radeon_vm.c 30.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/*
 * Copyright 2008 Advanced Micro Devices, Inc.
 * Copyright 2008 Red Hat Inc.
 * Copyright 2009 Jerome Glisse.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Dave Airlie
 *          Alex Deucher
 *          Jerome Glisse
 */
#include <drm/drmP.h>
#include <drm/radeon_drm.h>
#include "radeon.h"
#include "radeon_trace.h"

/*
 * GPUVM
 * GPUVM is similar to the legacy gart on older asics, however
 * rather than there being a single global gart table
 * for the entire GPU, there are multiple VM page tables active
 * at any given time.  The VM page tables can contain a mix
 * vram pages and system memory pages and system memory pages
 * can be mapped as snooped (cached system pages) or unsnooped
 * (uncached system pages).
 * Each VM has an ID associated with it and there is a page table
 * associated with each VMID.  When execting a command buffer,
 * the kernel tells the the ring what VMID to use for that command
 * buffer.  VMIDs are allocated dynamically as commands are submitted.
 * The userspace drivers maintain their own address space and the kernel
 * sets up their pages tables accordingly when they submit their
 * command buffers and a VMID is assigned.
 * Cayman/Trinity support up to 8 active VMs at any given time;
 * SI supports 16.
 */

/**
 * radeon_vm_num_pde - return the number of page directory entries
 *
 * @rdev: radeon_device pointer
 *
 * Calculate the number of page directory entries (cayman+).
 */
static unsigned radeon_vm_num_pdes(struct radeon_device *rdev)
{
62
	return rdev->vm_manager.max_pfn >> radeon_vm_block_size;
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
}

/**
 * radeon_vm_directory_size - returns the size of the page directory in bytes
 *
 * @rdev: radeon_device pointer
 *
 * Calculate the size of the page directory in bytes (cayman+).
 */
static unsigned radeon_vm_directory_size(struct radeon_device *rdev)
{
	return RADEON_GPU_PAGE_ALIGN(radeon_vm_num_pdes(rdev) * 8);
}

/**
 * radeon_vm_manager_init - init the vm manager
 *
 * @rdev: radeon_device pointer
 *
 * Init the vm manager (cayman+).
 * Returns 0 for success, error for failure.
 */
int radeon_vm_manager_init(struct radeon_device *rdev)
{
	int r;

	if (!rdev->vm_manager.enabled) {
		r = radeon_asic_vm_init(rdev);
		if (r)
			return r;

		rdev->vm_manager.enabled = true;
	}
	return 0;
}

/**
 * radeon_vm_manager_fini - tear down the vm manager
 *
 * @rdev: radeon_device pointer
 *
 * Tear down the VM manager (cayman+).
 */
void radeon_vm_manager_fini(struct radeon_device *rdev)
{
	int i;

	if (!rdev->vm_manager.enabled)
		return;

113
	for (i = 0; i < RADEON_NUM_VM; ++i)
114 115 116 117 118 119
		radeon_fence_unref(&rdev->vm_manager.active[i]);
	radeon_asic_vm_fini(rdev);
	rdev->vm_manager.enabled = false;
}

/**
120
 * radeon_vm_get_bos - add the vm BOs to a validation list
121
 *
122 123
 * @vm: vm providing the BOs
 * @head: head of validation list
124
 *
125 126
 * Add the page directory to the list of BOs to
 * validate for command submission (cayman+).
127
 */
128 129 130
struct radeon_cs_reloc *radeon_vm_get_bos(struct radeon_device *rdev,
					  struct radeon_vm *vm,
					  struct list_head *head)
131
{
132
	struct radeon_cs_reloc *list;
133
	unsigned i, idx;
134

135 136
	list = drm_malloc_ab(vm->max_pde_used + 2,
			     sizeof(struct radeon_cs_reloc));
137 138
	if (!list)
		return NULL;
139

140
	/* add the vm page table to the list */
141 142
	list[0].gobj = NULL;
	list[0].robj = vm->page_directory;
143 144
	list[0].prefered_domains = RADEON_GEM_DOMAIN_VRAM;
	list[0].allowed_domains = RADEON_GEM_DOMAIN_VRAM;
145
	list[0].tv.bo = &vm->page_directory->tbo;
146
	list[0].tv.shared = true;
147 148
	list[0].tiling_flags = 0;
	list[0].handle = 0;
149
	list_add(&list[0].tv.head, head);
150

151 152 153
	for (i = 0, idx = 1; i <= vm->max_pde_used; i++) {
		if (!vm->page_tables[i].bo)
			continue;
154

155 156
		list[idx].gobj = NULL;
		list[idx].robj = vm->page_tables[i].bo;
157 158
		list[idx].prefered_domains = RADEON_GEM_DOMAIN_VRAM;
		list[idx].allowed_domains = RADEON_GEM_DOMAIN_VRAM;
159
		list[idx].tv.bo = &list[idx].robj->tbo;
160
		list[idx].tv.shared = true;
161 162
		list[idx].tiling_flags = 0;
		list[idx].handle = 0;
163
		list_add(&list[idx++].tv.head, head);
164 165
	}

