fw-sbp2.c 32.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*						-*- c-basic-offset: 8 -*-
 * fw-sbp2.c -- SBP2 driver (SCSI over IEEE1394)
 *
 * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

#include <linux/kernel.h>
#include <linux/module.h>
S
Stefan Richter 已提交
23
#include <linux/mod_devicetable.h>
24
#include <linux/device.h>
A
Andrew Morton 已提交
25
#include <linux/scatterlist.h>
26
#include <linux/dma-mapping.h>
27
#include <linux/timer.h>
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>

#include "fw-transaction.h"
#include "fw-topology.h"
#include "fw-device.h"

/* I don't know why the SCSI stack doesn't define something like this... */
typedef void (*scsi_done_fn_t) (struct scsi_cmnd *);

static const char sbp2_driver_name[] = "sbp2";

struct sbp2_device {
	struct fw_unit *unit;
	struct fw_address_handler address_handler;
	struct list_head orb_list;
	u64 management_agent_address;
	u64 command_block_agent_address;
	u32 workarounds;
	int login_id;

	/* We cache these addresses and only update them once we've
	 * logged in or reconnected to the sbp2 device.  That way, any
	 * IO to the device will automatically fail and get retried if
	 * it happens in a window where the device is not ready to
	 * handle it (e.g. after a bus reset but before we reconnect). */
	int node_id;
	int address_high;
	int generation;

62 63 64
	/* Timer for flushing ORBs. */
	struct timer_list orb_timer;

65 66
	int retries;
	struct delayed_work work;
67 68 69 70 71
	struct Scsi_Host *scsi_host;
};

#define SBP2_MAX_SG_ELEMENT_LENGTH	0xf000
#define SBP2_MAX_SECTORS		255	/* Max sectors supported */
72
#define SBP2_ORB_TIMEOUT		2000	/* Timeout in ms */
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

#define SBP2_ORB_NULL			0x80000000

#define SBP2_DIRECTION_TO_MEDIA		0x0
#define SBP2_DIRECTION_FROM_MEDIA	0x1

/* Unit directory keys */
#define SBP2_COMMAND_SET_SPECIFIER	0x38
#define SBP2_COMMAND_SET		0x39
#define SBP2_COMMAND_SET_REVISION	0x3b
#define SBP2_FIRMWARE_REVISION		0x3c

/* Flags for detected oddities and brokeness */
#define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
#define SBP2_WORKAROUND_INQUIRY_36	0x2
#define SBP2_WORKAROUND_MODE_SENSE_8	0x4
#define SBP2_WORKAROUND_FIX_CAPACITY	0x8
#define SBP2_WORKAROUND_OVERRIDE	0x100

/* Management orb opcodes */
#define SBP2_LOGIN_REQUEST		0x0
#define SBP2_QUERY_LOGINS_REQUEST	0x1
#define SBP2_RECONNECT_REQUEST		0x3
#define SBP2_SET_PASSWORD_REQUEST	0x4
#define SBP2_LOGOUT_REQUEST		0x7
#define SBP2_ABORT_TASK_REQUEST		0xb
#define SBP2_ABORT_TASK_SET		0xc
#define SBP2_LOGICAL_UNIT_RESET		0xe
#define SBP2_TARGET_RESET_REQUEST	0xf

/* Offsets for command block agent registers */
#define SBP2_AGENT_STATE		0x00
#define SBP2_AGENT_RESET		0x04
#define SBP2_ORB_POINTER		0x08
#define SBP2_DOORBELL			0x10
#define SBP2_UNSOLICITED_STATUS_ENABLE	0x14

/* Status write response codes */
#define SBP2_STATUS_REQUEST_COMPLETE	0x0
#define SBP2_STATUS_TRANSPORT_FAILURE	0x1
#define SBP2_STATUS_ILLEGAL_REQUEST	0x2
#define SBP2_STATUS_VENDOR_DEPENDENT	0x3

#define status_get_orb_high(v)		((v).status & 0xffff)
#define status_get_sbp_status(v)	(((v).status >> 16) & 0xff)
#define status_get_len(v)		(((v).status >> 24) & 0x07)
#define status_get_dead(v)		(((v).status >> 27) & 0x01)
#define status_get_response(v)		(((v).status >> 28) & 0x03)
#define status_get_source(v)		(((v).status >> 30) & 0x03)
#define status_get_orb_low(v)		((v).orb_low)
#define status_get_data(v)		((v).data)

struct sbp2_status {
	u32 status;
	u32 orb_low;
	u8 data[24];
};

struct sbp2_pointer {
	u32 high;
	u32 low;
};

struct sbp2_orb {
	struct fw_transaction t;
	dma_addr_t request_bus;
	int rcode;
	struct sbp2_pointer pointer;
	void (*callback) (struct sbp2_orb * orb, struct sbp2_status * status);
	struct list_head link;
};

