ipmi_si_intf.c 60.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
/*
 * ipmi_si.c
 *
 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
 * BT).
 *
 * Author: MontaVista Software, Inc.
 *         Corey Minyard <minyard@mvista.com>
 *         source@mvista.com
 *
 * Copyright 2002 MontaVista Software Inc.
 *
 *  This program is free software; you can redistribute it and/or modify it
 *  under the terms of the GNU General Public License as published by the
 *  Free Software Foundation; either version 2 of the License, or (at your
 *  option) any later version.
 *
 *
 *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
 *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 * This file holds the "policy" for the interface to the SMI state
 * machine.  It does the configuration, handles timers and interrupts,
 * and drives the real SMI state machine.
 */

#include <linux/config.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <asm/system.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/ioport.h>
#include <asm/irq.h>
#ifdef CONFIG_HIGH_RES_TIMERS
#include <linux/hrtime.h>
# if defined(schedule_next_int)
/* Old high-res timer code, do translations. */
#  define get_arch_cycles(a) quick_update_jiffies_sub(a)
#  define arch_cycles_per_jiffy cycles_per_jiffies
# endif
static inline void add_usec_to_timer(struct timer_list *t, long v)
{
	t->sub_expires += nsec_to_arch_cycle(v * 1000);
	while (t->sub_expires >= arch_cycles_per_jiffy)
	{
		t->expires++;
		t->sub_expires -= arch_cycles_per_jiffy;
	}
}
#endif
#include <linux/interrupt.h>
#include <linux/rcupdate.h>
#include <linux/ipmi_smi.h>
#include <asm/io.h>
#include "ipmi_si_sm.h"
#include <linux/init.h>

#define IPMI_SI_VERSION "v33"

/* Measure times between events in the driver. */
#undef DEBUG_TIMING

/* Call every 10 ms. */
#define SI_TIMEOUT_TIME_USEC	10000
#define SI_USEC_PER_JIFFY	(1000000/HZ)
#define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
#define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
                                       short timeout */

enum si_intf_state {
	SI_NORMAL,
	SI_GETTING_FLAGS,
	SI_GETTING_EVENTS,
	SI_CLEARING_FLAGS,
	SI_CLEARING_FLAGS_THEN_SET_IRQ,
	SI_GETTING_MESSAGES,
	SI_ENABLE_INTERRUPTS1,
	SI_ENABLE_INTERRUPTS2
	/* FIXME - add watchdog stuff. */
};

enum si_type {
    SI_KCS, SI_SMIC, SI_BT
};

struct smi_info
{
	ipmi_smi_t             intf;
	struct si_sm_data      *si_sm;
	struct si_sm_handlers  *handlers;
	enum si_type           si_type;
	spinlock_t             si_lock;
	spinlock_t             msg_lock;
	struct list_head       xmit_msgs;
	struct list_head       hp_xmit_msgs;
	struct ipmi_smi_msg    *curr_msg;
	enum si_intf_state     si_state;

	/* Used to handle the various types of I/O that can occur with
           IPMI */
	struct si_sm_io io;
	int (*io_setup)(struct smi_info *info);
	void (*io_cleanup)(struct smi_info *info);
	int (*irq_setup)(struct smi_info *info);
	void (*irq_cleanup)(struct smi_info *info);
	unsigned int io_size;

	/* Flags from the last GET_MSG_FLAGS command, used when an ATTN
	   is set to hold the flags until we are done handling everything
	   from the flags. */
#define RECEIVE_MSG_AVAIL	0x01
#define EVENT_MSG_BUFFER_FULL	0x02
#define WDT_PRE_TIMEOUT_INT	0x08
	unsigned char       msg_flags;

	/* If set to true, this will request events the next time the
	   state machine is idle. */
	atomic_t            req_events;

	/* If true, run the state machine to completion on every send
	   call.  Generally used after a panic to make sure stuff goes
	   out. */
	int                 run_to_completion;

	/* The I/O port of an SI interface. */
	int                 port;

	/* The space between start addresses of the two ports.  For
	   instance, if the first port is 0xca2 and the spacing is 4, then
	   the second port is 0xca6. */
	unsigned int        spacing;

	/* zero if no irq; */
	int                 irq;

	/* The timer for this si. */
	struct timer_list   si_timer;

	/* The time (in jiffies) the last timeout occurred at. */
	unsigned long       last_timeout_jiffies;

	/* Used to gracefully stop the timer without race conditions. */
	volatile int        stop_operation;
	volatile int        timer_stopped;

	/* The driver will disable interrupts when it gets into a
	   situation where it cannot handle messages due to lack of
	   memory.  Once that situation clears up, it will re-enable
	   interrupts. */
	int interrupt_disabled;

	unsigned char ipmi_si_dev_rev;
	unsigned char ipmi_si_fw_rev_major;
	unsigned char ipmi_si_fw_rev_minor;
	unsigned char ipmi_version_major;
	unsigned char ipmi_version_minor;

	/* Slave address, could be reported from DMI. */
	unsigned char slave_addr;

	/* Counters and things for the proc filesystem. */
	spinlock_t count_lock;
	unsigned long short_timeouts;
	unsigned long long_timeouts;
	unsigned long timeout_restarts;
	unsigned long idles;
	unsigned long interrupts;
	unsigned long attentions;
	unsigned long flag_fetches;
	unsigned long hosed_count;
	unsigned long complete_transactions;
	unsigned long events;
	unsigned long watchdog_pretimeouts;
	unsigned long incoming_messages;
};

static void si_restart_short_timer(struct smi_info *smi_info);

static void deliver_recv_msg(struct smi_info *smi_info,
			     struct ipmi_smi_msg *msg)
{
	/* Deliver the message to the upper layer with the lock
           released. */
	spin_unlock(&(smi_info->si_lock));
	ipmi_smi_msg_received(smi_info->intf, msg);
	spin_lock(&(smi_info->si_lock));
}

static void return_hosed_msg(struct smi_info *smi_info)
{
	struct ipmi_smi_msg *msg = smi_info->curr_msg;

