mac-fcc.c 14.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
 * FCC driver for Motorola MPC82xx (PQ2).
 *
 * Copyright (c) 2003 Intracom S.A. 
 *  by Pantelis Antoniou <panto@intracom.gr>
 *
 * 2005 (c) MontaVista Software, Inc. 
 * Vitaly Bordug <vbordug@ru.mvista.com>
 *
 * This file is licensed under the terms of the GNU General Public License 
 * version 2. This program is licensed "as is" without any warranty of any 
 * kind, whether express or implied.
 */

#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/bitops.h>
#include <linux/fs.h>
M
Marcelo Tosatti 已提交
37
#include <linux/platform_device.h>
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579

#include <asm/immap_cpm2.h>
#include <asm/mpc8260.h>
#include <asm/cpm2.h>

#include <asm/pgtable.h>
#include <asm/irq.h>
#include <asm/uaccess.h>

#include "fs_enet.h"

/*************************************************/

/* FCC access macros */

#define __fcc_out32(addr, x)	out_be32((unsigned *)addr, x)
#define __fcc_out16(addr, x)	out_be16((unsigned short *)addr, x)
#define __fcc_out8(addr, x)	out_8((unsigned char *)addr, x)
#define __fcc_in32(addr)	in_be32((unsigned *)addr)
#define __fcc_in16(addr)	in_be16((unsigned short *)addr)
#define __fcc_in8(addr)		in_8((unsigned char *)addr)

/* parameter space */

/* write, read, set bits, clear bits */
#define W32(_p, _m, _v)	__fcc_out32(&(_p)->_m, (_v))
#define R32(_p, _m)	__fcc_in32(&(_p)->_m)
#define S32(_p, _m, _v)	W32(_p, _m, R32(_p, _m) | (_v))
#define C32(_p, _m, _v)	W32(_p, _m, R32(_p, _m) & ~(_v))

#define W16(_p, _m, _v)	__fcc_out16(&(_p)->_m, (_v))
#define R16(_p, _m)	__fcc_in16(&(_p)->_m)
#define S16(_p, _m, _v)	W16(_p, _m, R16(_p, _m) | (_v))
#define C16(_p, _m, _v)	W16(_p, _m, R16(_p, _m) & ~(_v))

#define W8(_p, _m, _v)	__fcc_out8(&(_p)->_m, (_v))
#define R8(_p, _m)	__fcc_in8(&(_p)->_m)
#define S8(_p, _m, _v)	W8(_p, _m, R8(_p, _m) | (_v))
#define C8(_p, _m, _v)	W8(_p, _m, R8(_p, _m) & ~(_v))

/*************************************************/

#define FCC_MAX_MULTICAST_ADDRS	64

#define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18))
#define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | (VAL & 0xffff))
#define mk_mii_end		0

#define MAX_CR_CMD_LOOPS	10000

static inline int fcc_cr_cmd(struct fs_enet_private *fep, u32 mcn, u32 op)
{
	const struct fs_platform_info *fpi = fep->fpi;

	cpm2_map_t *immap = fs_enet_immap;
	cpm_cpm2_t *cpmp = &immap->im_cpm;
	u32 v;
	int i;

	/* Currently I don't know what feature call will look like. But 
	   I guess there'd be something like do_cpm_cmd() which will require page & sblock */
	v = mk_cr_cmd(fpi->cp_page, fpi->cp_block, mcn, op);
	W32(cpmp, cp_cpcr, v | CPM_CR_FLG);
	for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
		if ((R32(cpmp, cp_cpcr) & CPM_CR_FLG) == 0)
			break;

	if (i >= MAX_CR_CMD_LOOPS) {
		printk(KERN_ERR "%s(): Not able to issue CPM command\n",
		       __FUNCTION__);
		return 1;
	}

	return 0;
}

static int do_pd_setup(struct fs_enet_private *fep)
{
	struct platform_device *pdev = to_platform_device(fep->dev);
	struct resource *r;

	/* Fill out IRQ field */
	fep->interrupt = platform_get_irq(pdev, 0);