#define management_orb_lun(v)			((v))
#define management_orb_function(v)		((v) << 16)
#define management_orb_reconnect(v)		((v) << 20)
#define management_orb_exclusive		((1) << 28)
#define management_orb_request_format(v)	((v) << 29)
#define management_orb_notify			((1) << 31)

#define management_orb_response_length(v)	((v))
#define management_orb_password_length(v)	((v) << 16)

struct sbp2_management_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer password;
		struct sbp2_pointer response;
		u32 misc;
		u32 length;
		struct sbp2_pointer status_fifo;
	} request;
	__be32 response[4];
	dma_addr_t response_bus;
	struct completion done;
	struct sbp2_status status;
};

#define login_response_get_login_id(v)	((v).misc & 0xffff)
#define login_response_get_length(v)	(((v).misc >> 16) & 0xffff)

struct sbp2_login_response {
	u32 misc;
	struct sbp2_pointer command_block_agent;
	u32 reconnect_hold;
};

#define command_orb_data_size(v)	((v))
#define command_orb_page_size(v)	((v) << 16)
#define command_orb_page_table_present	((1) << 19)
#define command_orb_max_payload(v)	((v) << 20)
#define command_orb_speed(v)		((v) << 24)
#define command_orb_direction(v)	((v) << 27)
#define command_orb_request_format(v)	((v) << 29)
#define command_orb_notify		((1) << 31)

struct sbp2_command_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer next;
		struct sbp2_pointer data_descriptor;
		u32 misc;
		u8 command_block[12];
	} request;
	struct scsi_cmnd *cmd;
	scsi_done_fn_t done;
	struct fw_unit *unit;

	struct sbp2_pointer page_table[SG_ALL];
	dma_addr_t page_table_bus;
	dma_addr_t request_buffer_bus;
};

/*
 * List of devices with known bugs.
 *
 * The firmware_revision field, masked with 0xffff00, is the best
 * indicator for the type of bridge chip of a device.  It yields a few
 * false positives but this did not break correctly behaving devices
 * so far.  We use ~0 as a wildcard, since the 24 bit values we get
 * from the config rom can never match that.
 */
static const struct {
	u32 firmware_revision;
	u32 model;
	unsigned workarounds;
} sbp2_workarounds_table[] = {
	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
		.firmware_revision	= 0x002800,
		.model			= 0x001010,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
					  SBP2_WORKAROUND_MODE_SENSE_8,
	},
	/* Initio bridges, actually only needed for some older ones */ {
		.firmware_revision	= 0x000200,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
	},
	/* Symbios bridge */ {
		.firmware_revision	= 0xa0b800,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
	},
	/* There are iPods (2nd gen, 3rd gen) with model_id == 0, but
	 * these iPods do not feature the read_capacity bug according
	 * to one report.  Read_capacity behaviour as well as model_id
	 * could change due to Apple-supplied firmware updates though. */
	/* iPod 4th generation. */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000021,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod mini */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000023,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod Photo */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x00007e,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	}
};

static void
sbp2_status_write(struct fw_card *card, struct fw_request *request,
		  int tcode, int destination, int source,
		  int generation, int speed,
		  unsigned long long offset,
		  void *payload, size_t length, void *callback_data)
{
	struct sbp2_device *sd = callback_data;
	struct sbp2_orb *orb;
	struct sbp2_status status;
	size_t header_size;
	unsigned long flags;

	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
	    length == 0 || length > sizeof status) {
		fw_send_response(card, request, RCODE_TYPE_ERROR);
		return;
	}

	header_size = min(length, 2 * sizeof(u32));
	fw_memcpy_from_be32(&status, payload, header_size);
	if (length > header_size)
		memcpy(status.data, payload + 8, length - header_size);
	if (status_get_source(status) == 2 || status_get_source(status) == 3) {
		fw_notify("non-orb related status write, not handled\n");
		fw_send_response(card, request, RCODE_COMPLETE);
		return;
	}