166
	return list;
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
}

/**
 * radeon_vm_grab_id - allocate the next free VMID
 *
 * @rdev: radeon_device pointer
 * @vm: vm to allocate id for
 * @ring: ring we want to submit job to
 *
 * Allocate an id for the vm (cayman+).
 * Returns the fence we need to sync to (if any).
 *
 * Global and local mutex must be locked!
 */
struct radeon_fence *radeon_vm_grab_id(struct radeon_device *rdev,
				       struct radeon_vm *vm, int ring)
{
	struct radeon_fence *best[RADEON_NUM_RINGS] = {};
185 186
	struct radeon_vm_id *vm_id = &vm->ids[ring];

187 188 189 190
	unsigned choices[2] = {};
	unsigned i;

	/* check if the id is still valid */
191 192
	if (vm_id->id && vm_id->last_id_use &&
	    vm_id->last_id_use == rdev->vm_manager.active[vm_id->id])
193 194 195
		return NULL;

	/* we definately need to flush */
196
	vm_id->pd_gpu_addr = ~0ll;
197 198 199 200 201 202 203

	/* skip over VMID 0, since it is the system VM */
	for (i = 1; i < rdev->vm_manager.nvm; ++i) {
		struct radeon_fence *fence = rdev->vm_manager.active[i];

		if (fence == NULL) {
			/* found a free one */
204 205
			vm_id->id = i;
			trace_radeon_vm_grab_id(i, ring);
206 207 208 209 210 211 212 213 214 215 216
			return NULL;
		}

		if (radeon_fence_is_earlier(fence, best[fence->ring])) {
			best[fence->ring] = fence;
			choices[fence->ring == ring ? 0 : 1] = i;
		}
	}

	for (i = 0; i < 2; ++i) {
		if (choices[i]) {
217 218
			vm_id->id = choices[i];
			trace_radeon_vm_grab_id(choices[i], ring);
219 220 221 222 223 224 225 226 227
			return rdev->vm_manager.active[choices[i]];
		}
	}

	/* should never happen */
	BUG();
	return NULL;
}

228 229 230 231 232 233
/**
 * radeon_vm_flush - hardware flush the vm
 *
 * @rdev: radeon_device pointer
 * @vm: vm we want to flush
 * @ring: ring to use for flush
234
 * @updates: last vm update that is waited for
235 236 237 238 239 240 241
 *
 * Flush the vm (cayman+).
 *
 * Global and local mutex must be locked!
 */
void radeon_vm_flush(struct radeon_device *rdev,
		     struct radeon_vm *vm,
242
		     int ring, struct radeon_fence *updates)
243
{
244
	uint64_t pd_addr = radeon_bo_gpu_offset(vm->page_directory);
245
	struct radeon_vm_id *vm_id = &vm->ids[ring];
246

247 248
	if (pd_addr != vm_id->pd_gpu_addr || !vm_id->flushed_updates ||
	    radeon_fence_is_earlier(vm_id->flushed_updates, updates)) {
249

250 251 252 253
		trace_radeon_vm_flush(pd_addr, ring, vm->ids[ring].id);
		radeon_fence_unref(&vm_id->flushed_updates);
		vm_id->flushed_updates = radeon_fence_ref(updates);
		vm_id->pd_gpu_addr = pd_addr;
254
		radeon_ring_vm_flush(rdev, &rdev->ring[ring],
255 256
				     vm_id->id, vm_id->pd_gpu_addr);

257
	}
258 259
}

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
/**
 * radeon_vm_fence - remember fence for vm
 *
 * @rdev: radeon_device pointer
 * @vm: vm we want to fence
 * @fence: fence to remember
 *
 * Fence the vm (cayman+).
 * Set the fence used to protect page table and id.
 *
 * Global and local mutex must be locked!
 */
void radeon_vm_fence(struct radeon_device *rdev,
		     struct radeon_vm *vm,
		     struct radeon_fence *fence)
{
276 277 278 279
	unsigned vm_id = vm->ids[fence->ring].id;

	radeon_fence_unref(&rdev->vm_manager.active[vm_id]);
	rdev->vm_manager.active[vm_id] = radeon_fence_ref(fence);
280

281 282
	radeon_fence_unref(&vm->ids[fence->ring].last_id_use);
	vm->ids[fence->ring].last_id_use = radeon_fence_ref(fence);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
}

/**
 * radeon_vm_bo_find - find the bo_va for a specific vm & bo
 *
 * @vm: requested vm
 * @bo: requested buffer object
 *
 * Find @bo inside the requested vm (cayman+).
 * Search inside the @bos vm list for the requested vm
 * Returns the found bo_va or NULL if none is found
 *
 * Object has to be reserved!
 */
struct radeon_bo_va *radeon_vm_bo_find(struct radeon_vm *vm,
				       struct radeon_bo *bo)
{
	struct radeon_bo_va *bo_va;

	list_for_each_entry(bo_va, &bo->va, bo_list) {
		if (bo_va->vm == vm) {
			return bo_va;
		}
	}
	return NULL;
}

