eeh.c 27.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 * eeh.c
 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/bootmem.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/notifier.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/rbtree.h>
#include <linux/seq_file.h>
#include <linux/spinlock.h>
#include <asm/eeh.h>
#include <asm/io.h>
#include <asm/machdep.h>
#include <asm/rtas.h>
#include <asm/atomic.h>
#include <asm/systemcfg.h>
36
#include <asm/ppc-pci.h>
L
Linus Torvalds 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204

#undef DEBUG

/** Overview:
 *  EEH, or "Extended Error Handling" is a PCI bridge technology for
 *  dealing with PCI bus errors that can't be dealt with within the
 *  usual PCI framework, except by check-stopping the CPU.  Systems
 *  that are designed for high-availability/reliability cannot afford
 *  to crash due to a "mere" PCI error, thus the need for EEH.
 *  An EEH-capable bridge operates by converting a detected error
 *  into a "slot freeze", taking the PCI adapter off-line, making
 *  the slot behave, from the OS'es point of view, as if the slot
 *  were "empty": all reads return 0xff's and all writes are silently
 *  ignored.  EEH slot isolation events can be triggered by parity
 *  errors on the address or data busses (e.g. during posted writes),
 *  which in turn might be caused by dust, vibration, humidity,
 *  radioactivity or plain-old failed hardware.
 *
 *  Note, however, that one of the leading causes of EEH slot
 *  freeze events are buggy device drivers, buggy device microcode,
 *  or buggy device hardware.  This is because any attempt by the
 *  device to bus-master data to a memory address that is not
 *  assigned to the device will trigger a slot freeze.   (The idea
 *  is to prevent devices-gone-wild from corrupting system memory).
 *  Buggy hardware/drivers will have a miserable time co-existing
 *  with EEH.
 *
 *  Ideally, a PCI device driver, when suspecting that an isolation
 *  event has occured (e.g. by reading 0xff's), will then ask EEH
 *  whether this is the case, and then take appropriate steps to
 *  reset the PCI slot, the PCI device, and then resume operations.
 *  However, until that day,  the checking is done here, with the
 *  eeh_check_failure() routine embedded in the MMIO macros.  If
 *  the slot is found to be isolated, an "EEH Event" is synthesized
 *  and sent out for processing.
 */

/** Bus Unit ID macros; get low and hi 32-bits of the 64-bit BUID */
#define BUID_HI(buid) ((buid) >> 32)
#define BUID_LO(buid) ((buid) & 0xffffffff)

/* EEH event workqueue setup. */
static DEFINE_SPINLOCK(eeh_eventlist_lock);
LIST_HEAD(eeh_eventlist);
static void eeh_event_handler(void *);
DECLARE_WORK(eeh_event_wq, eeh_event_handler, NULL);

static struct notifier_block *eeh_notifier_chain;

/*
 * If a device driver keeps reading an MMIO register in an interrupt
 * handler after a slot isolation event has occurred, we assume it
 * is broken and panic.  This sets the threshold for how many read
 * attempts we allow before panicking.
 */
#define EEH_MAX_FAILS	1000
static atomic_t eeh_fail_count;

/* RTAS tokens */
static int ibm_set_eeh_option;
static int ibm_set_slot_reset;
static int ibm_read_slot_reset_state;
static int ibm_read_slot_reset_state2;
static int ibm_slot_error_detail;

static int eeh_subsystem_enabled;

/* Buffer for reporting slot-error-detail rtas calls */
static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
static DEFINE_SPINLOCK(slot_errbuf_lock);
static int eeh_error_buf_size;

/* System monitoring statistics */
static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);
static DEFINE_PER_CPU(unsigned long, false_positives);
static DEFINE_PER_CPU(unsigned long, ignored_failures);
static DEFINE_PER_CPU(unsigned long, slot_resets);