	/* Lookup the orb corresponding to this status write. */
	spin_lock_irqsave(&card->lock, flags);
	list_for_each_entry(orb, &sd->orb_list, link) {
		if (status_get_orb_high(status) == 0 &&
		    status_get_orb_low(status) == orb->request_bus) {
			list_del(&orb->link);
			break;
		}
	}
	spin_unlock_irqrestore(&card->lock, flags);

	if (&orb->link != &sd->orb_list)
		orb->callback(orb, &status);
	else
		fw_error("status write for unknown orb\n");

	fw_send_response(card, request, RCODE_COMPLETE);
}

static void
complete_transaction(struct fw_card *card, int rcode,
		     void *payload, size_t length, void *data)
{
	struct sbp2_orb *orb = data;
	unsigned long flags;

	orb->rcode = rcode;
	if (rcode != RCODE_COMPLETE) {
		spin_lock_irqsave(&card->lock, flags);
		list_del(&orb->link);
		spin_unlock_irqrestore(&card->lock, flags);
		orb->callback(orb, NULL);
	}
}

static void
sbp2_send_orb(struct sbp2_orb *orb, struct fw_unit *unit,
	      int node_id, int generation, u64 offset)
{
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd = unit->device.driver_data;
	unsigned long flags;

	orb->pointer.high = 0;
	orb->pointer.low = orb->request_bus;
	fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof orb->pointer);

	spin_lock_irqsave(&device->card->lock, flags);
	list_add_tail(&orb->link, &sd->orb_list);
	spin_unlock_irqrestore(&device->card->lock, flags);

336 337 338
	mod_timer(&sd->orb_timer,
		  jiffies + DIV_ROUND_UP(SBP2_ORB_TIMEOUT * HZ, 1000));

339
	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
340
			node_id, generation,
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
			device->node->max_speed, offset,
			&orb->pointer, sizeof orb->pointer,
			complete_transaction, orb);
}

static void sbp2_cancel_orbs(struct fw_unit *unit)
{
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd = unit->device.driver_data;
	struct sbp2_orb *orb, *next;
	struct list_head list;
	unsigned long flags;

	INIT_LIST_HEAD(&list);
	spin_lock_irqsave(&device->card->lock, flags);
	list_splice_init(&sd->orb_list, &list);
	spin_unlock_irqrestore(&device->card->lock, flags);

	list_for_each_entry_safe(orb, next, &list, link) {
360 361 362
		if (fw_cancel_transaction(device->card, &orb->t) == 0)
			continue;

363 364 365 366 367
		orb->rcode = RCODE_CANCELLED;
		orb->callback(orb, NULL);
	}
}

368 369 370 371 372 373 374
static void orb_timer_callback(unsigned long data)
{
	struct sbp2_device *sd = (struct sbp2_device *)data;

	sbp2_cancel_orbs(sd->unit);
}

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
static void
complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
	struct sbp2_management_orb *orb =
	    (struct sbp2_management_orb *)base_orb;

	if (status)
		memcpy(&orb->status, status, sizeof *status);
	complete(&orb->done);
}

static int
sbp2_send_management_orb(struct fw_unit *unit, int node_id, int generation,
			 int function, int lun, void *response)
{
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd = unit->device.driver_data;
	struct sbp2_management_orb *orb;
	int retval = -ENOMEM;

	orb = kzalloc(sizeof *orb, GFP_ATOMIC);
	if (orb == NULL)
		return -ENOMEM;

	/* The sbp2 device is going to send a block read request to
	 * read out the request from host memory, so map it for
	 * dma. */
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof orb->request, DMA_TO_DEVICE);
	if (orb->base.request_bus == 0)
		goto out;

	orb->response_bus =
		dma_map_single(device->card->device, &orb->response,
			       sizeof orb->response, DMA_FROM_DEVICE);
	if (orb->response_bus == 0)
		goto out;

	orb->request.response.high    = 0;
	orb->request.response.low     = orb->response_bus;

	orb->request.misc =
		management_orb_notify |
		management_orb_function(function) |
		management_orb_lun(lun);
	orb->request.length =
		management_orb_response_length(sizeof orb->response);

	orb->request.status_fifo.high = sd->address_handler.offset >> 32;
	orb->request.status_fifo.low  = sd->address_handler.offset;

	/* FIXME: Yeah, ok this isn't elegant, we hardwire exclusive
	 * login and 1 second reconnect time.  The reconnect setting
	 * is probably fine, but the exclusive login should be an
	 * option. */
	if (function == SBP2_LOGIN_REQUEST) {
		orb->request.misc |=
			management_orb_exclusive |
			management_orb_reconnect(0);
	}

	fw_memcpy_to_be32(&orb->request, &orb->request, sizeof orb->request);

	init_completion(&orb->done);
	orb->base.callback = complete_management_orb;
	sbp2_send_orb(&orb->base, unit,
		      node_id, generation, sd->management_agent_address);

444
	wait_for_completion(&orb->done);
445 446 447 448 449 450 451 452 453 454

	/* FIXME: Handle bus reset race here. */

	retval = -EIO;
	if (orb->base.rcode != RCODE_COMPLETE) {
		fw_error("management write failed, rcode 0x%02x\n",
			 orb->base.rcode);
		goto out;
	}