	/* Make it a reponse */
	msg->rsp[0] = msg->data[0] | 4;
	msg->rsp[1] = msg->data[1];
	msg->rsp[2] = 0xFF; /* Unknown error. */
	msg->rsp_size = 3;

	smi_info->curr_msg = NULL;
	deliver_recv_msg(smi_info, msg);
}

static enum si_sm_result start_next_msg(struct smi_info *smi_info)
{
	int              rv;
	struct list_head *entry = NULL;
#ifdef DEBUG_TIMING
	struct timeval t;
#endif

	/* No need to save flags, we aleady have interrupts off and we
	   already hold the SMI lock. */
	spin_lock(&(smi_info->msg_lock));

	/* Pick the high priority queue first. */
	if (! list_empty(&(smi_info->hp_xmit_msgs))) {
		entry = smi_info->hp_xmit_msgs.next;
	} else if (! list_empty(&(smi_info->xmit_msgs))) {
		entry = smi_info->xmit_msgs.next;
	}

	if (!entry) {
		smi_info->curr_msg = NULL;
		rv = SI_SM_IDLE;
	} else {
		int err;

		list_del(entry);
		smi_info->curr_msg = list_entry(entry,
						struct ipmi_smi_msg,
						link);
#ifdef DEBUG_TIMING
		do_gettimeofday(&t);
		printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif
		err = smi_info->handlers->start_transaction(
			smi_info->si_sm,
			smi_info->curr_msg->data,
			smi_info->curr_msg->data_size);
		if (err) {
			return_hosed_msg(smi_info);
		}

		rv = SI_SM_CALL_WITHOUT_DELAY;
	}
	spin_unlock(&(smi_info->msg_lock));

	return rv;
}

static void start_enable_irq(struct smi_info *smi_info)
{
	unsigned char msg[2];

	/* If we are enabling interrupts, we have to tell the
	   BMC to use them. */
	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;

	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
	smi_info->si_state = SI_ENABLE_INTERRUPTS1;
}

static void start_clear_flags(struct smi_info *smi_info)
{
	unsigned char msg[3];

	/* Make sure the watchdog pre-timeout flag is not set at startup. */
	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
	msg[2] = WDT_PRE_TIMEOUT_INT;

	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
	smi_info->si_state = SI_CLEARING_FLAGS;
}

/* When we have a situtaion where we run out of memory and cannot
   allocate messages, we just leave them in the BMC and run the system
   polled until we can allocate some memory.  Once we have some
   memory, we will re-enable the interrupt. */
static inline void disable_si_irq(struct smi_info *smi_info)
{
	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
		disable_irq_nosync(smi_info->irq);
		smi_info->interrupt_disabled = 1;
	}
}

static inline void enable_si_irq(struct smi_info *smi_info)
{
	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
		enable_irq(smi_info->irq);
		smi_info->interrupt_disabled = 0;
	}
}

static void handle_flags(struct smi_info *smi_info)
{
	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
		/* Watchdog pre-timeout */
		spin_lock(&smi_info->count_lock);
		smi_info->watchdog_pretimeouts++;
		spin_unlock(&smi_info->count_lock);

		start_clear_flags(smi_info);
		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
		spin_unlock(&(smi_info->si_lock));
		ipmi_smi_watchdog_pretimeout(smi_info->intf);
		spin_lock(&(smi_info->si_lock));
	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
		/* Messages available. */
		smi_info->curr_msg = ipmi_alloc_smi_msg();
		if (!smi_info->curr_msg) {
			disable_si_irq(smi_info);
			smi_info->si_state = SI_NORMAL;
			return;
		}
		enable_si_irq(smi_info);

		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
		smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
		smi_info->curr_msg->data_size = 2;

		smi_info->handlers->start_transaction(
			smi_info->si_sm,
			smi_info->curr_msg->data,
			smi_info->curr_msg->data_size);
		smi_info->si_state = SI_GETTING_MESSAGES;
	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
		/* Events available. */
		smi_info->curr_msg = ipmi_alloc_smi_msg();
		if (!smi_info->curr_msg) {
			disable_si_irq(smi_info);
			smi_info->si_state = SI_NORMAL;
			return;
		}
		enable_si_irq(smi_info);

		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
		smi_info->curr_msg->data_size = 2;

		smi_info->handlers->start_transaction(
			smi_info->si_sm,
			smi_info->curr_msg->data,
			smi_info->curr_msg->data_size);
		smi_info->si_state = SI_GETTING_EVENTS;
	} else {
		smi_info->si_state = SI_NORMAL;
	}
}

static void handle_transaction_done(struct smi_info *smi_info)
{
	struct ipmi_smi_msg *msg;
#ifdef DEBUG_TIMING
	struct timeval t;

	do_gettimeofday(&t);
	printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif
	switch (smi_info->si_state) {
	case SI_NORMAL:
		if (!smi_info->curr_msg)
			break;

		smi_info->curr_msg->rsp_size
			= smi_info->handlers->get_result(
				smi_info->si_sm,
				smi_info->curr_msg->rsp,
				IPMI_MAX_MSG_LENGTH);

		/* Do this here becase deliver_recv_msg() releases the
		   lock, and a new message can be put in during the
		   time the lock is released. */
		msg = smi_info->curr_msg;
		smi_info->curr_msg = NULL;
		deliver_recv_msg(smi_info, msg);
		break;

	case SI_GETTING_FLAGS:
	{
		unsigned char msg[4];
		unsigned int  len;

		/* We got the flags from the SMI, now handle them. */
		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
		if (msg[2] != 0) {
			/* Error fetching flags, just give up for
			   now. */
			smi_info->si_state = SI_NORMAL;
		} else if (len < 4) {
			/* Hmm, no flags.  That's technically illegal, but
			   don't use uninitialized data. */
			smi_info->si_state = SI_NORMAL;
		} else {
			smi_info->msg_flags = msg[3];
			handle_flags(smi_info);
		}
		break;
	}

	case SI_CLEARING_FLAGS:
	case SI_CLEARING_FLAGS_THEN_SET_IRQ:
	{
		unsigned char msg[3];