/**
 * The pci address cache subsystem.  This subsystem places
 * PCI device address resources into a red-black tree, sorted
 * according to the address range, so that given only an i/o
 * address, the corresponding PCI device can be **quickly**
 * found. It is safe to perform an address lookup in an interrupt
 * context; this ability is an important feature.
 *
 * Currently, the only customer of this code is the EEH subsystem;
 * thus, this code has been somewhat tailored to suit EEH better.
 * In particular, the cache does *not* hold the addresses of devices
 * for which EEH is not enabled.
 *
 * (Implementation Note: The RB tree seems to be better/faster
 * than any hash algo I could think of for this problem, even
 * with the penalty of slow pointer chases for d-cache misses).
 */
struct pci_io_addr_range
{
	struct rb_node rb_node;
	unsigned long addr_lo;
	unsigned long addr_hi;
	struct pci_dev *pcidev;
	unsigned int flags;
};

static struct pci_io_addr_cache
{
	struct rb_root rb_root;
	spinlock_t piar_lock;
} pci_io_addr_cache_root;

static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
{
	struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;

	while (n) {
		struct pci_io_addr_range *piar;
		piar = rb_entry(n, struct pci_io_addr_range, rb_node);

		if (addr < piar->addr_lo) {
			n = n->rb_left;
		} else {
			if (addr > piar->addr_hi) {
				n = n->rb_right;
			} else {
				pci_dev_get(piar->pcidev);
				return piar->pcidev;
			}
		}
	}

	return NULL;
}

/**
 * pci_get_device_by_addr - Get device, given only address
 * @addr: mmio (PIO) phys address or i/o port number
 *
 * Given an mmio phys address, or a port number, find a pci device
 * that implements this address.  Be sure to pci_dev_put the device
 * when finished.  I/O port numbers are assumed to be offset
 * from zero (that is, they do *not* have pci_io_addr added in).
 * It is safe to call this function within an interrupt.
 */
static struct pci_dev *pci_get_device_by_addr(unsigned long addr)
{
	struct pci_dev *dev;
	unsigned long flags;

	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
	dev = __pci_get_device_by_addr(addr);
	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
	return dev;
}

#ifdef DEBUG
/*
 * Handy-dandy debug print routine, does nothing more
 * than print out the contents of our addr cache.
 */
static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
{
	struct rb_node *n;
	int cnt = 0;

	n = rb_first(&cache->rb_root);
	while (n) {
		struct pci_io_addr_range *piar;
		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
205
		printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n",
L
Linus Torvalds 已提交
206
		       (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
207
		       piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
L
Linus Torvalds 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
		cnt++;
		n = rb_next(n);
	}
}
#endif

/* Insert address range into the rb tree. */
static struct pci_io_addr_range *
pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
		      unsigned long ahi, unsigned int flags)
{
	struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct pci_io_addr_range *piar;

	/* Walk tree, find a place to insert into tree */
	while (*p) {
		parent = *p;
		piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
		if (alo < piar->addr_lo) {
			p = &parent->rb_left;
		} else if (ahi > piar->addr_hi) {
			p = &parent->rb_right;
		} else {
			if (dev != piar->pcidev ||
			    alo != piar->addr_lo || ahi != piar->addr_hi) {
				printk(KERN_WARNING "PIAR: overlapping address range\n");
			}
			return piar;
		}
	}
	piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
	if (!piar)
		return NULL;

	piar->addr_lo = alo;
	piar->addr_hi = ahi;
	piar->pcidev = dev;
	piar->flags = flags;

	rb_link_node(&piar->rb_node, parent, p);
	rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);

	return piar;
}

static void __pci_addr_cache_insert_device(struct pci_dev *dev)
{
	struct device_node *dn;
257
	struct pci_dn *pdn;
L
Linus Torvalds 已提交
258 259 260 261 262
	int i;
	int inserted = 0;

	dn = pci_device_to_OF_node(dev);
	if (!dn) {
263 264
		printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n",
			pci_name(dev));
L
Linus Torvalds 已提交
265 266 267 268
		return;
	}

	/* Skip any devices for which EEH is not enabled. */
269 270 271
	pdn = dn->data;
	if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
	    pdn->eeh_mode & EEH_MODE_NOCHECK) {
L
Linus Torvalds 已提交
272
#ifdef DEBUG
273 274
		printk(KERN_INFO "PCI: skip building address cache for=%s\n",
		       pci_name(dev));
L
Linus Torvalds 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
#endif
		return;
	}

	/* The cache holds a reference to the device... */
	pci_dev_get(dev);

	/* Walk resources on this device, poke them into the tree */
	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
		unsigned long start = pci_resource_start(dev,i);
		unsigned long end = pci_resource_end(dev,i);
		unsigned int flags = pci_resource_flags(dev,i);