	/* Attach the memory for the FCC Parameter RAM */
	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fcc_pram");
	fep->fcc.ep = (void *)r->start;

	if (fep->fcc.ep == NULL)
		return -EINVAL;

	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fcc_regs");
	fep->fcc.fccp = (void *)r->start;

	if (fep->fcc.fccp == NULL)
		return -EINVAL;

	fep->fcc.fcccp = (void *)fep->fpi->fcc_regs_c;

	if (fep->fcc.fcccp == NULL)
		return -EINVAL;

	return 0;
}

#define FCC_NAPI_RX_EVENT_MSK	(FCC_ENET_RXF | FCC_ENET_RXB)
#define FCC_RX_EVENT		(FCC_ENET_RXF)
#define FCC_TX_EVENT		(FCC_ENET_TXB)
#define FCC_ERR_EVENT_MSK	(FCC_ENET_TXE | FCC_ENET_BSY)

static int setup_data(struct net_device *dev)
{
	struct fs_enet_private *fep = netdev_priv(dev);
	const struct fs_platform_info *fpi = fep->fpi;

	fep->fcc.idx = fs_get_fcc_index(fpi->fs_no);
	if ((unsigned int)fep->fcc.idx >= 3)	/* max 3 FCCs */
		return -EINVAL;

	fep->fcc.mem = (void *)fpi->mem_offset;

	if (do_pd_setup(fep) != 0)
		return -EINVAL;

	fep->ev_napi_rx = FCC_NAPI_RX_EVENT_MSK;
	fep->ev_rx = FCC_RX_EVENT;
	fep->ev_tx = FCC_TX_EVENT;
	fep->ev_err = FCC_ERR_EVENT_MSK;

	return 0;
}

static int allocate_bd(struct net_device *dev)
{
	struct fs_enet_private *fep = netdev_priv(dev);
	const struct fs_platform_info *fpi = fep->fpi;

	fep->ring_base = dma_alloc_coherent(fep->dev,
					    (fpi->tx_ring + fpi->rx_ring) *
					    sizeof(cbd_t), &fep->ring_mem_addr,
					    GFP_KERNEL);
	if (fep->ring_base == NULL)
		return -ENOMEM;

	return 0;
}

static void free_bd(struct net_device *dev)
{
	struct fs_enet_private *fep = netdev_priv(dev);
	const struct fs_platform_info *fpi = fep->fpi;

	if (fep->ring_base)
		dma_free_coherent(fep->dev,
			(fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
			fep->ring_base, fep->ring_mem_addr);
}

static void cleanup_data(struct net_device *dev)
{
	/* nothing */
}

static void set_promiscuous_mode(struct net_device *dev)
{
	struct fs_enet_private *fep = netdev_priv(dev);
	fcc_t *fccp = fep->fcc.fccp;

	S32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
}

static void set_multicast_start(struct net_device *dev)
{
	struct fs_enet_private *fep = netdev_priv(dev);
	fcc_enet_t *ep = fep->fcc.ep;

	W32(ep, fen_gaddrh, 0);
	W32(ep, fen_gaddrl, 0);
}

static void set_multicast_one(struct net_device *dev, const u8 *mac)
{
	struct fs_enet_private *fep = netdev_priv(dev);
	fcc_enet_t *ep = fep->fcc.ep;
	u16 taddrh, taddrm, taddrl;

	taddrh = ((u16)mac[5] << 8) | mac[4];
	taddrm = ((u16)mac[3] << 8) | mac[2];
	taddrl = ((u16)mac[1] << 8) | mac[0];

	W16(ep, fen_taddrh, taddrh);
	W16(ep, fen_taddrm, taddrm);
	W16(ep, fen_taddrl, taddrl);
	fcc_cr_cmd(fep, 0x0C, CPM_CR_SET_GADDR);
}

static void set_multicast_finish(struct net_device *dev)
{
	struct fs_enet_private *fep = netdev_priv(dev);
	fcc_t *fccp = fep->fcc.fccp;
	fcc_enet_t *ep = fep->fcc.ep;

	/* clear promiscuous always */
	C32(fccp, fcc_fpsmr, FCC_PSMR_PRO);