455
	if (orb->base.rcode == RCODE_CANCELLED) {
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
		fw_error("orb reply timed out, rcode=0x%02x\n",
			 orb->base.rcode);
		goto out;
	}

	if (status_get_response(orb->status) != 0 ||
	    status_get_sbp_status(orb->status) != 0) {
		fw_error("error status: %d:%d\n",
			 status_get_response(orb->status),
			 status_get_sbp_status(orb->status));
		goto out;
	}

	retval = 0;
 out:
	dma_unmap_single(device->card->device, orb->base.request_bus,
			 sizeof orb->request, DMA_TO_DEVICE);
	dma_unmap_single(device->card->device, orb->response_bus,
			 sizeof orb->response, DMA_FROM_DEVICE);

	if (response)
		fw_memcpy_from_be32(response,
				    orb->response, sizeof orb->response);
	kfree(orb);

	return retval;
}

static void
complete_agent_reset_write(struct fw_card *card, int rcode,
			   void *payload, size_t length, void *data)
{
	struct fw_transaction *t = data;

	fw_notify("agent reset write rcode=%d\n", rcode);
	kfree(t);
}

static int sbp2_agent_reset(struct fw_unit *unit)
{
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd = unit->device.driver_data;
	struct fw_transaction *t;
	static u32 zero;

	t = kzalloc(sizeof *t, GFP_ATOMIC);
	if (t == NULL)
		return -ENOMEM;

	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
506
			sd->node_id, sd->generation, SCODE_400,
507 508 509 510 511 512 513 514
			sd->command_block_agent_address + SBP2_AGENT_RESET,
			&zero, sizeof zero, complete_agent_reset_write, t);

	return 0;
}

static int add_scsi_devices(struct fw_unit *unit);
static void remove_scsi_devices(struct fw_unit *unit);
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
static void sbp2_reconnect(struct work_struct *work);

static void sbp2_login(struct work_struct *work)
{
	struct sbp2_device *sd =
		container_of(work, struct sbp2_device, work.work);
	struct fw_unit *unit = sd->unit;
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_login_response response;
	int generation, node_id, local_node_id, lun, retval;

	/* FIXME: Make this work for multi-lun devices. */
	lun = 0;

	generation    = device->card->generation;
	node_id       = device->node->node_id;
	local_node_id = device->card->local_node->node_id;

	if (sbp2_send_management_orb(unit, node_id, generation,
				     SBP2_LOGIN_REQUEST, lun, &response) < 0) {
		if (sd->retries++ < 5) {
			fw_error("login attempt %d for %s failed, "
				 "rescheduling\n",
				 sd->retries, unit->device.bus_id);
			schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
		} else {
			fw_error("failed to login to %s\n",
				 unit->device.bus_id);
			remove_scsi_devices(unit);
		}
		return;
	}

	sd->generation   = generation;
	sd->node_id      = node_id;
	sd->address_high = local_node_id << 16;

	/* Get command block agent offset and login id. */
	sd->command_block_agent_address =
		((u64) response.command_block_agent.high << 32) |
		response.command_block_agent.low;
	sd->login_id = login_response_get_login_id(response);

	fw_notify("logged in to sbp2 unit %s\n", unit->device.bus_id);
	fw_notify(" - management_agent_address: 0x%012llx\n",
		  (unsigned long long) sd->management_agent_address);
	fw_notify(" - command_block_agent_address: 0x%012llx\n",
		  (unsigned long long) sd->command_block_agent_address);
	fw_notify(" - status write address: 0x%012llx\n",
		  (unsigned long long) sd->address_handler.offset);

#if 0
	/* FIXME: The linux1394 sbp2 does this last step. */
	sbp2_set_busy_timeout(scsi_id);
#endif

	INIT_DELAYED_WORK(&sd->work, sbp2_reconnect);
	sbp2_agent_reset(unit);

	retval = add_scsi_devices(unit);
	if (retval < 0) {
		sbp2_send_management_orb(unit, sd->node_id, sd->generation,
					 SBP2_LOGOUT_REQUEST, sd->login_id,
					 NULL);
		/* Set this back to sbp2_login so we fall back and
		 * retry login on bus reset. */
		INIT_DELAYED_WORK(&sd->work, sbp2_login);
	}
}
584 585 586 587 588 589 590

static int sbp2_probe(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd;
	struct fw_csr_iterator ci;
591
	int i, key, value;
592 593 594 595 596 597 598 599 600
	u32 model, firmware_revision;