/**
 * radeon_vm_bo_add - add a bo to a specific vm
 *
 * @rdev: radeon_device pointer
 * @vm: requested vm
 * @bo: radeon buffer object
 *
 * Add @bo into the requested vm (cayman+).
 * Add @bo to the list of bos associated with the vm
 * Returns newly added bo_va or NULL for failure
 *
 * Object has to be reserved!
 */
struct radeon_bo_va *radeon_vm_bo_add(struct radeon_device *rdev,
				      struct radeon_vm *vm,
				      struct radeon_bo *bo)
{
	struct radeon_bo_va *bo_va;

	bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
	if (bo_va == NULL) {
		return NULL;
	}
	bo_va->vm = vm;
	bo_va->bo = bo;
335 336
	bo_va->it.start = 0;
	bo_va->it.last = 0;
337
	bo_va->flags = 0;
338
	bo_va->addr = 0;
339 340
	bo_va->ref_count = 1;
	INIT_LIST_HEAD(&bo_va->bo_list);
341
	INIT_LIST_HEAD(&bo_va->vm_status);
342 343 344 345 346 347 348 349

	mutex_lock(&vm->mutex);
	list_add_tail(&bo_va->bo_list, &bo->va);
	mutex_unlock(&vm->mutex);

	return bo_va;
}

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
/**
 * radeon_vm_set_pages - helper to call the right asic function
 *
 * @rdev: radeon_device pointer
 * @ib: indirect buffer to fill with commands
 * @pe: addr of the page entry
 * @addr: dst addr to write into pe
 * @count: number of page entries to update
 * @incr: increase next addr by incr bytes
 * @flags: hw access flags
 *
 * Traces the parameters and calls the right asic functions
 * to setup the page table using the DMA.
 */
static void radeon_vm_set_pages(struct radeon_device *rdev,
				struct radeon_ib *ib,
				uint64_t pe,
				uint64_t addr, unsigned count,
				uint32_t incr, uint32_t flags)
{
	trace_radeon_vm_set_page(pe, addr, count, incr, flags);

	if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) {
		uint64_t src = rdev->gart.table_addr + (addr >> 12) * 8;
		radeon_asic_vm_copy_pages(rdev, ib, pe, src, count);

	} else if ((flags & R600_PTE_SYSTEM) || (count < 3)) {
		radeon_asic_vm_write_pages(rdev, ib, pe, addr,
					   count, incr, flags);

	} else {
		radeon_asic_vm_set_pages(rdev, ib, pe, addr,
					 count, incr, flags);
	}
}

386 387 388 389 390 391 392 393 394 395 396 397 398 399
/**
 * radeon_vm_clear_bo - initially clear the page dir/table
 *
 * @rdev: radeon_device pointer
 * @bo: bo to clear
 */
static int radeon_vm_clear_bo(struct radeon_device *rdev,
			      struct radeon_bo *bo)
{
	struct radeon_ib ib;
	unsigned entries;
	uint64_t addr;
	int r;

400 401
	r = radeon_bo_reserve(bo, false);
	if (r)
402 403
		return r;

404 405 406
	r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
	if (r)
		goto error_unreserve;
407 408 409 410

	addr = radeon_bo_gpu_offset(bo);
	entries = radeon_bo_size(bo) / 8;

411
	r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, 256);
412
	if (r)
413
		goto error_unreserve;
414 415 416

	ib.length_dw = 0;

417 418
	radeon_vm_set_pages(rdev, &ib, addr, 0, entries, 0, 0);
	radeon_asic_vm_pad_ib(rdev, &ib);
419
	WARN_ON(ib.length_dw > 64);
420

421
	r = radeon_ib_schedule(rdev, &ib, NULL, false);
422
	if (r)
423
		goto error_free;
424

425
	ib.fence->is_vm_update = true;
426
	radeon_bo_fence(bo, ib.fence, false);
427

428 429
error_free:
	radeon_ib_free(rdev, &ib);
430

431 432
error_unreserve:
	radeon_bo_unreserve(bo);
433 434 435
	return r;
}

436 437 438 439 440 441 442 443 444 445 446 447
/**
 * radeon_vm_bo_set_addr - set bos virtual address inside a vm
 *
 * @rdev: radeon_device pointer
 * @bo_va: bo_va to store the address
 * @soffset: requested offset of the buffer in the VM address space
 * @flags: attributes of pages (read/write/valid/etc.)
 *
 * Set offset of @bo_va (cayman+).
 * Validate and set the offset requested within the vm address space.
 * Returns 0 for success, error for failure.
 *
448
 * Object has to be reserved and gets unreserved by this function!
449 450 451 452 453 454 455 456
 */
int radeon_vm_bo_set_addr(struct radeon_device *rdev,
			  struct radeon_bo_va *bo_va,
			  uint64_t soffset,
			  uint32_t flags)
{
	uint64_t size = radeon_bo_size(bo_va->bo);
	struct radeon_vm *vm = bo_va->vm;
457
	unsigned last_pfn, pt_idx;
458
	uint64_t eoffset;
459
	int r;
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479

	if (soffset) {
		/* make sure object fit at this offset */
		eoffset = soffset + size;
		if (soffset >= eoffset) {
			return -EINVAL;
		}

		last_pfn = eoffset / RADEON_GPU_PAGE_SIZE;
		if (last_pfn > rdev->vm_manager.max_pfn) {
			dev_err(rdev->dev, "va above limit (0x%08X > 0x%08X)\n",
				last_pfn, rdev->vm_manager.max_pfn);
			return -EINVAL;
		}