		/* We are interested only bus addresses, not dma or other stuff */
		if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
			continue;
		if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
			 continue;
		pci_addr_cache_insert(dev, start, end, flags);
		inserted = 1;
	}

	/* If there was nothing to add, the cache has no reference... */
	if (!inserted)
		pci_dev_put(dev);
}

/**
 * pci_addr_cache_insert_device - Add a device to the address cache
 * @dev: PCI device whose I/O addresses we are interested in.
 *
 * In order to support the fast lookup of devices based on addresses,
 * we maintain a cache of devices that can be quickly searched.
 * This routine adds a device to that cache.
 */
void pci_addr_cache_insert_device(struct pci_dev *dev)
{
	unsigned long flags;

	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
	__pci_addr_cache_insert_device(dev);
	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
}

static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
{
	struct rb_node *n;
	int removed = 0;

restart:
	n = rb_first(&pci_io_addr_cache_root.rb_root);
	while (n) {
		struct pci_io_addr_range *piar;
		piar = rb_entry(n, struct pci_io_addr_range, rb_node);

		if (piar->pcidev == dev) {
			rb_erase(n, &pci_io_addr_cache_root.rb_root);
			removed = 1;
			kfree(piar);
			goto restart;
		}
		n = rb_next(n);
	}

	/* The cache no longer holds its reference to this device... */
	if (removed)
		pci_dev_put(dev);
}

/**
 * pci_addr_cache_remove_device - remove pci device from addr cache
 * @dev: device to remove
 *
 * Remove a device from the addr-cache tree.
 * This is potentially expensive, since it will walk
 * the tree multiple times (once per resource).
 * But so what; device removal doesn't need to be that fast.
 */
void pci_addr_cache_remove_device(struct pci_dev *dev)
{
	unsigned long flags;

	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
	__pci_addr_cache_remove_device(dev);
	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
}

/**
 * pci_addr_cache_build - Build a cache of I/O addresses
 *
 * Build a cache of pci i/o addresses.  This cache will be used to
 * find the pci device that corresponds to a given address.
 * This routine scans all pci busses to build the cache.
 * Must be run late in boot process, after the pci controllers
 * have been scaned for devices (after all device resources are known).
 */
void __init pci_addr_cache_build(void)
{
	struct pci_dev *dev = NULL;

	spin_lock_init(&pci_io_addr_cache_root.piar_lock);

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
		/* Ignore PCI bridges ( XXX why ??) */
		if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) {
			continue;
		}
		pci_addr_cache_insert_device(dev);
	}

#ifdef DEBUG
	/* Verify tree built up above, echo back the list of addrs. */
	pci_addr_cache_print(&pci_io_addr_cache_root);
#endif
}

/* --------------------------------------------------------------- */
/* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */

/**
 * eeh_register_notifier - Register to find out about EEH events.
 * @nb: notifier block to callback on events
 */
int eeh_register_notifier(struct notifier_block *nb)
{
	return notifier_chain_register(&eeh_notifier_chain, nb);
}

/**
 * eeh_unregister_notifier - Unregister to an EEH event notifier.
 * @nb: notifier block to callback on events
 */
int eeh_unregister_notifier(struct notifier_block *nb)
{
	return notifier_chain_unregister(&eeh_notifier_chain, nb);
}

/**
 * read_slot_reset_state - Read the reset state of a device node's slot
 * @dn: device node to read
 * @rets: array to return results in
 */
static int read_slot_reset_state(struct device_node *dn, int rets[])
{
	int token, outputs;
420
	struct pci_dn *pdn = dn->data;
L
Linus Torvalds 已提交
421 422 423 424 425 426 427 428 429

	if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
		token = ibm_read_slot_reset_state2;
		outputs = 4;
	} else {
		token = ibm_read_slot_reset_state;
		outputs = 3;
	}

430 431
	return rtas_call(token, 3, outputs, rets, pdn->eeh_config_addr,
			 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
L
Linus Torvalds 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
}