	/* if all multi or too many multicasts; just enable all */
	if ((dev->flags & IFF_ALLMULTI) != 0 ||
	    dev->mc_count > FCC_MAX_MULTICAST_ADDRS) {

		W32(ep, fen_gaddrh, 0xffffffff);
		W32(ep, fen_gaddrl, 0xffffffff);
	}

	/* read back */
	fep->fcc.gaddrh = R32(ep, fen_gaddrh);
	fep->fcc.gaddrl = R32(ep, fen_gaddrl);
}

static void set_multicast_list(struct net_device *dev)
{
	struct dev_mc_list *pmc;

	if ((dev->flags & IFF_PROMISC) == 0) {
		set_multicast_start(dev);
		for (pmc = dev->mc_list; pmc != NULL; pmc = pmc->next)
			set_multicast_one(dev, pmc->dmi_addr);
		set_multicast_finish(dev);
	} else
		set_promiscuous_mode(dev);
}

static void restart(struct net_device *dev)
{
	struct fs_enet_private *fep = netdev_priv(dev);
	const struct fs_platform_info *fpi = fep->fpi;
	fcc_t *fccp = fep->fcc.fccp;
	fcc_c_t *fcccp = fep->fcc.fcccp;
	fcc_enet_t *ep = fep->fcc.ep;
	dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
	u16 paddrh, paddrm, paddrl;
	u16 mem_addr;
	const unsigned char *mac;
	int i;

	C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);

	/* clear everything (slow & steady does it) */
	for (i = 0; i < sizeof(*ep); i++)
		__fcc_out8((char *)ep + i, 0);

	/* get physical address */
	rx_bd_base_phys = fep->ring_mem_addr;
	tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;

	/* point to bds */
	W32(ep, fen_genfcc.fcc_rbase, rx_bd_base_phys);
	W32(ep, fen_genfcc.fcc_tbase, tx_bd_base_phys);

	/* Set maximum bytes per receive buffer.
	 * It must be a multiple of 32.
	 */
	W16(ep, fen_genfcc.fcc_mrblr, PKT_MAXBLR_SIZE);

	W32(ep, fen_genfcc.fcc_rstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
	W32(ep, fen_genfcc.fcc_tstate, (CPMFCR_GBL | CPMFCR_EB) << 24);

	/* Allocate space in the reserved FCC area of DPRAM for the
	 * internal buffers.  No one uses this space (yet), so we
	 * can do this.  Later, we will add resource management for
	 * this area.
	 */

	mem_addr = (u32) fep->fcc.mem;	/* de-fixup dpram offset */

	W16(ep, fen_genfcc.fcc_riptr, (mem_addr & 0xffff));
	W16(ep, fen_genfcc.fcc_tiptr, ((mem_addr + 32) & 0xffff));
	W16(ep, fen_padptr, mem_addr + 64);

	/* fill with special symbol...  */
	memset(fep->fcc.mem + fpi->dpram_offset + 64, 0x88, 32);

	W32(ep, fen_genfcc.fcc_rbptr, 0);
	W32(ep, fen_genfcc.fcc_tbptr, 0);
	W32(ep, fen_genfcc.fcc_rcrc, 0);
	W32(ep, fen_genfcc.fcc_tcrc, 0);
	W16(ep, fen_genfcc.fcc_res1, 0);
	W32(ep, fen_genfcc.fcc_res2, 0);

	/* no CAM */
	W32(ep, fen_camptr, 0);

	/* Set CRC preset and mask */
	W32(ep, fen_cmask, 0xdebb20e3);
	W32(ep, fen_cpres, 0xffffffff);

	W32(ep, fen_crcec, 0);		/* CRC Error counter       */
	W32(ep, fen_alec, 0);		/* alignment error counter */
	W32(ep, fen_disfc, 0);		/* discard frame counter   */
	W16(ep, fen_retlim, 15);	/* Retry limit threshold   */
	W16(ep, fen_pper, 0);		/* Normal persistence      */

	/* set group address */
	W32(ep, fen_gaddrh, fep->fcc.gaddrh);
	W32(ep, fen_gaddrl, fep->fcc.gaddrh);