	} else {
		eoffset = last_pfn = 0;
	}

	mutex_lock(&vm->mutex);
480 481 482 483 484
	if (bo_va->it.start || bo_va->it.last) {
		if (bo_va->addr) {
			/* add a clone of the bo_va to clear the old address */
			struct radeon_bo_va *tmp;
			tmp = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
485 486 487 488
			if (!tmp) {
				mutex_unlock(&vm->mutex);
				return -ENOMEM;
			}
489 490 491 492
			tmp->it.start = bo_va->it.start;
			tmp->it.last = bo_va->it.last;
			tmp->vm = vm;
			tmp->addr = bo_va->addr;
493
			tmp->bo = radeon_bo_ref(bo_va->bo);
494
			list_add(&tmp->vm_status, &vm->freed);
495 496
		}

497 498 499
		interval_tree_remove(&bo_va->it, &vm->va);
		bo_va->it.start = 0;
		bo_va->it.last = 0;
500 501
	}

502 503 504 505 506 507 508 509 510 511 512 513
	soffset /= RADEON_GPU_PAGE_SIZE;
	eoffset /= RADEON_GPU_PAGE_SIZE;
	if (soffset || eoffset) {
		struct interval_tree_node *it;
		it = interval_tree_iter_first(&vm->va, soffset, eoffset - 1);
		if (it) {
			struct radeon_bo_va *tmp;
			tmp = container_of(it, struct radeon_bo_va, it);
			/* bo and tmp overlap, invalid offset */
			dev_err(rdev->dev, "bo %p va 0x%010Lx conflict with "
				"(bo %p 0x%010lx 0x%010lx)\n", bo_va->bo,
				soffset, tmp->bo, tmp->it.start, tmp->it.last);
514
			mutex_unlock(&vm->mutex);
515
			return -EINVAL;
516
		}
517 518 519
		bo_va->it.start = soffset;
		bo_va->it.last = eoffset - 1;
		interval_tree_insert(&bo_va->it, &vm->va);
520 521
	}

522
	bo_va->flags = flags;
523
	bo_va->addr = 0;
524

525 526
	soffset >>= radeon_vm_block_size;
	eoffset >>= radeon_vm_block_size;
527 528

	BUG_ON(eoffset >= radeon_vm_num_pdes(rdev));
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545

	if (eoffset > vm->max_pde_used)
		vm->max_pde_used = eoffset;

	radeon_bo_unreserve(bo_va->bo);

	/* walk over the address space and allocate the page tables */
	for (pt_idx = soffset; pt_idx <= eoffset; ++pt_idx) {
		struct radeon_bo *pt;

		if (vm->page_tables[pt_idx].bo)
			continue;

		/* drop mutex to allocate and clear page table */
		mutex_unlock(&vm->mutex);

		r = radeon_bo_create(rdev, RADEON_VM_PTE_COUNT * 8,
546
				     RADEON_GPU_PAGE_SIZE, true,
547 548
				     RADEON_GEM_DOMAIN_VRAM, 0,
				     NULL, NULL, &pt);
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
		if (r)
			return r;

		r = radeon_vm_clear_bo(rdev, pt);
		if (r) {
			radeon_bo_unref(&pt);
			radeon_bo_reserve(bo_va->bo, false);
			return r;
		}

		/* aquire mutex again */
		mutex_lock(&vm->mutex);
		if (vm->page_tables[pt_idx].bo) {
			/* someone else allocated the pt in the meantime */
			mutex_unlock(&vm->mutex);
			radeon_bo_unref(&pt);
			mutex_lock(&vm->mutex);
			continue;
		}

		vm->page_tables[pt_idx].addr = 0;
		vm->page_tables[pt_idx].bo = pt;
	}

573
	mutex_unlock(&vm->mutex);
574
	return 0;
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
}

/**
 * radeon_vm_map_gart - get the physical address of a gart page
 *
 * @rdev: radeon_device pointer
 * @addr: the unmapped addr
 *
 * Look up the physical address of the page that the pte resolves
 * to (cayman+).
 * Returns the physical address of the page.
 */
uint64_t radeon_vm_map_gart(struct radeon_device *rdev, uint64_t addr)
{
	uint64_t result;

	/* page table offset */
	result = rdev->gart.pages_addr[addr >> PAGE_SHIFT];

	/* in case cpu page size != gpu page size*/
	result |= addr & (~PAGE_MASK);

	return result;
}

/**
 * radeon_vm_page_flags - translate page flags to what the hw uses
 *
 * @flags: flags comming from userspace
 *
 * Translate the flags the userspace ABI uses to hw flags.
 */
static uint32_t radeon_vm_page_flags(uint32_t flags)
{
        uint32_t hw_flags = 0;
        hw_flags |= (flags & RADEON_VM_PAGE_VALID) ? R600_PTE_VALID : 0;
        hw_flags |= (flags & RADEON_VM_PAGE_READABLE) ? R600_PTE_READABLE : 0;
        hw_flags |= (flags & RADEON_VM_PAGE_WRITEABLE) ? R600_PTE_WRITEABLE : 0;
        if (flags & RADEON_VM_PAGE_SYSTEM) {
                hw_flags |= R600_PTE_SYSTEM;
                hw_flags |= (flags & RADEON_VM_PAGE_SNOOPED) ? R600_PTE_SNOOPED : 0;
        }
        return hw_flags;
}