		/* We cleared the flags. */
		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
		if (msg[2] != 0) {
			/* Error clearing flags */
			printk(KERN_WARNING
			       "ipmi_si: Error clearing flags: %2.2x\n",
			       msg[2]);
		}
		if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
			start_enable_irq(smi_info);
		else
			smi_info->si_state = SI_NORMAL;
		break;
	}

	case SI_GETTING_EVENTS:
	{
		smi_info->curr_msg->rsp_size
			= smi_info->handlers->get_result(
				smi_info->si_sm,
				smi_info->curr_msg->rsp,
				IPMI_MAX_MSG_LENGTH);

		/* Do this here becase deliver_recv_msg() releases the
		   lock, and a new message can be put in during the
		   time the lock is released. */
		msg = smi_info->curr_msg;
		smi_info->curr_msg = NULL;
		if (msg->rsp[2] != 0) {
			/* Error getting event, probably done. */
			msg->done(msg);

			/* Take off the event flag. */
			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
			handle_flags(smi_info);
		} else {
			spin_lock(&smi_info->count_lock);
			smi_info->events++;
			spin_unlock(&smi_info->count_lock);

			/* Do this before we deliver the message
			   because delivering the message releases the
			   lock and something else can mess with the
			   state. */
			handle_flags(smi_info);

			deliver_recv_msg(smi_info, msg);
		}
		break;
	}

	case SI_GETTING_MESSAGES:
	{
		smi_info->curr_msg->rsp_size
			= smi_info->handlers->get_result(
				smi_info->si_sm,
				smi_info->curr_msg->rsp,
				IPMI_MAX_MSG_LENGTH);

		/* Do this here becase deliver_recv_msg() releases the
		   lock, and a new message can be put in during the
		   time the lock is released. */
		msg = smi_info->curr_msg;
		smi_info->curr_msg = NULL;
		if (msg->rsp[2] != 0) {
			/* Error getting event, probably done. */
			msg->done(msg);

			/* Take off the msg flag. */
			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
			handle_flags(smi_info);
		} else {
			spin_lock(&smi_info->count_lock);
			smi_info->incoming_messages++;
			spin_unlock(&smi_info->count_lock);

			/* Do this before we deliver the message
			   because delivering the message releases the
			   lock and something else can mess with the
			   state. */
			handle_flags(smi_info);

			deliver_recv_msg(smi_info, msg);
		}
		break;
	}

	case SI_ENABLE_INTERRUPTS1:
	{
		unsigned char msg[4];

		/* We got the flags from the SMI, now handle them. */
		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
		if (msg[2] != 0) {
			printk(KERN_WARNING
			       "ipmi_si: Could not enable interrupts"
			       ", failed get, using polled mode.\n");
			smi_info->si_state = SI_NORMAL;
		} else {
			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
			msg[2] = msg[3] | 1; /* enable msg queue int */
			smi_info->handlers->start_transaction(
				smi_info->si_sm, msg, 3);
			smi_info->si_state = SI_ENABLE_INTERRUPTS2;
		}
		break;
	}

	case SI_ENABLE_INTERRUPTS2:
	{
		unsigned char msg[4];

		/* We got the flags from the SMI, now handle them. */
		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
		if (msg[2] != 0) {
			printk(KERN_WARNING
			       "ipmi_si: Could not enable interrupts"
			       ", failed set, using polled mode.\n");
		}
		smi_info->si_state = SI_NORMAL;
		break;
	}
	}
}

/* Called on timeouts and events.  Timeouts should pass the elapsed
   time, interrupts should pass in zero. */
static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
					   int time)
{
	enum si_sm_result si_sm_result;

 restart:
	/* There used to be a loop here that waited a little while
	   (around 25us) before giving up.  That turned out to be
	   pointless, the minimum delays I was seeing were in the 300us
	   range, which is far too long to wait in an interrupt.  So
	   we just run until the state machine tells us something
	   happened or it needs a delay. */
	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
	time = 0;
	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
	{
		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
	}

	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE)
	{
		spin_lock(&smi_info->count_lock);
		smi_info->complete_transactions++;
		spin_unlock(&smi_info->count_lock);

		handle_transaction_done(smi_info);
		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
	}
	else if (si_sm_result == SI_SM_HOSED)
	{
		spin_lock(&smi_info->count_lock);
		smi_info->hosed_count++;
		spin_unlock(&smi_info->count_lock);

		/* Do the before return_hosed_msg, because that
		   releases the lock. */
		smi_info->si_state = SI_NORMAL;
		if (smi_info->curr_msg != NULL) {
			/* If we were handling a user message, format
                           a response to send to the upper layer to
                           tell it about the error. */
			return_hosed_msg(smi_info);
		}
		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
	}

	/* We prefer handling attn over new messages. */
	if (si_sm_result == SI_SM_ATTN)
	{
		unsigned char msg[2];

		spin_lock(&smi_info->count_lock);
		smi_info->attentions++;
		spin_unlock(&smi_info->count_lock);

		/* Got a attn, send down a get message flags to see
                   what's causing it.  It would be better to handle
                   this in the upper layer, but due to the way
                   interrupts work with the SMI, that's not really
                   possible. */
		msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
		msg[1] = IPMI_GET_MSG_FLAGS_CMD;

		smi_info->handlers->start_transaction(
			smi_info->si_sm, msg, 2);
		smi_info->si_state = SI_GETTING_FLAGS;
		goto restart;
	}