	sd = kzalloc(sizeof *sd, GFP_KERNEL);
	if (sd == NULL)
		return -ENOMEM;

	unit->device.driver_data = sd;
	sd->unit = unit;
	INIT_LIST_HEAD(&sd->orb_list);
601
	setup_timer(&sd->orb_timer, orb_timer_callback, (unsigned long)sd);
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656

	sd->address_handler.length = 0x100;
	sd->address_handler.address_callback = sbp2_status_write;
	sd->address_handler.callback_data = sd;

	if (fw_core_add_address_handler(&sd->address_handler,
					&fw_high_memory_region) < 0) {
		kfree(sd);
		return -EBUSY;
	}

	if (fw_device_enable_phys_dma(device) < 0) {
		fw_core_remove_address_handler(&sd->address_handler);
		kfree(sd);
		return -EBUSY;
	}

	/* Scan unit directory to get management agent address,
	 * firmware revison and model.  Initialize firmware_revision
	 * and model to values that wont match anything in our table. */
	firmware_revision = 0xff000000;
	model = 0xff000000;
	fw_csr_iterator_init(&ci, unit->directory);
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
		case CSR_DEPENDENT_INFO | CSR_OFFSET:
			sd->management_agent_address =
				0xfffff0000000ULL + 4 * value;
			break;
		case SBP2_FIRMWARE_REVISION:
			firmware_revision = value;
			break;
		case CSR_MODEL:
			model = value;
			break;
		}
	}

	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
		if (sbp2_workarounds_table[i].firmware_revision !=
		    (firmware_revision & 0xffffff00))
			continue;
		if (sbp2_workarounds_table[i].model != model &&
		    sbp2_workarounds_table[i].model != ~0)
			continue;
		sd->workarounds |= sbp2_workarounds_table[i].workarounds;
		break;
	}

	if (sd->workarounds)
		fw_notify("Workarounds for node %s: 0x%x "
			  "(firmware_revision 0x%06x, model_id 0x%06x)\n",
			  unit->device.bus_id,
			  sd->workarounds, firmware_revision, model);

657 658 659 660
	/* We schedule work to do the login so we can easily
	 * reschedule retries. */
	INIT_DELAYED_WORK(&sd->work, sbp2_login);
	schedule_delayed_work(&sd->work, 0);
661 662 663 664 665 666 667 668 669 670 671 672 673

	return 0;
}

static int sbp2_remove(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
	struct sbp2_device *sd = unit->device.driver_data;

	sbp2_send_management_orb(unit, sd->node_id, sd->generation,
				 SBP2_LOGOUT_REQUEST, sd->login_id, NULL);

	remove_scsi_devices(unit);
674
	del_timer_sync(&sd->orb_timer);
675 676 677 678 679 680 681 682 683 684 685

	fw_core_remove_address_handler(&sd->address_handler);
	kfree(sd);

	fw_notify("removed sbp2 unit %s\n", dev->bus_id);

	return 0;
}

static void sbp2_reconnect(struct work_struct *work)
{
686 687
	struct sbp2_device *sd =
		container_of(work, struct sbp2_device, work.work);
688 689 690 691 692 693 694 695
	struct fw_unit *unit = sd->unit;
	struct fw_device *device = fw_device(unit->device.parent);
	int generation, node_id, local_node_id;

	generation    = device->card->generation;
	node_id       = device->node->node_id;
	local_node_id = device->card->local_node->node_id;

696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
	if (sbp2_send_management_orb(unit, node_id, generation,
				     SBP2_RECONNECT_REQUEST,
				     sd->login_id, NULL) < 0) {
		if (sd->retries++ < 5) {
			fw_error("reconnect attempt %d for %s failed, "
				 "rescheduling\n",
				 sd->retries, unit->device.bus_id);
		} else {
			fw_error("failed to reconnect to %s\n",
				 unit->device.bus_id);
			/* Fall back and try to log in again. */
			sd->retries = 0;
			INIT_DELAYED_WORK(&sd->work, sbp2_login);
		}
		schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
		return;
	}
713 714 715

	sd->generation   = generation;
	sd->node_id      = node_id;
716
	sd->address_high = local_node_id << 16;
717 718 719 720

	fw_notify("reconnected to unit %s\n", unit->device.bus_id);
	sbp2_agent_reset(unit);
	sbp2_cancel_orbs(unit);
721 722 723 724 725 726 727
}

static void sbp2_update(struct fw_unit *unit)
{
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd = unit->device.driver_data;

728
	sd->retries = 0;
729
	fw_device_enable_phys_dma(device);
730
	schedule_delayed_work(&sd->work, 0);
731 732 733 734 735
}