/**
 * radeon_vm_update_pdes - make sure that page directory is valid
 *
 * @rdev: radeon_device pointer
 * @vm: requested vm
 * @start: start of GPU address range
 * @end: end of GPU address range
 *
 * Allocates new page tables if necessary
 * and updates the page directory (cayman+).
 * Returns 0 for success, error for failure.
 *
 * Global and local mutex must be locked!
 */
634 635
int radeon_vm_update_page_directory(struct radeon_device *rdev,
				    struct radeon_vm *vm)
636
{
637 638
	struct radeon_bo *pd = vm->page_directory;
	uint64_t pd_addr = radeon_bo_gpu_offset(pd);
639
	uint32_t incr = RADEON_VM_PTE_COUNT * 8;
640
	uint64_t last_pde = ~0, last_pt = ~0;
641 642
	unsigned count = 0, pt_idx, ndw;
	struct radeon_ib ib;
643 644
	int r;

645 646 647 648
	/* padding, etc. */
	ndw = 64;

	/* assume the worst case */
649
	ndw += vm->max_pde_used * 6;
650 651 652 653 654 655 656 657 658

	/* update too big for an IB */
	if (ndw > 0xfffff)
		return -ENOMEM;

	r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4);
	if (r)
		return r;
	ib.length_dw = 0;
659 660

	/* walk over the address space and update the page directory */
661 662
	for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
		struct radeon_bo *bo = vm->page_tables[pt_idx].bo;
663 664
		uint64_t pde, pt;

665
		if (bo == NULL)
666 667
			continue;

668 669 670 671
		pt = radeon_bo_gpu_offset(bo);
		if (vm->page_tables[pt_idx].addr == pt)
			continue;
		vm->page_tables[pt_idx].addr = pt;
672

673
		pde = pd_addr + pt_idx * 8;
674 675 676 677
		if (((last_pde + 8 * count) != pde) ||
		    ((last_pt + incr * count) != pt)) {

			if (count) {
678 679 680
				radeon_vm_set_pages(rdev, &ib, last_pde,
						    last_pt, count, incr,
						    R600_PTE_VALID);
681 682 683 684 685 686 687 688 689 690
			}

			count = 1;
			last_pde = pde;
			last_pt = pt;
		} else {
			++count;
		}
	}

691
	if (count)
692 693
		radeon_vm_set_pages(rdev, &ib, last_pde, last_pt, count,
				    incr, R600_PTE_VALID);
694

695
	if (ib.length_dw != 0) {
696
		radeon_asic_vm_pad_ib(rdev, &ib);
697

698
		radeon_sync_resv(rdev, &ib.sync, pd->tbo.resv, false);
699
		WARN_ON(ib.length_dw > ndw);
700
		r = radeon_ib_schedule(rdev, &ib, NULL, false);
701 702 703 704
		if (r) {
			radeon_ib_free(rdev, &ib);
			return r;
		}
705
		ib.fence->is_vm_update = true;
706
		radeon_bo_fence(pd, ib.fence, false);
707
	}
708
	radeon_ib_free(rdev, &ib);
709 710 711 712

	return 0;
}

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
/**
 * radeon_vm_frag_ptes - add fragment information to PTEs
 *
 * @rdev: radeon_device pointer
 * @ib: IB for the update
 * @pe_start: first PTE to handle
 * @pe_end: last PTE to handle
 * @addr: addr those PTEs should point to
 * @flags: hw mapping flags
 *
 * Global and local mutex must be locked!
 */
static void radeon_vm_frag_ptes(struct radeon_device *rdev,
				struct radeon_ib *ib,
				uint64_t pe_start, uint64_t pe_end,
				uint64_t addr, uint32_t flags)
{
	/**
	 * The MC L1 TLB supports variable sized pages, based on a fragment
	 * field in the PTE. When this field is set to a non-zero value, page
	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
	 * flags are considered valid for all PTEs within the fragment range
	 * and corresponding mappings are assumed to be physically contiguous.
	 *
	 * The L1 TLB can store a single PTE for the whole fragment,
	 * significantly increasing the space available for translation
	 * caching. This leads to large improvements in throughput when the
	 * TLB is under pressure.
	 *
	 * The L2 TLB distributes small and large fragments into two
	 * asymmetric partitions. The large fragment cache is significantly
	 * larger. Thus, we try to use large fragments wherever possible.
	 * Userspace can support this by aligning virtual base address and
	 * allocation size to the fragment size.
	 */

	/* NI is optimized for 256KB fragments, SI and newer for 64KB */
	uint64_t frag_flags = rdev->family == CHIP_CAYMAN ?
			R600_PTE_FRAG_256KB : R600_PTE_FRAG_64KB;
	uint64_t frag_align = rdev->family == CHIP_CAYMAN ? 0x200 : 0x80;

	uint64_t frag_start = ALIGN(pe_start, frag_align);
	uint64_t frag_end = pe_end & ~(frag_align - 1);

	unsigned count;

	/* system pages are non continuously */
	if ((flags & R600_PTE_SYSTEM) || !(flags & R600_PTE_VALID) ||
	    (frag_start >= frag_end)) {

		count = (pe_end - pe_start) / 8;
764 765
		radeon_vm_set_pages(rdev, ib, pe_start, addr, count,
				    RADEON_GPU_PAGE_SIZE, flags);
766 767 768 769 770 771
		return;
	}