/**
 * eeh_panic - call panic() for an eeh event that cannot be handled.
 * The philosophy of this routine is that it is better to panic and
 * halt the OS than it is to risk possible data corruption by
 * oblivious device drivers that don't know better.
 *
 * @dev pci device that had an eeh event
 * @reset_state current reset state of the device slot
 */
static void eeh_panic(struct pci_dev *dev, int reset_state)
{
	/*
	 * XXX We should create a separate sysctl for this.
	 *
	 * Since the panic_on_oops sysctl is used to halt the system
	 * in light of potential corruption, we can use it here.
	 */
	if (panic_on_oops)
452 453
		panic("EEH: MMIO failure (%d) on device:%s\n", reset_state,
		      pci_name(dev));
L
Linus Torvalds 已提交
454 455
	else {
		__get_cpu_var(ignored_failures)++;
456 457
		printk(KERN_INFO "EEH: Ignored MMIO failure (%d) on device:%s\n",
		       reset_state, pci_name(dev));
L
Linus Torvalds 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	}
}

/**
 * eeh_event_handler - dispatch EEH events.  The detection of a frozen
 * slot can occur inside an interrupt, where it can be hard to do
 * anything about it.  The goal of this routine is to pull these
 * detection events out of the context of the interrupt handler, and
 * re-dispatch them for processing at a later time in a normal context.
 *
 * @dummy - unused
 */
static void eeh_event_handler(void *dummy)
{
	unsigned long flags;
	struct eeh_event	*event;

	while (1) {
		spin_lock_irqsave(&eeh_eventlist_lock, flags);
		event = NULL;
		if (!list_empty(&eeh_eventlist)) {
			event = list_entry(eeh_eventlist.next, struct eeh_event, list);
			list_del(&event->list);
		}
		spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
		if (event == NULL)
			break;

		printk(KERN_INFO "EEH: MMIO failure (%d), notifiying device "
487 488
		       "%s\n", event->reset_state,
		       pci_name(event->dev));
L
Linus Torvalds 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509

		atomic_set(&eeh_fail_count, 0);
		notifier_call_chain (&eeh_notifier_chain,
				     EEH_NOTIFY_FREEZE, event);

		__get_cpu_var(slot_resets)++;

		pci_dev_put(event->dev);
		kfree(event);
	}
}

/**
 * eeh_token_to_phys - convert EEH address token to phys address
 * @token i/o token, should be address in the form 0xE....
 */
static inline unsigned long eeh_token_to_phys(unsigned long token)
{
	pte_t *ptep;
	unsigned long pa;

D
David Gibson 已提交
510
	ptep = find_linux_pte(init_mm.pgd, token);
L
Linus Torvalds 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
	if (!ptep)
		return token;
	pa = pte_pfn(*ptep) << PAGE_SHIFT;

	return pa | (token & (PAGE_SIZE-1));
}

/**
 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
 * @dn device node
 * @dev pci device, if known
 *
 * Check for an EEH failure for the given device node.  Call this
 * routine if the result of a read was all 0xff's and you want to
 * find out if this is due to an EEH slot freeze.  This routine
 * will query firmware for the EEH status.
 *
 * Returns 0 if there has not been an EEH error; otherwise returns
 * a non-zero value and queues up a solt isolation event notification.
 *
 * It is safe to call this routine in an interrupt context.
 */
int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
{
	int ret;
	int rets[3];
	unsigned long flags;
	int rc, reset_state;
	struct eeh_event  *event;
540
	struct pci_dn *pdn;
L
Linus Torvalds 已提交
541 542 543 544 545 546 547 548

	__get_cpu_var(total_mmio_ffs)++;

	if (!eeh_subsystem_enabled)
		return 0;

	if (!dn)
		return 0;
549
	pdn = dn->data;
L
Linus Torvalds 已提交
550 551

	/* Access to IO BARs might get this far and still not want checking. */
552 553
	if (!pdn->eeh_capable || !(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
	    pdn->eeh_mode & EEH_MODE_NOCHECK) {
L
Linus Torvalds 已提交
554 555 556
		return 0;
	}

557
	if (!pdn->eeh_config_addr) {
L
Linus Torvalds 已提交
558 559 560 561 562 563 564
		return 0;
	}