	/* Clear hash filter tables */
	W32(ep, fen_iaddrh, 0);
	W32(ep, fen_iaddrl, 0);

	/* Clear the Out-of-sequence TxBD  */
	W16(ep, fen_tfcstat, 0);
	W16(ep, fen_tfclen, 0);
	W32(ep, fen_tfcptr, 0);

	W16(ep, fen_mflr, PKT_MAXBUF_SIZE);	/* maximum frame length register */
	W16(ep, fen_minflr, PKT_MINBUF_SIZE);	/* minimum frame length register */

	/* set address */
	mac = dev->dev_addr;
	paddrh = ((u16)mac[5] << 8) | mac[4];
	paddrm = ((u16)mac[3] << 8) | mac[2];
	paddrl = ((u16)mac[1] << 8) | mac[0];

	W16(ep, fen_paddrh, paddrh);
	W16(ep, fen_paddrm, paddrm);
	W16(ep, fen_paddrl, paddrl);

	W16(ep, fen_taddrh, 0);
	W16(ep, fen_taddrm, 0);
	W16(ep, fen_taddrl, 0);

	W16(ep, fen_maxd1, 1520);	/* maximum DMA1 length */
	W16(ep, fen_maxd2, 1520);	/* maximum DMA2 length */

	/* Clear stat counters, in case we ever enable RMON */
	W32(ep, fen_octc, 0);
	W32(ep, fen_colc, 0);
	W32(ep, fen_broc, 0);
	W32(ep, fen_mulc, 0);
	W32(ep, fen_uspc, 0);
	W32(ep, fen_frgc, 0);
	W32(ep, fen_ospc, 0);
	W32(ep, fen_jbrc, 0);
	W32(ep, fen_p64c, 0);
	W32(ep, fen_p65c, 0);
	W32(ep, fen_p128c, 0);
	W32(ep, fen_p256c, 0);
	W32(ep, fen_p512c, 0);
	W32(ep, fen_p1024c, 0);

	W16(ep, fen_rfthr, 0);	/* Suggested by manual */
	W16(ep, fen_rfcnt, 0);
	W16(ep, fen_cftype, 0);

	fs_init_bds(dev);

	/* adjust to speed (for RMII mode) */
	if (fpi->use_rmii) {
		if (fep->speed == 100)
			C8(fcccp, fcc_gfemr, 0x20);
		else
			S8(fcccp, fcc_gfemr, 0x20);
	}

	fcc_cr_cmd(fep, 0x0c, CPM_CR_INIT_TRX);

	/* clear events */
	W16(fccp, fcc_fcce, 0xffff);

	/* Enable interrupts we wish to service */
	W16(fccp, fcc_fccm, FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);

	/* Set GFMR to enable Ethernet operating mode */
	W32(fccp, fcc_gfmr, FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);

	/* set sync/delimiters */
	W16(fccp, fcc_fdsr, 0xd555);

	W32(fccp, fcc_fpsmr, FCC_PSMR_ENCRC);

	if (fpi->use_rmii)
		S32(fccp, fcc_fpsmr, FCC_PSMR_RMII);

	/* adjust to duplex mode */
	if (fep->duplex)
		S32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
	else
		C32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);

	S32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
}

static void stop(struct net_device *dev)
{
	struct fs_enet_private *fep = netdev_priv(dev);
	fcc_t *fccp = fep->fcc.fccp;

	/* stop ethernet */
	C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);

	/* clear events */
	W16(fccp, fcc_fcce, 0xffff);

	/* clear interrupt mask */
	W16(fccp, fcc_fccm, 0);

	fs_cleanup_bds(dev);
}

static void pre_request_irq(struct net_device *dev, int irq)
{
	/* nothing */
}

static void post_free_irq(struct net_device *dev, int irq)
{
	/* nothing */
}

static void napi_clear_rx_event(struct net_device *dev)
{
	struct fs_enet_private *fep = netdev_priv(dev);
	fcc_t *fccp = fep->fcc.fccp;