	/* handle the 4K area at the beginning */
	if (pe_start != frag_start) {
		count = (frag_start - pe_start) / 8;
772 773
		radeon_vm_set_pages(rdev, ib, pe_start, addr, count,
				    RADEON_GPU_PAGE_SIZE, flags);
774 775 776 777 778
		addr += RADEON_GPU_PAGE_SIZE * count;
	}

	/* handle the area in the middle */
	count = (frag_end - frag_start) / 8;
779 780
	radeon_vm_set_pages(rdev, ib, frag_start, addr, count,
			    RADEON_GPU_PAGE_SIZE, flags | frag_flags);
781 782 783 784 785

	/* handle the 4K area at the end */
	if (frag_end != pe_end) {
		addr += RADEON_GPU_PAGE_SIZE * count;
		count = (pe_end - frag_end) / 8;
786 787
		radeon_vm_set_pages(rdev, ib, frag_end, addr, count,
				    RADEON_GPU_PAGE_SIZE, flags);
788 789 790
	}
}

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
/**
 * radeon_vm_update_ptes - make sure that page tables are valid
 *
 * @rdev: radeon_device pointer
 * @vm: requested vm
 * @start: start of GPU address range
 * @end: end of GPU address range
 * @dst: destination address to map to
 * @flags: mapping flags
 *
 * Update the page tables in the range @start - @end (cayman+).
 *
 * Global and local mutex must be locked!
 */
static void radeon_vm_update_ptes(struct radeon_device *rdev,
				  struct radeon_vm *vm,
				  struct radeon_ib *ib,
				  uint64_t start, uint64_t end,
				  uint64_t dst, uint32_t flags)
{
811
	uint64_t mask = RADEON_VM_PTE_COUNT - 1;
812 813 814 815 816 817
	uint64_t last_pte = ~0, last_dst = ~0;
	unsigned count = 0;
	uint64_t addr;

	/* walk over the address space and update the page tables */
	for (addr = start; addr < end; ) {
818
		uint64_t pt_idx = addr >> radeon_vm_block_size;
819
		struct radeon_bo *pt = vm->page_tables[pt_idx].bo;
820 821 822
		unsigned nptes;
		uint64_t pte;

823
		radeon_sync_resv(rdev, &ib->sync, pt->tbo.resv, false);
824

825 826 827 828 829
		if ((addr & ~mask) == (end & ~mask))
			nptes = end - addr;
		else
			nptes = RADEON_VM_PTE_COUNT - (addr & mask);

830
		pte = radeon_bo_gpu_offset(pt);
831 832 833 834 835
		pte += (addr & mask) * 8;

		if ((last_pte + 8 * count) != pte) {

			if (count) {
836 837 838
				radeon_vm_frag_ptes(rdev, ib, last_pte,
						    last_pte + 8 * count,
						    last_dst, flags);
839 840 841 842 843 844 845 846 847 848 849 850 851 852
			}

			count = nptes;
			last_pte = pte;
			last_dst = dst;
		} else {
			count += nptes;
		}

		addr += nptes;
		dst += nptes * RADEON_GPU_PAGE_SIZE;
	}

	if (count) {
853 854 855
		radeon_vm_frag_ptes(rdev, ib, last_pte,
				    last_pte + 8 * count,
				    last_dst, flags);
856 857 858
	}
}

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
/**
 * radeon_vm_fence_pts - fence page tables after an update
 *
 * @vm: requested vm
 * @start: start of GPU address range
 * @end: end of GPU address range
 * @fence: fence to use
 *
 * Fence the page tables in the range @start - @end (cayman+).
 *
 * Global and local mutex must be locked!
 */
static void radeon_vm_fence_pts(struct radeon_vm *vm,
				uint64_t start, uint64_t end,
				struct radeon_fence *fence)
{
	unsigned i;

	start >>= radeon_vm_block_size;
	end >>= radeon_vm_block_size;

	for (i = start; i <= end; ++i)
		radeon_bo_fence(vm->page_tables[i].bo, fence, false);
}

884 885 886 887 888 889 890 891 892 893 894
/**
 * radeon_vm_bo_update - map a bo into the vm page table
 *
 * @rdev: radeon_device pointer
 * @vm: requested vm
 * @bo: radeon buffer object
 * @mem: ttm mem
 *
 * Fill in the page table entries for @bo (cayman+).
 * Returns 0 for success, -EINVAL for failure.
 *
895
 * Object have to be reserved and mutex must be locked!
896 897
 */
int radeon_vm_bo_update(struct radeon_device *rdev,
898
			struct radeon_bo_va *bo_va,
899 900
			struct ttm_mem_reg *mem)
{
901
	struct radeon_vm *vm = bo_va->vm;
902
	struct radeon_ib ib;
903
	unsigned nptes, ncmds, ndw;
904
	uint64_t addr;
905
	uint32_t flags;
906 907
	int r;

908
	if (!bo_va->it.start) {
909
		dev_err(rdev->dev, "bo %p don't has a mapping in vm %p\n",
910
			bo_va->bo, vm);
911 912 913
		return -EINVAL;
	}