#define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
#define SBP2_SW_VERSION_ENTRY	0x00010483

736
static const struct fw_device_id sbp2_id_table[] = {
737 738 739
	{
		.match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
740
		.version      = SBP2_SW_VERSION_ENTRY,
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	},
	{ }
};

static struct fw_driver sbp2_driver = {
	.driver   = {
		.owner  = THIS_MODULE,
		.name   = sbp2_driver_name,
		.bus    = &fw_bus_type,
		.probe  = sbp2_probe,
		.remove = sbp2_remove,
	},
	.update   = sbp2_update,
	.id_table = sbp2_id_table,
};

static unsigned int sbp2_status_to_sense_data(u8 * sbp2_status, u8 * sense_data)
{
	sense_data[0] = 0x70;
	sense_data[1] = 0x0;
	sense_data[2] = sbp2_status[1];
	sense_data[3] = sbp2_status[4];
	sense_data[4] = sbp2_status[5];
	sense_data[5] = sbp2_status[6];
	sense_data[6] = sbp2_status[7];
	sense_data[7] = 10;
	sense_data[8] = sbp2_status[8];
	sense_data[9] = sbp2_status[9];
	sense_data[10] = sbp2_status[10];
	sense_data[11] = sbp2_status[11];
	sense_data[12] = sbp2_status[2];
	sense_data[13] = sbp2_status[3];
	sense_data[14] = sbp2_status[12];
	sense_data[15] = sbp2_status[13];

	switch (sbp2_status[0] & 0x3f) {
	case SAM_STAT_GOOD:
		return DID_OK;

	case SAM_STAT_CHECK_CONDITION:
		/* return CHECK_CONDITION << 1 | DID_OK << 16; */
		return DID_OK;

	case SAM_STAT_BUSY:
		return DID_BUS_BUSY;

	case SAM_STAT_CONDITION_MET:
	case SAM_STAT_RESERVATION_CONFLICT:
	case SAM_STAT_COMMAND_TERMINATED:
	default:
		return DID_ERROR;
	}
}

static void
complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
	struct sbp2_command_orb *orb = (struct sbp2_command_orb *)base_orb;
	struct fw_unit *unit = orb->unit;
	struct fw_device *device = fw_device(unit->device.parent);
	struct scatterlist *sg;
	int result;

	if (status != NULL) {
		if (status_get_dead(*status)) {
			fw_notify("agent died, issuing agent reset\n");
			sbp2_agent_reset(unit);
		}

		switch (status_get_response(*status)) {
		case SBP2_STATUS_REQUEST_COMPLETE:
			result = DID_OK;
			break;
		case SBP2_STATUS_TRANSPORT_FAILURE:
			result = DID_BUS_BUSY;
			break;
		case SBP2_STATUS_ILLEGAL_REQUEST:
		case SBP2_STATUS_VENDOR_DEPENDENT:
		default:
			result = DID_ERROR;
			break;
		}

		if (result == DID_OK && status_get_len(*status) > 1)
			result = sbp2_status_to_sense_data(status_get_data(*status),
							   orb->cmd->sense_buffer);
	} else {
		/* If the orb completes with status == NULL, something
		 * went wrong, typically a bus reset happened mid-orb
		 * or when sending the write (less likely). */
		fw_notify("no command orb status, rcode=%d\n",
			  orb->base.rcode);
		result = DID_ERROR;
	}

	dma_unmap_single(device->card->device, orb->base.request_bus,
			 sizeof orb->request, DMA_TO_DEVICE);

	if (orb->cmd->use_sg > 0) {
		sg = (struct scatterlist *)orb->cmd->request_buffer;
		dma_unmap_sg(device->card->device, sg, orb->cmd->use_sg,
			     orb->cmd->sc_data_direction);
	}

	if (orb->page_table_bus != 0)
		dma_unmap_single(device->card->device, orb->page_table_bus,
				 sizeof orb->page_table_bus, DMA_TO_DEVICE);

	if (orb->request_buffer_bus != 0)
		dma_unmap_single(device->card->device, orb->request_buffer_bus,
				 sizeof orb->request_buffer_bus,
				 DMA_FROM_DEVICE);

	orb->cmd->result = result << 16;
	orb->done(orb->cmd);

	kfree(orb);
}

static void sbp2_command_orb_map_scatterlist(struct sbp2_command_orb *orb)
{
	struct fw_unit *unit =
		(struct fw_unit *)orb->cmd->device->host->hostdata[0];
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd = unit->device.driver_data;
	struct scatterlist *sg;
	int sg_len, l, i, j, count;
	size_t size;
	dma_addr_t sg_addr;

	sg = (struct scatterlist *)orb->cmd->request_buffer;
	count = dma_map_sg(device->card->device, sg, orb->cmd->use_sg,
			   orb->cmd->sc_data_direction);