	/* If we are currently idle, try to start the next message. */
	if (si_sm_result == SI_SM_IDLE) {
		spin_lock(&smi_info->count_lock);
		smi_info->idles++;
		spin_unlock(&smi_info->count_lock);

		si_sm_result = start_next_msg(smi_info);
		if (si_sm_result != SI_SM_IDLE)
			goto restart;
        }

	if ((si_sm_result == SI_SM_IDLE)
	    && (atomic_read(&smi_info->req_events)))
	{
		/* We are idle and the upper layer requested that I fetch
		   events, so do so. */
		unsigned char msg[2];

		spin_lock(&smi_info->count_lock);
		smi_info->flag_fetches++;
		spin_unlock(&smi_info->count_lock);

		atomic_set(&smi_info->req_events, 0);
		msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
		msg[1] = IPMI_GET_MSG_FLAGS_CMD;

		smi_info->handlers->start_transaction(
			smi_info->si_sm, msg, 2);
		smi_info->si_state = SI_GETTING_FLAGS;
		goto restart;
	}

	return si_sm_result;
}

static void sender(void                *send_info,
		   struct ipmi_smi_msg *msg,
		   int                 priority)
{
	struct smi_info   *smi_info = send_info;
	enum si_sm_result result;
	unsigned long     flags;
#ifdef DEBUG_TIMING
	struct timeval    t;
#endif

	spin_lock_irqsave(&(smi_info->msg_lock), flags);
#ifdef DEBUG_TIMING
	do_gettimeofday(&t);
	printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif

	if (smi_info->run_to_completion) {
		/* If we are running to completion, then throw it in
		   the list and run transactions until everything is
		   clear.  Priority doesn't matter here. */
		list_add_tail(&(msg->link), &(smi_info->xmit_msgs));

		/* We have to release the msg lock and claim the smi
		   lock in this case, because of race conditions. */
		spin_unlock_irqrestore(&(smi_info->msg_lock), flags);

		spin_lock_irqsave(&(smi_info->si_lock), flags);
		result = smi_event_handler(smi_info, 0);
		while (result != SI_SM_IDLE) {
			udelay(SI_SHORT_TIMEOUT_USEC);
			result = smi_event_handler(smi_info,
						   SI_SHORT_TIMEOUT_USEC);
		}
		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
		return;
	} else {
		if (priority > 0) {
			list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs));
		} else {
			list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
		}
	}
	spin_unlock_irqrestore(&(smi_info->msg_lock), flags);

	spin_lock_irqsave(&(smi_info->si_lock), flags);
	if ((smi_info->si_state == SI_NORMAL)
	    && (smi_info->curr_msg == NULL))
	{
		start_next_msg(smi_info);
		si_restart_short_timer(smi_info);
	}
	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
}

static void set_run_to_completion(void *send_info, int i_run_to_completion)
{
	struct smi_info   *smi_info = send_info;
	enum si_sm_result result;
	unsigned long     flags;

	spin_lock_irqsave(&(smi_info->si_lock), flags);

	smi_info->run_to_completion = i_run_to_completion;
	if (i_run_to_completion) {
		result = smi_event_handler(smi_info, 0);
		while (result != SI_SM_IDLE) {
			udelay(SI_SHORT_TIMEOUT_USEC);
			result = smi_event_handler(smi_info,
						   SI_SHORT_TIMEOUT_USEC);
		}
	}

	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
}

static void poll(void *send_info)
{
	struct smi_info *smi_info = send_info;

	smi_event_handler(smi_info, 0);
}

static void request_events(void *send_info)
{
	struct smi_info *smi_info = send_info;

	atomic_set(&smi_info->req_events, 1);
}

static int initialized = 0;

/* Must be called with interrupts off and with the si_lock held. */
static void si_restart_short_timer(struct smi_info *smi_info)
{
#if defined(CONFIG_HIGH_RES_TIMERS)
	unsigned long flags;
	unsigned long jiffies_now;

	if (del_timer(&(smi_info->si_timer))) {
		/* If we don't delete the timer, then it will go off
		   immediately, anyway.  So we only process if we
		   actually delete the timer. */

		/* We already have irqsave on, so no need for it
                   here. */
		read_lock(&xtime_lock);
		jiffies_now = jiffies;
		smi_info->si_timer.expires = jiffies_now;
		smi_info->si_timer.sub_expires = get_arch_cycles(jiffies_now);

		add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);

		add_timer(&(smi_info->si_timer));
		spin_lock_irqsave(&smi_info->count_lock, flags);
		smi_info->timeout_restarts++;
		spin_unlock_irqrestore(&smi_info->count_lock, flags);
	}
#endif
}

static void smi_timeout(unsigned long data)
{
	struct smi_info   *smi_info = (struct smi_info *) data;
	enum si_sm_result smi_result;
	unsigned long     flags;
	unsigned long     jiffies_now;
	unsigned long     time_diff;
#ifdef DEBUG_TIMING
	struct timeval    t;
#endif

	if (smi_info->stop_operation) {
		smi_info->timer_stopped = 1;
		return;
	}

	spin_lock_irqsave(&(smi_info->si_lock), flags);
#ifdef DEBUG_TIMING
	do_gettimeofday(&t);
	printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif
	jiffies_now = jiffies;
	time_diff = ((jiffies_now - smi_info->last_timeout_jiffies)
		     * SI_USEC_PER_JIFFY);
	smi_result = smi_event_handler(smi_info, time_diff);

	spin_unlock_irqrestore(&(smi_info->si_lock), flags);

	smi_info->last_timeout_jiffies = jiffies_now;

	if ((smi_info->irq) && (! smi_info->interrupt_disabled)) {
		/* Running with interrupts, only do long timeouts. */
		smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
		spin_lock_irqsave(&smi_info->count_lock, flags);
		smi_info->long_timeouts++;
		spin_unlock_irqrestore(&smi_info->count_lock, flags);
		goto do_add_timer;
	}

	/* If the state machine asks for a short delay, then shorten
           the timer timeout. */
	if (smi_result == SI_SM_CALL_WITH_DELAY) {
		spin_lock_irqsave(&smi_info->count_lock, flags);
		smi_info->short_timeouts++;
		spin_unlock_irqrestore(&smi_info->count_lock, flags);
#if defined(CONFIG_HIGH_RES_TIMERS)
		read_lock(&xtime_lock);
                smi_info->si_timer.expires = jiffies;
                smi_info->si_timer.sub_expires
                        = get_arch_cycles(smi_info->si_timer.expires);
                read_unlock(&xtime_lock);
		add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);
#else
		smi_info->si_timer.expires = jiffies + 1;
#endif
	} else {
		spin_lock_irqsave(&smi_info->count_lock, flags);
		smi_info->long_timeouts++;
		spin_unlock_irqrestore(&smi_info->count_lock, flags);
		smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
#if defined(CONFIG_HIGH_RES_TIMERS)
		smi_info->si_timer.sub_expires = 0;
#endif
	}

 do_add_timer:
	add_timer(&(smi_info->si_timer));
}

static irqreturn_t si_irq_handler(int irq, void *data, struct pt_regs *regs)
{
	struct smi_info *smi_info = data;
	unsigned long   flags;
#ifdef DEBUG_TIMING
	struct timeval  t;
#endif

	spin_lock_irqsave(&(smi_info->si_lock), flags);

	spin_lock(&smi_info->count_lock);
	smi_info->interrupts++;
	spin_unlock(&smi_info->count_lock);

	if (smi_info->stop_operation)
		goto out;