914
	list_del_init(&bo_va->vm_status);
915 916 917

	bo_va->flags &= ~RADEON_VM_PAGE_VALID;
	bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM;
918
	bo_va->flags &= ~RADEON_VM_PAGE_SNOOPED;
919 920 921
	if (bo_va->bo && radeon_ttm_tt_is_readonly(bo_va->bo->tbo.ttm))
		bo_va->flags &= ~RADEON_VM_PAGE_WRITEABLE;

922 923 924 925 926 927 928
	if (mem) {
		addr = mem->start << PAGE_SHIFT;
		if (mem->mem_type != TTM_PL_SYSTEM) {
			bo_va->flags |= RADEON_VM_PAGE_VALID;
		}
		if (mem->mem_type == TTM_PL_TT) {
			bo_va->flags |= RADEON_VM_PAGE_SYSTEM;
929 930 931
			if (!(bo_va->bo->flags & (RADEON_GEM_GTT_WC | RADEON_GEM_GTT_UC)))
				bo_va->flags |= RADEON_VM_PAGE_SNOOPED;

932 933 934 935 936 937 938
		} else {
			addr += rdev->vm_manager.vram_base_offset;
		}
	} else {
		addr = 0;
	}

939 940 941 942
	if (addr == bo_va->addr)
		return 0;
	bo_va->addr = addr;

943 944
	trace_radeon_vm_bo_update(bo_va);

945
	nptes = bo_va->it.last - bo_va->it.start + 1;
946

947 948 949 950
	/* reserve space for one command every (1 << BLOCK_SIZE) entries
	   or 2k dwords (whatever is smaller) */
	ncmds = (nptes >> min(radeon_vm_block_size, 11)) + 1;

951 952 953
	/* padding, etc. */
	ndw = 64;

954 955 956 957 958 959 960 961 962 963 964
	flags = radeon_vm_page_flags(bo_va->flags);
	if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) {
		/* only copy commands needed */
		ndw += ncmds * 7;

	} else if (flags & R600_PTE_SYSTEM) {
		/* header for write data commands */
		ndw += ncmds * 4;

		/* body of write data command */
		ndw += nptes * 2;
965

966 967 968 969 970 971 972
	} else {
		/* set page commands needed */
		ndw += ncmds * 10;

		/* two extra commands for begin/end of fragment */
		ndw += 2 * 10;
	}
973 974 975 976 977 978 979 980 981 982

	/* update too big for an IB */
	if (ndw > 0xfffff)
		return -ENOMEM;

	r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4);
	if (r)
		return r;
	ib.length_dw = 0;

983 984 985
	radeon_vm_update_ptes(rdev, vm, &ib, bo_va->it.start,
			      bo_va->it.last + 1, addr,
			      radeon_vm_page_flags(bo_va->flags));
986

987
	radeon_asic_vm_pad_ib(rdev, &ib);
988 989
	WARN_ON(ib.length_dw > ndw);

990
	r = radeon_ib_schedule(rdev, &ib, NULL, false);
991 992 993 994
	if (r) {
		radeon_ib_free(rdev, &ib);
		return r;
	}
995
	ib.fence->is_vm_update = true;
996
	radeon_vm_fence_pts(vm, bo_va->it.start, bo_va->it.last + 1, ib.fence);
997 998
	radeon_fence_unref(&bo_va->last_pt_update);
	bo_va->last_pt_update = radeon_fence_ref(ib.fence);
999 1000 1001 1002 1003
	radeon_ib_free(rdev, &ib);

	return 0;
}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
/**
 * radeon_vm_clear_freed - clear freed BOs in the PT
 *
 * @rdev: radeon_device pointer
 * @vm: requested vm
 *
 * Make sure all freed BOs are cleared in the PT.
 * Returns 0 for success.
 *
 * PTs have to be reserved and mutex must be locked!
 */
int radeon_vm_clear_freed(struct radeon_device *rdev,
			  struct radeon_vm *vm)
{
	struct radeon_bo_va *bo_va, *tmp;
	int r;

	list_for_each_entry_safe(bo_va, tmp, &vm->freed, vm_status) {
		r = radeon_vm_bo_update(rdev, bo_va, NULL);
1023
		radeon_bo_unref(&bo_va->bo);
1024
		radeon_fence_unref(&bo_va->last_pt_update);
1025 1026 1027 1028 1029 1030 1031 1032
		kfree(bo_va);
		if (r)
			return r;
	}
	return 0;

}

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
/**
 * radeon_vm_clear_invalids - clear invalidated BOs in the PT
 *
 * @rdev: radeon_device pointer
 * @vm: requested vm
 *
 * Make sure all invalidated BOs are cleared in the PT.
 * Returns 0 for success.
 *
 * PTs have to be reserved and mutex must be locked!
 */
int radeon_vm_clear_invalids(struct radeon_device *rdev,
			     struct radeon_vm *vm)
{
	struct radeon_bo_va *bo_va, *tmp;
	int r;

	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, vm_status) {
		r = radeon_vm_bo_update(rdev, bo_va, NULL);
		if (r)
			return r;
	}
	return 0;
}

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
/**
 * radeon_vm_bo_rmv - remove a bo to a specific vm
 *
 * @rdev: radeon_device pointer
 * @bo_va: requested bo_va
 *
 * Remove @bo_va->bo from the requested vm (cayman+).
 *
 * Object have to be reserved!
 */
1068 1069
void radeon_vm_bo_rmv(struct radeon_device *rdev,
		      struct radeon_bo_va *bo_va)
1070
{
1071
	struct radeon_vm *vm = bo_va->vm;
1072