	/* Handle the special case where there is only one element in
	 * the scatter list by converting it to an immediate block
	 * request. This is also a workaround for broken devices such
	 * as the second generation iPod which doesn't support page
	 * tables. */
	if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
		orb->request.data_descriptor.high = sd->address_high;
		orb->request.data_descriptor.low  = sg_dma_address(sg);
		orb->request.misc |=
			command_orb_data_size(sg_dma_len(sg));
		return;
	}

	/* Convert the scatterlist to an sbp2 page table.  If any
	 * scatterlist entries are too big for sbp2 we split the as we go. */
	for (i = 0, j = 0; i < count; i++) {
		sg_len = sg_dma_len(sg + i);
		sg_addr = sg_dma_address(sg + i);
		while (sg_len) {
			l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
			orb->page_table[j].low = sg_addr;
			orb->page_table[j].high = (l << 16);
			sg_addr += l;
			sg_len -= l;
			j++;
		}
	}

	size = sizeof orb->page_table[0] * j;

	/* The data_descriptor pointer is the one case where we need
	 * to fill in the node ID part of the address.  All other
	 * pointers assume that the data referenced reside on the
	 * initiator (i.e. us), but data_descriptor can refer to data
	 * on other nodes so we need to put our ID in descriptor.high. */

	orb->page_table_bus =
		dma_map_single(device->card->device, orb->page_table,
			       size, DMA_TO_DEVICE);
	orb->request.data_descriptor.high = sd->address_high;
	orb->request.data_descriptor.low  = orb->page_table_bus;
	orb->request.misc |=
		command_orb_page_table_present |
		command_orb_data_size(j);

	fw_memcpy_to_be32(orb->page_table, orb->page_table, size);
}

static void sbp2_command_orb_map_buffer(struct sbp2_command_orb *orb)
{
	struct fw_unit *unit =
		(struct fw_unit *)orb->cmd->device->host->hostdata[0];
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd = unit->device.driver_data;

	/* As for map_scatterlist, we need to fill in the high bits of
	 * the data_descriptor pointer. */

	orb->request_buffer_bus =
		dma_map_single(device->card->device,
			       orb->cmd->request_buffer,
			       orb->cmd->request_bufflen,
			       orb->cmd->sc_data_direction);
	orb->request.data_descriptor.high = sd->address_high;
	orb->request.data_descriptor.low  = orb->request_buffer_bus;
	orb->request.misc |=
		command_orb_data_size(orb->cmd->request_bufflen);
}

/* SCSI stack integration */

static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
{
	struct fw_unit *unit = (struct fw_unit *)cmd->device->host->hostdata[0];
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_device *sd = unit->device.driver_data;
	struct sbp2_command_orb *orb;

	/* Bidirectional commands are not yet implemented, and unknown
	 * transfer direction not handled. */
	if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
		fw_error("Cannot handle DMA_BIDIRECTIONAL - rejecting command");
		cmd->result = DID_ERROR << 16;
		done(cmd);
		return 0;
	}

	orb = kzalloc(sizeof *orb, GFP_ATOMIC);
	if (orb == NULL) {
		fw_notify("failed to alloc orb\n");
		cmd->result = DID_NO_CONNECT << 16;
		done(cmd);
		return 0;
	}

	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof orb->request, DMA_TO_DEVICE);

	orb->unit = unit;
	orb->done = done;
	orb->cmd  = cmd;

	orb->request.next.high   = SBP2_ORB_NULL;
	orb->request.next.low    = 0x0;
	/* At speed 100 we can do 512 bytes per packet, at speed 200,
	 * 1024 bytes per packet etc.  The SBP-2 max_payload field
	 * specifies the max payload size as 2 ^ (max_payload + 2), so
	 * if we set this to max_speed + 7, we get the right value. */
	orb->request.misc =
		command_orb_max_payload(device->node->max_speed + 7) |
		command_orb_speed(device->node->max_speed) |
		command_orb_notify;