#ifdef DEBUG_TIMING
	do_gettimeofday(&t);
	printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif
	smi_event_handler(smi_info, 0);
 out:
	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
	return IRQ_HANDLED;
}

static struct ipmi_smi_handlers handlers =
{
	.owner                  = THIS_MODULE,
	.sender			= sender,
	.request_events		= request_events,
	.set_run_to_completion  = set_run_to_completion,
	.poll			= poll,
};

/* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
   a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS */

#define SI_MAX_PARMS 4
#define SI_MAX_DRIVERS ((SI_MAX_PARMS * 2) + 2)
static struct smi_info *smi_infos[SI_MAX_DRIVERS] =
{ NULL, NULL, NULL, NULL };

#define DEVICE_NAME "ipmi_si"

#define DEFAULT_KCS_IO_PORT	0xca2
#define DEFAULT_SMIC_IO_PORT	0xca9
#define DEFAULT_BT_IO_PORT	0xe4
#define DEFAULT_REGSPACING	1

static int           si_trydefaults = 1;
static char          *si_type[SI_MAX_PARMS];
#define MAX_SI_TYPE_STR 30
static char          si_type_str[MAX_SI_TYPE_STR];
static unsigned long addrs[SI_MAX_PARMS];
static int num_addrs;
static unsigned int  ports[SI_MAX_PARMS];
static int num_ports;
static int           irqs[SI_MAX_PARMS];
static int num_irqs;
static int           regspacings[SI_MAX_PARMS];
static int num_regspacings = 0;
static int           regsizes[SI_MAX_PARMS];
static int num_regsizes = 0;
static int           regshifts[SI_MAX_PARMS];
static int num_regshifts = 0;
static int slave_addrs[SI_MAX_PARMS];
static int num_slave_addrs = 0;


module_param_named(trydefaults, si_trydefaults, bool, 0);
MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
		 " default scan of the KCS and SMIC interface at the standard"
		 " address");
module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
MODULE_PARM_DESC(type, "Defines the type of each interface, each"
		 " interface separated by commas.  The types are 'kcs',"
		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
		 " the first interface to kcs and the second to bt");
module_param_array(addrs, long, &num_addrs, 0);
MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
		 " addresses separated by commas.  Only use if an interface"
		 " is in memory.  Otherwise, set it to zero or leave"
		 " it blank.");
module_param_array(ports, int, &num_ports, 0);
MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
		 " addresses separated by commas.  Only use if an interface"
		 " is a port.  Otherwise, set it to zero or leave"
		 " it blank.");
module_param_array(irqs, int, &num_irqs, 0);
MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
		 " addresses separated by commas.  Only use if an interface"
		 " has an interrupt.  Otherwise, set it to zero or leave"
		 " it blank.");
module_param_array(regspacings, int, &num_regspacings, 0);
MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
		 " and each successive register used by the interface.  For"
		 " instance, if the start address is 0xca2 and the spacing"
		 " is 2, then the second address is at 0xca4.  Defaults"
		 " to 1.");
module_param_array(regsizes, int, &num_regsizes, 0);
MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
		 " the 8-bit IPMI register has to be read from a larger"
		 " register.");
module_param_array(regshifts, int, &num_regshifts, 0);
MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
		 " IPMI register, in bits.  For instance, if the data"
		 " is read from a 32-bit word and the IPMI data is in"
		 " bit 8-15, then the shift would be 8");
module_param_array(slave_addrs, int, &num_slave_addrs, 0);
MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
		 " the controller.  Normally this is 0x20, but can be"
		 " overridden by this parm.  This is an array indexed"
		 " by interface number.");


#define IPMI_MEM_ADDR_SPACE 1
#define IPMI_IO_ADDR_SPACE  2

#if defined(CONFIG_ACPI_INTERPRETER) || defined(CONFIG_X86) || defined(CONFIG_PCI)
static int is_new_interface(int intf, u8 addr_space, unsigned long base_addr)
{
	int i;

	for (i = 0; i < SI_MAX_PARMS; ++i) {
		/* Don't check our address. */
		if (i == intf)
			continue;
		if (si_type[i] != NULL) {
			if ((addr_space == IPMI_MEM_ADDR_SPACE &&
			     base_addr == addrs[i]) ||
			    (addr_space == IPMI_IO_ADDR_SPACE &&
			     base_addr == ports[i]))
				return 0;
		}
		else
			break;
	}

	return 1;
}
#endif

static int std_irq_setup(struct smi_info *info)
{
	int rv;

	if (!info->irq)
		return 0;

	rv = request_irq(info->irq,
			 si_irq_handler,
			 SA_INTERRUPT,
			 DEVICE_NAME,
			 info);
	if (rv) {
		printk(KERN_WARNING
		       "ipmi_si: %s unable to claim interrupt %d,"
		       " running polled\n",
		       DEVICE_NAME, info->irq);
		info->irq = 0;
	} else {
		printk("  Using irq %d\n", info->irq);
	}

	return rv;
}

static void std_irq_cleanup(struct smi_info *info)
{
	if (!info->irq)
		return;

	free_irq(info->irq, info);
}

static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
{
	unsigned int *addr = io->info;

	return inb((*addr)+(offset*io->regspacing));
}

static void port_outb(struct si_sm_io *io, unsigned int offset,
		      unsigned char b)
{
	unsigned int *addr = io->info;

	outb(b, (*addr)+(offset * io->regspacing));
}

static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
{
	unsigned int *addr = io->info;

	return (inw((*addr)+(offset * io->regspacing)) >> io->regshift) & 0xff;
}

static void port_outw(struct si_sm_io *io, unsigned int offset,
		      unsigned char b)
{
	unsigned int *addr = io->info;