1073
	list_del(&bo_va->bo_list);
1074

1075
	mutex_lock(&vm->mutex);
1076
	interval_tree_remove(&bo_va->it, &vm->va);
1077
	list_del(&bo_va->vm_status);
1078

1079
	if (bo_va->addr) {
1080
		bo_va->bo = radeon_bo_ref(bo_va->bo);
1081 1082
		list_add(&bo_va->vm_status, &vm->freed);
	} else {
1083
		radeon_fence_unref(&bo_va->last_pt_update);
1084 1085 1086 1087
		kfree(bo_va);
	}

	mutex_unlock(&vm->mutex);
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
}

/**
 * radeon_vm_bo_invalidate - mark the bo as invalid
 *
 * @rdev: radeon_device pointer
 * @vm: requested vm
 * @bo: radeon buffer object
 *
 * Mark @bo as invalid (cayman+).
 */
void radeon_vm_bo_invalidate(struct radeon_device *rdev,
			     struct radeon_bo *bo)
{
	struct radeon_bo_va *bo_va;

	list_for_each_entry(bo_va, &bo->va, bo_list) {
1105 1106 1107 1108 1109 1110
		if (bo_va->addr) {
			mutex_lock(&bo_va->vm->mutex);
			list_del(&bo_va->vm_status);
			list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
			mutex_unlock(&bo_va->vm->mutex);
		}
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	}
}

/**
 * radeon_vm_init - initialize a vm instance
 *
 * @rdev: radeon_device pointer
 * @vm: requested vm
 *
 * Init @vm fields (cayman+).
 */
1122
int radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm)
1123
{
1124 1125
	const unsigned align = min(RADEON_VM_PTB_ALIGN_SIZE,
		RADEON_VM_PTE_COUNT * 8);
1126
	unsigned pd_size, pd_entries, pts_size;
1127
	int i, r;
1128

1129
	vm->ib_bo_va = NULL;
1130 1131 1132 1133 1134
	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
		vm->ids[i].id = 0;
		vm->ids[i].flushed_updates = NULL;
		vm->ids[i].last_id_use = NULL;
	}
1135
	mutex_init(&vm->mutex);
1136
	vm->va = RB_ROOT;
1137
	INIT_LIST_HEAD(&vm->invalidated);
1138
	INIT_LIST_HEAD(&vm->freed);
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

	pd_size = radeon_vm_directory_size(rdev);
	pd_entries = radeon_vm_num_pdes(rdev);

	/* allocate page table array */
	pts_size = pd_entries * sizeof(struct radeon_vm_pt);
	vm->page_tables = kzalloc(pts_size, GFP_KERNEL);
	if (vm->page_tables == NULL) {
		DRM_ERROR("Cannot allocate memory for page table array\n");
		return -ENOMEM;
	}

1151
	r = radeon_bo_create(rdev, pd_size, align, true,
1152
			     RADEON_GEM_DOMAIN_VRAM, 0, NULL,
1153
			     NULL, &vm->page_directory);
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	if (r)
		return r;

	r = radeon_vm_clear_bo(rdev, vm->page_directory);
	if (r) {
		radeon_bo_unref(&vm->page_directory);
		vm->page_directory = NULL;
		return r;
	}

	return 0;
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
}

/**
 * radeon_vm_fini - tear down a vm instance
 *
 * @rdev: radeon_device pointer
 * @vm: requested vm
 *
 * Tear down @vm (cayman+).
 * Unbind the VM and remove all bos from the vm bo list
 */
void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm)
{
	struct radeon_bo_va *bo_va, *tmp;
1179
	int i, r;
1180

1181
	if (!RB_EMPTY_ROOT(&vm->va)) {
1182 1183
		dev_err(rdev->dev, "still active bo inside vm\n");
	}
1184 1185
	rbtree_postorder_for_each_entry_safe(bo_va, tmp, &vm->va, it.rb) {
		interval_tree_remove(&bo_va->it, &vm->va);
1186 1187 1188 1189
		r = radeon_bo_reserve(bo_va->bo, false);
		if (!r) {
			list_del_init(&bo_va->bo_list);
			radeon_bo_unreserve(bo_va->bo);
1190
			radeon_fence_unref(&bo_va->last_pt_update);
1191 1192 1193
			kfree(bo_va);
		}
	}
1194 1195
	list_for_each_entry_safe(bo_va, tmp, &vm->freed, vm_status) {
		radeon_bo_unref(&bo_va->bo);
1196
		radeon_fence_unref(&bo_va->last_pt_update);
1197
		kfree(bo_va);
1198
	}
1199 1200 1201 1202 1203 1204 1205

	for (i = 0; i < radeon_vm_num_pdes(rdev); i++)
		radeon_bo_unref(&vm->page_tables[i].bo);
	kfree(vm->page_tables);

	radeon_bo_unref(&vm->page_directory);

1206 1207 1208 1209
	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
		radeon_fence_unref(&vm->ids[i].flushed_updates);
		radeon_fence_unref(&vm->ids[i].last_id_use);
	}
1210 1211

	mutex_destroy(&vm->mutex);
1212
}