	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
		orb->request.misc |=
			command_orb_direction(SBP2_DIRECTION_FROM_MEDIA);
	else if (cmd->sc_data_direction == DMA_TO_DEVICE)
		orb->request.misc |=
			command_orb_direction(SBP2_DIRECTION_TO_MEDIA);

	if (cmd->use_sg) {
		sbp2_command_orb_map_scatterlist(orb);
	} else if (cmd->request_bufflen > SBP2_MAX_SG_ELEMENT_LENGTH) {
		/* FIXME: Need to split this into a sg list... but
		 * could we get the scsi or blk layer to do that by
		 * reporting our max supported block size? */
		fw_error("command > 64k\n");
		cmd->result = DID_ERROR << 16;
		done(cmd);
		return 0;
	} else if (cmd->request_bufflen > 0) {
		sbp2_command_orb_map_buffer(orb);
	}

	fw_memcpy_to_be32(&orb->request, &orb->request, sizeof orb->request);

	memset(orb->request.command_block,
	       0, sizeof orb->request.command_block);
	memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));

	orb->base.callback = complete_command_orb;

	sbp2_send_orb(&orb->base, unit, sd->node_id, sd->generation,
		      sd->command_block_agent_address + SBP2_ORB_POINTER);

	return 0;
}

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
{
	struct fw_unit *unit = (struct fw_unit *)sdev->host->hostdata[0];
	struct sbp2_device *sd = unit->device.driver_data;

	sdev->allow_restart = 1;

	if (sd->workarounds & SBP2_WORKAROUND_INQUIRY_36)
		sdev->inquiry_len = 36;
	return 0;
}

1036 1037 1038 1039 1040
static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
{
	struct fw_unit *unit = (struct fw_unit *)sdev->host->hostdata[0];
	struct sbp2_device *sd = unit->device.driver_data;

1041 1042 1043 1044
	sdev->use_10_for_rw = 1;

	if (sdev->type == TYPE_ROM)
		sdev->use_10_for_ms = 1;
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	if (sdev->type == TYPE_DISK &&
	    sd->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
		sdev->skip_ms_page_8 = 1;
	if (sd->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) {
		fw_notify("setting fix_capacity for %s\n", unit->device.bus_id);
		sdev->fix_capacity = 1;
	}

	return 0;
}

/*
 * Called by scsi stack when something has really gone wrong.  Usually
 * called when a command has timed-out for some reason.
 */
static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
{
	struct fw_unit *unit = (struct fw_unit *)cmd->device->host->hostdata[0];

	fw_notify("sbp2_scsi_abort\n");

	sbp2_cancel_orbs(unit);

	return SUCCESS;
}

static struct scsi_host_template scsi_driver_template = {
	.module			= THIS_MODULE,
	.name			= "SBP-2 IEEE-1394",
	.proc_name		= (char *)sbp2_driver_name,
	.queuecommand		= sbp2_scsi_queuecommand,
1076
	.slave_alloc		= sbp2_scsi_slave_alloc,
1077 1078 1079 1080 1081
	.slave_configure	= sbp2_scsi_slave_configure,
	.eh_abort_handler	= sbp2_scsi_abort,
	.this_id		= -1,
	.sg_tablesize		= SG_ALL,
	.use_clustering		= ENABLE_CLUSTERING,
1082 1083
	.cmd_per_lun		= 1,
	.can_queue		= 1,
1084 1085 1086 1087 1088 1089 1090
};

static int add_scsi_devices(struct fw_unit *unit)
{
	struct sbp2_device *sd = unit->device.driver_data;
	int retval, lun;

1091 1092 1093
	if (sd->scsi_host != NULL)
		return 0;

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	sd->scsi_host = scsi_host_alloc(&scsi_driver_template,
					sizeof(unsigned long));
	if (sd->scsi_host == NULL) {
		fw_error("failed to register scsi host\n");
		return -1;
	}

	sd->scsi_host->hostdata[0] = (unsigned long)unit;
	retval = scsi_add_host(sd->scsi_host, &unit->device);
	if (retval < 0) {
		fw_error("failed to add scsi host\n");
		scsi_host_put(sd->scsi_host);
		return retval;
	}

	/* FIXME: Loop over luns here. */
	lun = 0;
	retval = scsi_add_device(sd->scsi_host, 0, 0, lun);
	if (retval < 0) {
		fw_error("failed to add scsi device\n");
		scsi_remove_host(sd->scsi_host);
		scsi_host_put(sd->scsi_host);
		return retval;
	}

	return 0;
}

static void remove_scsi_devices(struct fw_unit *unit)
{
	struct sbp2_device *sd = unit->device.driver_data;

1126 1127 1128 1129 1130
	if (sd->scsi_host != NULL) {
		scsi_remove_host(sd->scsi_host);
		scsi_host_put(sd->scsi_host);
	}
	sd->scsi_host = NULL;
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
}

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("SCSI over IEEE1394");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);

static int __init sbp2_init(void)
{
	return driver_register(&sbp2_driver.driver);
}

static void __exit sbp2_cleanup(void)
{
	driver_unregister(&sbp2_driver.driver);
}

module_init(sbp2_init);
module_exit(sbp2_cleanup);