	/*
	 * If we already have a pending isolation event for this
	 * slot, we know it's bad already, we don't need to check...
	 */
565
	if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
L
Linus Torvalds 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
		atomic_inc(&eeh_fail_count);
		if (atomic_read(&eeh_fail_count) >= EEH_MAX_FAILS) {
			/* re-read the slot reset state */
			if (read_slot_reset_state(dn, rets) != 0)
				rets[0] = -1;	/* reset state unknown */
			eeh_panic(dev, rets[0]);
		}
		return 0;
	}

	/*
	 * Now test for an EEH failure.  This is VERY expensive.
	 * Note that the eeh_config_addr may be a parent device
	 * in the case of a device behind a bridge, or it may be
	 * function zero of a multi-function device.
	 * In any case they must share a common PHB.
	 */
	ret = read_slot_reset_state(dn, rets);
	if (!(ret == 0 && rets[1] == 1 && (rets[0] == 2 || rets[0] == 4))) {
		__get_cpu_var(false_positives)++;
		return 0;
	}

	/* prevent repeated reports of this failure */
590
	pdn->eeh_mode |= EEH_MODE_ISOLATED;
L
Linus Torvalds 已提交
591 592 593 594 595 596 597

	reset_state = rets[0];

	spin_lock_irqsave(&slot_errbuf_lock, flags);
	memset(slot_errbuf, 0, eeh_error_buf_size);

	rc = rtas_call(ibm_slot_error_detail,
598 599 600
	               8, 1, NULL, pdn->eeh_config_addr,
	               BUID_HI(pdn->phb->buid),
	               BUID_LO(pdn->phb->buid), NULL, 0,
L
Linus Torvalds 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
	               virt_to_phys(slot_errbuf),
	               eeh_error_buf_size,
	               1 /* Temporary Error */);

	if (rc == 0)
		log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
	spin_unlock_irqrestore(&slot_errbuf_lock, flags);

	printk(KERN_INFO "EEH: MMIO failure (%d) on device: %s %s\n",
	       rets[0], dn->name, dn->full_name);
	event = kmalloc(sizeof(*event), GFP_ATOMIC);
	if (event == NULL) {
		eeh_panic(dev, reset_state);
		return 1;
 	}

	event->dev = dev;
	event->dn = dn;
	event->reset_state = reset_state;

	/* We may or may not be called in an interrupt context */
	spin_lock_irqsave(&eeh_eventlist_lock, flags);
	list_add(&event->list, &eeh_eventlist);
	spin_unlock_irqrestore(&eeh_eventlist_lock, flags);

	/* Most EEH events are due to device driver bugs.  Having
	 * a stack trace will help the device-driver authors figure
	 * out what happened.  So print that out. */
	dump_stack();
	schedule_work(&eeh_event_wq);

	return 0;
}

EXPORT_SYMBOL(eeh_dn_check_failure);

/**
 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
 * @token i/o token, should be address in the form 0xA....
 * @val value, should be all 1's (XXX why do we need this arg??)
 *
 * Check for an eeh failure at the given token address.
 * Check for an EEH failure at the given token address.  Call this
 * routine if the result of a read was all 0xff's and you want to
 * find out if this is due to an EEH slot freeze event.  This routine
 * will query firmware for the EEH status.
 *
 * Note this routine is safe to call in an interrupt context.
 */
unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
{
	unsigned long addr;
	struct pci_dev *dev;
	struct device_node *dn;

	/* Finding the phys addr + pci device; this is pretty quick. */
	addr = eeh_token_to_phys((unsigned long __force) token);
	dev = pci_get_device_by_addr(addr);
	if (!dev)
		return val;

	dn = pci_device_to_OF_node(dev);
	eeh_dn_check_failure (dn, dev);

	pci_dev_put(dev);
	return val;
}

EXPORT_SYMBOL(eeh_check_failure);

struct eeh_early_enable_info {
	unsigned int buid_hi;
	unsigned int buid_lo;
};

/* Enable eeh for the given device node. */
static void *early_enable_eeh(struct device_node *dn, void *data)
{
	struct eeh_early_enable_info *info = data;
	int ret;
	char *status = get_property(dn, "status", NULL);
	u32 *class_code = (u32 *)get_property(dn, "class-code", NULL);
	u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL);
	u32 *device_id = (u32 *)get_property(dn, "device-id", NULL);
	u32 *regs;
	int enable;
687
	struct pci_dn *pdn = dn->data;
L
Linus Torvalds 已提交
688