	outw(b << io->regshift, (*addr)+(offset * io->regspacing));
}

static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
{
	unsigned int *addr = io->info;

	return (inl((*addr)+(offset * io->regspacing)) >> io->regshift) & 0xff;
}

static void port_outl(struct si_sm_io *io, unsigned int offset,
		      unsigned char b)
{
	unsigned int *addr = io->info;

	outl(b << io->regshift, (*addr)+(offset * io->regspacing));
}

static void port_cleanup(struct smi_info *info)
{
	unsigned int *addr = info->io.info;
	int           mapsize;

	if (addr && (*addr)) {
		mapsize = ((info->io_size * info->io.regspacing)
			   - (info->io.regspacing - info->io.regsize));

		release_region (*addr, mapsize);
	}
	kfree(info);
}

static int port_setup(struct smi_info *info)
{
	unsigned int *addr = info->io.info;
	int           mapsize;

	if (!addr || (!*addr))
		return -ENODEV;

	info->io_cleanup = port_cleanup;

	/* Figure out the actual inb/inw/inl/etc routine to use based
	   upon the register size. */
	switch (info->io.regsize) {
	case 1:
		info->io.inputb = port_inb;
		info->io.outputb = port_outb;
		break;
	case 2:
		info->io.inputb = port_inw;
		info->io.outputb = port_outw;
		break;
	case 4:
		info->io.inputb = port_inl;
		info->io.outputb = port_outl;
		break;
	default:
		printk("ipmi_si: Invalid register size: %d\n",
		       info->io.regsize);
		return -EINVAL;
	}

	/* Calculate the total amount of memory to claim.  This is an
	 * unusual looking calculation, but it avoids claiming any
	 * more memory than it has to.  It will claim everything
	 * between the first address to the end of the last full
	 * register. */
	mapsize = ((info->io_size * info->io.regspacing)
		   - (info->io.regspacing - info->io.regsize));

	if (request_region(*addr, mapsize, DEVICE_NAME) == NULL)
		return -EIO;
	return 0;
}

static int try_init_port(int intf_num, struct smi_info **new_info)
{
	struct smi_info *info;

	if (!ports[intf_num])
		return -ENODEV;

	if (!is_new_interface(intf_num, IPMI_IO_ADDR_SPACE,
			      ports[intf_num]))
		return -ENODEV;

	info = kmalloc(sizeof(*info), GFP_KERNEL);
	if (!info) {
		printk(KERN_ERR "ipmi_si: Could not allocate SI data (1)\n");
		return -ENOMEM;
	}
	memset(info, 0, sizeof(*info));

	info->io_setup = port_setup;
	info->io.info = &(ports[intf_num]);
	info->io.addr = NULL;
	info->io.regspacing = regspacings[intf_num];
	if (!info->io.regspacing)
		info->io.regspacing = DEFAULT_REGSPACING;
	info->io.regsize = regsizes[intf_num];
	if (!info->io.regsize)
		info->io.regsize = DEFAULT_REGSPACING;
	info->io.regshift = regshifts[intf_num];
	info->irq = 0;
	info->irq_setup = NULL;
	*new_info = info;

	if (si_type[intf_num] == NULL)
		si_type[intf_num] = "kcs";

	printk("ipmi_si: Trying \"%s\" at I/O port 0x%x\n",
	       si_type[intf_num], ports[intf_num]);
	return 0;
}

static unsigned char mem_inb(struct si_sm_io *io, unsigned int offset)
{
	return readb((io->addr)+(offset * io->regspacing));
}

static void mem_outb(struct si_sm_io *io, unsigned int offset,
		     unsigned char b)
{
	writeb(b, (io->addr)+(offset * io->regspacing));
}

static unsigned char mem_inw(struct si_sm_io *io, unsigned int offset)
{
	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
		&& 0xff;
}

static void mem_outw(struct si_sm_io *io, unsigned int offset,
		     unsigned char b)
{
	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
}

static unsigned char mem_inl(struct si_sm_io *io, unsigned int offset)
{
	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
		&& 0xff;
}

static void mem_outl(struct si_sm_io *io, unsigned int offset,
		     unsigned char b)
{
	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
}

#ifdef readq
static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
{
	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
		&& 0xff;
}

static void mem_outq(struct si_sm_io *io, unsigned int offset,
		     unsigned char b)
{
	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
}
#endif

static void mem_cleanup(struct smi_info *info)
{
	unsigned long *addr = info->io.info;
	int           mapsize;

	if (info->io.addr) {
		iounmap(info->io.addr);

		mapsize = ((info->io_size * info->io.regspacing)
			   - (info->io.regspacing - info->io.regsize));

		release_mem_region(*addr, mapsize);
	}
	kfree(info);
}

static int mem_setup(struct smi_info *info)
{
	unsigned long *addr = info->io.info;
	int           mapsize;

	if (!addr || (!*addr))
		return -ENODEV;

	info->io_cleanup = mem_cleanup;

	/* Figure out the actual readb/readw/readl/etc routine to use based
	   upon the register size. */
	switch (info->io.regsize) {
	case 1:
		info->io.inputb = mem_inb;
		info->io.outputb = mem_outb;
		break;
	case 2:
		info->io.inputb = mem_inw;
		info->io.outputb = mem_outw;
		break;
	case 4:
		info->io.inputb = mem_inl;
		info->io.outputb = mem_outl;
		break;
#ifdef readq
	case 8:
		info->io.inputb = mem_inq;
		info->io.outputb = mem_outq;
		break;
#endif
	default:
		printk("ipmi_si: Invalid register size: %d\n",
		       info->io.regsize);
		return -EINVAL;
	}

