ctime of the inode if it is not equivalent to
 * current time. Returns zero in case of success and a negative error code in
 * case of failure.
 */
static int update_mctime(struct ubifs_info *c, struct inode *inode)
{
	struct timespec now = ubifs_current_time(inode);
	struct ubifs_inode *ui = ubifs_inode(inode);

	if (mctime_update_needed(inode, &now)) {
		int err, release;
		struct ubifs_budget_req req = { .dirtied_ino = 1,
1362
				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580

		err = ubifs_budget_space(c, &req);
		if (err)
			return err;

		mutex_lock(&ui->ui_mutex);
		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
		release = ui->dirty;
		mark_inode_dirty_sync(inode);
		mutex_unlock(&ui->ui_mutex);
		if (release)
			ubifs_release_budget(c, &req);
	}

	return 0;
}

static ssize_t ubifs_aio_write(struct kiocb *iocb, const struct iovec *iov,
			       unsigned long nr_segs, loff_t pos)
{
	int err;
	ssize_t ret;
	struct inode *inode = iocb->ki_filp->f_mapping->host;
	struct ubifs_info *c = inode->i_sb->s_fs_info;

	err = update_mctime(c, inode);
	if (err)
		return err;

	ret = generic_file_aio_write(iocb, iov, nr_segs, pos);
	if (ret < 0)
		return ret;

	if (ret > 0 && (IS_SYNC(inode) || iocb->ki_filp->f_flags & O_SYNC)) {
		err = ubifs_sync_wbufs_by_inode(c, inode);
		if (err)
			return err;
	}

	return ret;
}

static int ubifs_set_page_dirty(struct page *page)
{
	int ret;

	ret = __set_page_dirty_nobuffers(page);
	/*
	 * An attempt to dirty a page without budgeting for it - should not
	 * happen.
	 */
	ubifs_assert(ret == 0);
	return ret;
}

static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
{
	/*
	 * An attempt to release a dirty page without budgeting for it - should
	 * not happen.
	 */
	if (PageWriteback(page))
		return 0;
	ubifs_assert(PagePrivate(page));
	ubifs_assert(0);
	ClearPagePrivate(page);
	ClearPageChecked(page);
	return 1;
}

/*
 * mmap()d file has taken write protection fault and is being made
 * writable. UBIFS must ensure page is budgeted for.
 */
static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma, struct page *page)
{
	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
	struct ubifs_info *c = inode->i_sb->s_fs_info;
	struct timespec now = ubifs_current_time(inode);
	struct ubifs_budget_req req = { .new_page = 1 };
	int err, update_time;

	dbg_gen("ino %lu, pg %lu, i_size %lld",	inode->i_ino, page->index,
		i_size_read(inode));
	ubifs_assert(!(inode->i_sb->s_flags & MS_RDONLY));

	if (unlikely(c->ro_media))
		return -EROFS;

	/*
	 * We have not locked @page so far so we may budget for changing the
	 * page. Note, we cannot do this after we locked the page, because
	 * budgeting may cause write-back which would cause deadlock.
	 *
	 * At the moment we do not know whether the page is dirty or not, so we
	 * assume that it is not and budget for a new page. We could look at
	 * the @PG_private flag and figure this out, but we may race with write
	 * back and the page state may change by the time we lock it, so this
	 * would need additional care. We do not bother with this at the
	 * moment, although it might be good idea to do. Instead, we allocate
	 * budget for a new page and amend it later on if the page was in fact
	 * dirty.
	 *
	 * The budgeting-related logic of this function is similar to what we
	 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
	 * for more comments.
	 */
	update_time = mctime_update_needed(inode, &now);
	if (update_time)
		/*
		 * We have to change inode time stamp which requires extra
		 * budgeting.
		 */
		req.dirtied_ino = 1;

	err = ubifs_budget_space(c, &req);
	if (unlikely(err)) {
		if (err == -ENOSPC)
			ubifs_warn("out of space for mmapped file "
				   "(inode number %lu)", inode->i_ino);
		return err;
	}

	lock_page(page);
	if (unlikely(page->mapping != inode->i_mapping ||
		     page_offset(page) > i_size_read(inode))) {
		/* Page got truncated out from underneath us */
		err = -EINVAL;
		goto out_unlock;
	}

	if (PagePrivate(page))
		release_new_page_budget(c);
	else {
		if (!PageChecked(page))
			ubifs_convert_page_budget(c);
		SetPagePrivate(page);
		atomic_long_inc(&c->dirty_pg_cnt);
		__set_page_dirty_nobuffers(page);
	}

	if (update_time) {
		int release;
		struct ubifs_inode *ui = ubifs_inode(inode);

		mutex_lock(&ui->ui_mutex);
		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
		release = ui->dirty;
		mark_inode_dirty_sync(inode);
		mutex_unlock(&ui->ui_mutex);
		if (release)
			ubifs_release_dirty_inode_budget(c, ui);
	}

	unlock_page(page);
	return 0;

out_unlock:
	unlock_page(page);
	ubifs_release_budget(c, &req);
	return err;
}

static struct vm_operations_struct ubifs_file_vm_ops = {
	.fault        = filemap_fault,
	.page_mkwrite = ubifs_vm_page_mkwrite,
};

static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
{
	int err;

	/* 'generic_file_mmap()' takes care of NOMMU case */
	err = generic_file_mmap(file, vma);
	if (err)
		return err;
	vma->vm_ops = &ubifs_file_vm_ops;
	return 0;
}

struct address_space_operations ubifs_file_address_operations = {
	.readpage       = ubifs_readpage,
	.writepage      = ubifs_writepage,
	.write_begin    = ubifs_write_begin,
	.write_end      = ubifs_write_end,
	.invalidatepage = ubifs_invalidatepage,
	.set_page_dirty = ubifs_set_page_dirty,
	.releasepage    = ubifs_releasepage,
};

struct inode_operations ubifs_file_inode_operations = {
	.setattr     = ubifs_setattr,
	.getattr     = ubifs_getattr,
#ifdef CONFIG_UBIFS_FS_XATTR
	.setxattr    = ubifs_setxattr,
	.getxattr    = ubifs_getxattr,
	.listxattr   = ubifs_listxattr,
	.removexattr = ubifs_removexattr,
#endif
};

struct inode_operations ubifs_symlink_inode_operations = {
	.readlink    = generic_readlink,
	.follow_link = ubifs_follow_link,
	.setattr     = ubifs_setattr,
	.getattr     = ubifs_getattr,
};

struct file_operations ubifs_file_operations = {
	.llseek         = generic_file_llseek,
	.read           = do_sync_read,
	.write          = do_sync_write,
	.aio_read       = generic_file_aio_read,
	.aio_write      = ubifs_aio_write,
	.mmap           = ubifs_file_mmap,
	.fsync          = ubifs_fsync,
	.unlocked_ioctl = ubifs_ioctl,
	.splice_read	= generic_file_splice_read,
Z
Zoltan Sogor 已提交
1581
	.splice_write	= generic_file_splice_write,
1582 1583 1584 1585
#ifdef CONFIG_COMPAT
	.compat_ioctl   = ubifs_compat_ioctl,
#endif
};