689
	pdn->eeh_mode = 0;
L
Linus Torvalds 已提交
690 691 692 693 694 695 696 697 698 699

	if (status && strcmp(status, "ok") != 0)
		return NULL;	/* ignore devices with bad status */

	/* Ignore bad nodes. */
	if (!class_code || !vendor_id || !device_id)
		return NULL;

	/* There is nothing to check on PCI to ISA bridges */
	if (dn->type && !strcmp(dn->type, "isa")) {
700
		pdn->eeh_mode |= EEH_MODE_NOCHECK;
L
Linus Torvalds 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
		return NULL;
	}

	/*
	 * Now decide if we are going to "Disable" EEH checking
	 * for this device.  We still run with the EEH hardware active,
	 * but we won't be checking for ff's.  This means a driver
	 * could return bad data (very bad!), an interrupt handler could
	 * hang waiting on status bits that won't change, etc.
	 * But there are a few cases like display devices that make sense.
	 */
	enable = 1;	/* i.e. we will do checking */
	if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
		enable = 0;

	if (!enable)
717
		pdn->eeh_mode |= EEH_MODE_NOCHECK;
L
Linus Torvalds 已提交
718 719 720 721 722 723 724 725 726 727 728 729

	/* Ok... see if this device supports EEH.  Some do, some don't,
	 * and the only way to find out is to check each and every one. */
	regs = (u32 *)get_property(dn, "reg", NULL);
	if (regs) {
		/* First register entry is addr (00BBSS00)  */
		/* Try to enable eeh */
		ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
				regs[0], info->buid_hi, info->buid_lo,
				EEH_ENABLE);
		if (ret == 0) {
			eeh_subsystem_enabled = 1;
730 731
			pdn->eeh_mode |= EEH_MODE_SUPPORTED;
			pdn->eeh_config_addr = regs[0];
L
Linus Torvalds 已提交
732 733 734 735 736 737 738
#ifdef DEBUG
			printk(KERN_DEBUG "EEH: %s: eeh enabled\n", dn->full_name);
#endif
		} else {

			/* This device doesn't support EEH, but it may have an
			 * EEH parent, in which case we mark it as supported. */
739 740
			if (dn->parent && dn->parent->data
			    && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
L
Linus Torvalds 已提交
741
				/* Parent supports EEH. */
742 743
				pdn->eeh_mode |= EEH_MODE_SUPPORTED;
				pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
L
Linus Torvalds 已提交
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
				return NULL;
			}
		}
	} else {
		printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
		       dn->full_name);
	}

	return NULL; 
}

/*
 * Initialize EEH by trying to enable it for all of the adapters in the system.
 * As a side effect we can determine here if eeh is supported at all.
 * Note that we leave EEH on so failed config cycles won't cause a machine
 * check.  If a user turns off EEH for a particular adapter they are really
 * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
 * grant access to a slot if EEH isn't enabled, and so we always enable
 * EEH for all slots/all devices.
 *
 * The eeh-force-off option disables EEH checking globally, for all slots.
 * Even if force-off is set, the EEH hardware is still enabled, so that
 * newer systems can boot.
 */
void __init eeh_init(void)
{
	struct device_node *phb, *np;
	struct eeh_early_enable_info info;

	np = of_find_node_by_path("/rtas");
	if (np == NULL)
		return;

	ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
	ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
	ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
	ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
	ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");

	if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
		return;

	eeh_error_buf_size = rtas_token("rtas-error-log-max");
	if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
		eeh_error_buf_size = 1024;
	}
	if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
		printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
		      "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
		eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
	}

	/* Enable EEH for all adapters.  Note that eeh requires buid's */
	for (phb = of_find_node_by_name(NULL, "pci"); phb;
	     phb = of_find_node_by_name(phb, "pci")) {
		unsigned long buid;
800
		struct pci_dn *pci;
L
Linus Torvalds 已提交
801 802

		buid = get_phb_buid(phb);
803
		if (buid == 0 || phb->data == NULL)
L
Linus Torvalds 已提交
804 805
			continue;

806
		pci = phb->data;
L
Linus Torvalds 已提交
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
		info.buid_lo = BUID_LO(buid);
		info.buid_hi = BUID_HI(buid);
		traverse_pci_devices(phb, early_enable_eeh, &info);
	}

	if (eeh_subsystem_enabled)
		printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
	else
		printk(KERN_WARNING "EEH: No capable adapters found\n");
}