	/* Calculate the total amount of memory to claim.  This is an
	 * unusual looking calculation, but it avoids claiming any
	 * more memory than it has to.  It will claim everything
	 * between the first address to the end of the last full
	 * register. */
	mapsize = ((info->io_size * info->io.regspacing)
		   - (info->io.regspacing - info->io.regsize));

	if (request_mem_region(*addr, mapsize, DEVICE_NAME) == NULL)
		return -EIO;

	info->io.addr = ioremap(*addr, mapsize);
	if (info->io.addr == NULL) {
		release_mem_region(*addr, mapsize);
		return -EIO;
	}
	return 0;
}

static int try_init_mem(int intf_num, struct smi_info **new_info)
{
	struct smi_info *info;

	if (!addrs[intf_num])
		return -ENODEV;

	if (!is_new_interface(intf_num, IPMI_MEM_ADDR_SPACE,
			      addrs[intf_num]))
		return -ENODEV;

	info = kmalloc(sizeof(*info), GFP_KERNEL);
	if (!info) {
		printk(KERN_ERR "ipmi_si: Could not allocate SI data (2)\n");
		return -ENOMEM;
	}
	memset(info, 0, sizeof(*info));

	info->io_setup = mem_setup;
	info->io.info = &addrs[intf_num];
	info->io.addr = NULL;
	info->io.regspacing = regspacings[intf_num];
	if (!info->io.regspacing)
		info->io.regspacing = DEFAULT_REGSPACING;
	info->io.regsize = regsizes[intf_num];
	if (!info->io.regsize)
		info->io.regsize = DEFAULT_REGSPACING;
	info->io.regshift = regshifts[intf_num];
	info->irq = 0;
	info->irq_setup = NULL;
	*new_info = info;

	if (si_type[intf_num] == NULL)
		si_type[intf_num] = "kcs";

	printk("ipmi_si: Trying \"%s\" at memory address 0x%lx\n",
	       si_type[intf_num], addrs[intf_num]);
	return 0;
}


#ifdef CONFIG_ACPI_INTERPRETER

#include <linux/acpi.h>

/* Once we get an ACPI failure, we don't try any more, because we go
   through the tables sequentially.  Once we don't find a table, there
   are no more. */
static int acpi_failure = 0;

/* For GPE-type interrupts. */
static u32 ipmi_acpi_gpe(void *context)
{
	struct smi_info *smi_info = context;
	unsigned long   flags;
#ifdef DEBUG_TIMING
	struct timeval t;
#endif

	spin_lock_irqsave(&(smi_info->si_lock), flags);

	spin_lock(&smi_info->count_lock);
	smi_info->interrupts++;
	spin_unlock(&smi_info->count_lock);

	if (smi_info->stop_operation)
		goto out;

#ifdef DEBUG_TIMING
	do_gettimeofday(&t);
	printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif
	smi_event_handler(smi_info, 0);
 out:
	spin_unlock_irqrestore(&(smi_info->si_lock), flags);

	return ACPI_INTERRUPT_HANDLED;
}

static int acpi_gpe_irq_setup(struct smi_info *info)
{
	acpi_status status;

	if (!info->irq)
		return 0;

	/* FIXME - is level triggered right? */
	status = acpi_install_gpe_handler(NULL,
					  info->irq,
					  ACPI_GPE_LEVEL_TRIGGERED,
					  &ipmi_acpi_gpe,
					  info);
	if (status != AE_OK) {
		printk(KERN_WARNING
		       "ipmi_si: %s unable to claim ACPI GPE %d,"
		       " running polled\n",
		       DEVICE_NAME, info->irq);
		info->irq = 0;
		return -EINVAL;
	} else {
		printk("  Using ACPI GPE %d\n", info->irq);
		return 0;
	}
}

static void acpi_gpe_irq_cleanup(struct smi_info *info)
{
	if (!info->irq)
		return;

	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
}

/*
 * Defined at
 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf
 */
struct SPMITable {
	s8	Signature[4];
	u32	Length;
	u8	Revision;
	u8	Checksum;
	s8	OEMID[6];
	s8	OEMTableID[8];
	s8	OEMRevision[4];
	s8	CreatorID[4];
	s8	CreatorRevision[4];
	u8	InterfaceType;
	u8	IPMIlegacy;
	s16	SpecificationRevision;

	/*
	 * Bit 0 - SCI interrupt supported
	 * Bit 1 - I/O APIC/SAPIC
	 */
	u8	InterruptType;

	/* If bit 0 of InterruptType is set, then this is the SCI
           interrupt in the GPEx_STS register. */
	u8	GPE;

	s16	Reserved;

	/* If bit 1 of InterruptType is set, then this is the I/O
           APIC/SAPIC interrupt. */
	u32	GlobalSystemInterrupt;

	/* The actual register address. */
	struct acpi_generic_address addr;

	u8	UID[4];

	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
};

static int try_init_acpi(int intf_num, struct smi_info **new_info)
{
	struct smi_info  *info;
	acpi_status      status;
	struct SPMITable *spmi;
	char             *io_type;
	u8 		 addr_space;

	if (acpi_failure)
		return -ENODEV;

	status = acpi_get_firmware_table("SPMI", intf_num+1,
					 ACPI_LOGICAL_ADDRESSING,
					 (struct acpi_table_header **) &spmi);
	if (status != AE_OK) {
		acpi_failure = 1;
		return -ENODEV;
	}

	if (spmi->IPMIlegacy != 1) {
	    printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
  	    return -ENODEV;
	}

	if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
		addr_space = IPMI_MEM_ADDR_SPACE;
	else
		addr_space = IPMI_IO_ADDR_SPACE;
	if (!is_new_interface(-1, addr_space, spmi->addr.address))
		return -ENODEV;

	if (!spmi->addr.register_bit_width) {
		acpi_failure = 1;
		return -ENODEV;
	}

	/* Figure out the interface type. */
	switch (spmi->InterfaceType)
	{
	case 1:	/* KCS */
		si_type[intf_num] = "kcs";
		break;

	case 2:	/* SMIC */
		si_type[intf_num] = "smic";
		break;

	case 3:	/* BT */
		si_type[intf_num] = "bt";
		break;

	default:
		printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
			spmi->InterfaceType);
		return -EIO;
	}

	info = kmalloc(sizeof(*info), GFP_KERNEL);
	if (!info) {
		printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
		return -ENOMEM;
	}
	memset(info, 0, sizeof(*info));