	W16(fccp, fcc_fcce, FCC_NAPI_RX_EVENT_MSK);
}

static void napi_enable_rx(struct net_device *dev)
{
	struct fs_enet_private *fep = netdev_priv(dev);
	fcc_t *fccp = fep->fcc.fccp;

	S16(fccp, fcc_fccm, FCC_NAPI_RX_EVENT_MSK);
}

static void napi_disable_rx(struct net_device *dev)
{
	struct fs_enet_private *fep = netdev_priv(dev);
	fcc_t *fccp = fep->fcc.fccp;

	C16(fccp, fcc_fccm, FCC_NAPI_RX_EVENT_MSK);
}

static void rx_bd_done(struct net_device *dev)
{
	/* nothing */
}

static void tx_kickstart(struct net_device *dev)
{
	/* nothing */
}

static u32 get_int_events(struct net_device *dev)
{
	struct fs_enet_private *fep = netdev_priv(dev);
	fcc_t *fccp = fep->fcc.fccp;

	return (u32)R16(fccp, fcc_fcce);
}

static void clear_int_events(struct net_device *dev, u32 int_events)
{
	struct fs_enet_private *fep = netdev_priv(dev);
	fcc_t *fccp = fep->fcc.fccp;

	W16(fccp, fcc_fcce, int_events & 0xffff);
}

static void ev_error(struct net_device *dev, u32 int_events)
{
	printk(KERN_WARNING DRV_MODULE_NAME
	       ": %s FS_ENET ERROR(s) 0x%x\n", dev->name, int_events);
}

int get_regs(struct net_device *dev, void *p, int *sizep)
{
	struct fs_enet_private *fep = netdev_priv(dev);

	if (*sizep < sizeof(fcc_t) + sizeof(fcc_c_t) + sizeof(fcc_enet_t))
		return -EINVAL;

	memcpy_fromio(p, fep->fcc.fccp, sizeof(fcc_t));
	p = (char *)p + sizeof(fcc_t);

	memcpy_fromio(p, fep->fcc.fcccp, sizeof(fcc_c_t));
	p = (char *)p + sizeof(fcc_c_t);

	memcpy_fromio(p, fep->fcc.ep, sizeof(fcc_enet_t));

	return 0;
}

int get_regs_len(struct net_device *dev)
{
	return sizeof(fcc_t) + sizeof(fcc_c_t) + sizeof(fcc_enet_t);
}

/* Some transmit errors cause the transmitter to shut
 * down.  We now issue a restart transmit.  Since the
 * errors close the BD and update the pointers, the restart
 * _should_ pick up without having to reset any of our
 * pointers either.  Also, To workaround 8260 device erratum 
 * CPM37, we must disable and then re-enable the transmitter
 * following a Late Collision, Underrun, or Retry Limit error.
 */
void tx_restart(struct net_device *dev)
{
	struct fs_enet_private *fep = netdev_priv(dev);
	fcc_t *fccp = fep->fcc.fccp;

	C32(fccp, fcc_gfmr, FCC_GFMR_ENT);
	udelay(10);
	S32(fccp, fcc_gfmr, FCC_GFMR_ENT);

	fcc_cr_cmd(fep, 0x0C, CPM_CR_RESTART_TX);
}

/*************************************************************************/

const struct fs_ops fs_fcc_ops = {
	.setup_data		= setup_data,
	.cleanup_data		= cleanup_data,
	.set_multicast_list	= set_multicast_list,
	.restart		= restart,
	.stop			= stop,
	.pre_request_irq	= pre_request_irq,
	.post_free_irq		= post_free_irq,
	.napi_clear_rx_event	= napi_clear_rx_event,
	.napi_enable_rx		= napi_enable_rx,
	.napi_disable_rx	= napi_disable_rx,
	.rx_bd_done		= rx_bd_done,
	.tx_kickstart		= tx_kickstart,
	.get_int_events		= get_int_events,
	.clear_int_events	= clear_int_events,
	.ev_error		= ev_error,
	.get_regs		= get_regs,
	.get_regs_len		= get_regs_len,
	.tx_restart		= tx_restart,
	.allocate_bd		= allocate_bd,
	.free_bd		= free_bd,
};