/**
 * eeh_add_device_early - enable EEH for the indicated device_node
 * @dn: device node for which to set up EEH
 *
 * This routine must be used to perform EEH initialization for PCI
 * devices that were added after system boot (e.g. hotplug, dlpar).
 * This routine must be called before any i/o is performed to the
 * adapter (inluding any config-space i/o).
 * Whether this actually enables EEH or not for this device depends
 * on the CEC architecture, type of the device, on earlier boot
 * command-line arguments & etc.
 */
void eeh_add_device_early(struct device_node *dn)
{
	struct pci_controller *phb;
	struct eeh_early_enable_info info;

835
	if (!dn || !dn->data)
L
Linus Torvalds 已提交
836
		return;
837
	phb = PCI_DN(dn)->phb;
L
Linus Torvalds 已提交
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
	if (NULL == phb || 0 == phb->buid) {
		printk(KERN_WARNING "EEH: Expected buid but found none\n");
		return;
	}

	info.buid_hi = BUID_HI(phb->buid);
	info.buid_lo = BUID_LO(phb->buid);
	early_enable_eeh(dn, &info);
}
EXPORT_SYMBOL(eeh_add_device_early);

/**
 * eeh_add_device_late - perform EEH initialization for the indicated pci device
 * @dev: pci device for which to set up EEH
 *
 * This routine must be used to complete EEH initialization for PCI
 * devices that were added after system boot (e.g. hotplug, dlpar).
 */
void eeh_add_device_late(struct pci_dev *dev)
{
	if (!dev || !eeh_subsystem_enabled)
		return;

#ifdef DEBUG
862
	printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
L
Linus Torvalds 已提交
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
#endif

	pci_addr_cache_insert_device (dev);
}
EXPORT_SYMBOL(eeh_add_device_late);

/**
 * eeh_remove_device - undo EEH setup for the indicated pci device
 * @dev: pci device to be removed
 *
 * This routine should be when a device is removed from a running
 * system (e.g. by hotplug or dlpar).
 */
void eeh_remove_device(struct pci_dev *dev)
{
	if (!dev || !eeh_subsystem_enabled)
		return;

	/* Unregister the device with the EEH/PCI address search system */
#ifdef DEBUG
883
	printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
L
Linus Torvalds 已提交
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
#endif
	pci_addr_cache_remove_device(dev);
}
EXPORT_SYMBOL(eeh_remove_device);

static int proc_eeh_show(struct seq_file *m, void *v)
{
	unsigned int cpu;
	unsigned long ffs = 0, positives = 0, failures = 0;
	unsigned long resets = 0;

	for_each_cpu(cpu) {
		ffs += per_cpu(total_mmio_ffs, cpu);
		positives += per_cpu(false_positives, cpu);
		failures += per_cpu(ignored_failures, cpu);
		resets += per_cpu(slot_resets, cpu);
	}

	if (0 == eeh_subsystem_enabled) {
		seq_printf(m, "EEH Subsystem is globally disabled\n");
		seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs);
	} else {
		seq_printf(m, "EEH Subsystem is enabled\n");
		seq_printf(m, "eeh_total_mmio_ffs=%ld\n"
			   "eeh_false_positives=%ld\n"
			   "eeh_ignored_failures=%ld\n"
			   "eeh_slot_resets=%ld\n"
				"eeh_fail_count=%d\n",
			   ffs, positives, failures, resets,
				eeh_fail_count.counter);
	}

	return 0;
}

static int proc_eeh_open(struct inode *inode, struct file *file)
{
	return single_open(file, proc_eeh_show, NULL);
}

static struct file_operations proc_eeh_operations = {
	.open      = proc_eeh_open,
	.read      = seq_read,
	.llseek    = seq_lseek,
	.release   = single_release,
};

static int __init eeh_init_proc(void)
{
	struct proc_dir_entry *e;

	if (systemcfg->platform & PLATFORM_PSERIES) {
		e = create_proc_entry("ppc64/eeh", 0, NULL);
		if (e)
			e->proc_fops = &proc_eeh_operations;
	}

	return 0;
}
__initcall(eeh_init_proc);