	if (spmi->InterruptType & 1) {
		/* We've got a GPE interrupt. */
		info->irq = spmi->GPE;
		info->irq_setup = acpi_gpe_irq_setup;
		info->irq_cleanup = acpi_gpe_irq_cleanup;
	} else if (spmi->InterruptType & 2) {
		/* We've got an APIC/SAPIC interrupt. */
		info->irq = spmi->GlobalSystemInterrupt;
		info->irq_setup = std_irq_setup;
		info->irq_cleanup = std_irq_cleanup;
	} else {
		/* Use the default interrupt setting. */
		info->irq = 0;
		info->irq_setup = NULL;
	}

	regspacings[intf_num] = spmi->addr.register_bit_width / 8;
	info->io.regspacing = spmi->addr.register_bit_width / 8;
	regsizes[intf_num] = regspacings[intf_num];
	info->io.regsize = regsizes[intf_num];
	regshifts[intf_num] = spmi->addr.register_bit_offset;
	info->io.regshift = regshifts[intf_num];

	if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
		io_type = "memory";
		info->io_setup = mem_setup;
		addrs[intf_num] = spmi->addr.address;
		info->io.info = &(addrs[intf_num]);
	} else if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
		io_type = "I/O";
		info->io_setup = port_setup;
		ports[intf_num] = spmi->addr.address;
		info->io.info = &(ports[intf_num]);
	} else {
		kfree(info);
		printk("ipmi_si: Unknown ACPI I/O Address type\n");
		return -EIO;
	}

	*new_info = info;

	printk("ipmi_si: ACPI/SPMI specifies \"%s\" %s SI @ 0x%lx\n",
	       si_type[intf_num], io_type, (unsigned long) spmi->addr.address);
	return 0;
}
#endif

#ifdef CONFIG_X86
typedef struct dmi_ipmi_data
{
	u8   		type;
	u8   		addr_space;
	unsigned long	base_addr;
	u8   		irq;
	u8              offset;
	u8              slave_addr;
} dmi_ipmi_data_t;

static dmi_ipmi_data_t dmi_data[SI_MAX_DRIVERS];
static int dmi_data_entries;

typedef struct dmi_header
{
	u8	type;
	u8	length;
	u16	handle;
} dmi_header_t;

static int decode_dmi(dmi_header_t *dm, int intf_num)
{
	u8		*data = (u8 *)dm;
	unsigned long  	base_addr;
	u8		reg_spacing;
	u8              len = dm->length;
	dmi_ipmi_data_t *ipmi_data = dmi_data+intf_num;

	ipmi_data->type = data[4];

	memcpy(&base_addr, data+8, sizeof(unsigned long));
	if (len >= 0x11) {
		if (base_addr & 1) {
			/* I/O */
			base_addr &= 0xFFFE;
			ipmi_data->addr_space = IPMI_IO_ADDR_SPACE;
		}
		else {
			/* Memory */
			ipmi_data->addr_space = IPMI_MEM_ADDR_SPACE;
		}
		/* If bit 4 of byte 0x10 is set, then the lsb for the address
		   is odd. */
		ipmi_data->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);

		ipmi_data->irq = data[0x11];

		/* The top two bits of byte 0x10 hold the register spacing. */
		reg_spacing = (data[0x10] & 0xC0) >> 6;
		switch(reg_spacing){
		case 0x00: /* Byte boundaries */
		    ipmi_data->offset = 1;
		    break;
		case 0x01: /* 32-bit boundaries */
		    ipmi_data->offset = 4;
		    break;
		case 0x02: /* 16-byte boundaries */
		    ipmi_data->offset = 16;
		    break;
		default:
		    /* Some other interface, just ignore it. */
		    return -EIO;
		}
	} else {
		/* Old DMI spec. */
1626 1627 1628 1629 1630 1631 1632
		/* Note that technically, the lower bit of the base
		 * address should be 1 if the address is I/O and 0 if
		 * the address is in memory.  So many systems get that
		 * wrong (and all that I have seen are I/O) so we just
		 * ignore that bit and assume I/O.  Systems that use
		 * memory should use the newer spec, anyway. */
		ipmi_data->base_addr = base_addr & 0xfffe;
L
Linus Torvalds 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
		ipmi_data->addr_space = IPMI_IO_ADDR_SPACE;
		ipmi_data->offset = 1;
	}

	ipmi_data->slave_addr = data[6];

	if (is_new_interface(-1, ipmi_data->addr_space,ipmi_data->base_addr)) {
		dmi_data_entries++;
		return 0;
	}

	memset(ipmi_data, 0, sizeof(dmi_ipmi_data_t));

	return -1;
}

static int dmi_table(u32 base, int len, int num)
{
	u8 		  *buf;
	struct dmi_header *dm;
	u8 		  *data;
	int 		  i=1;
	int		  status=-1;
	int               intf_num = 0;

	buf = ioremap(base, len);
	if(buf==NULL)
		return -1;

	data = buf;

	while(i<num && (data - buf) < len)
	{
		dm=(dmi_header_t *)data;

		if((data-buf+dm->length) >= len)
        		break;

		if (dm->type == 38) {
			if (decode_dmi(dm, intf_num) == 0) {
				intf_num++;
				if (intf_num >= SI_MAX_DRIVERS)
					break;
			}
		}

	        data+=dm->length;
		while((data-buf) < len && (*data || data[1]))
			data++;
		data+=2;
		i++;
	}
	iounmap(buf);

	return status;
}

inline static int dmi_checksum(u8 *buf)
{
	u8   sum=0;
	int  a;

	for(a=0; a<15; a++)
		sum+=buf[a];
	return (sum==0);
}

static int dmi_decode(void)
{
	u8   buf[15];
	u32  fp=0xF0000;

#ifdef CONFIG_SIMNOW
	return -1;
#endif

	while(fp < 0xFFFFF)
	{
		isa_memcpy_fromio(buf, fp, 15);
		if(memcmp(buf, "_DMI_", 5)==0 && dmi_checksum(buf))
		{
			u16 num=buf[13]<<8|buf[12];
			u16 len=buf[7]<<8|buf[6];
			u32 base=buf[11]<<24|buf[10]<<16|buf[9]<<8|buf[8];

			if(dmi_table(base, len, num) == 0)
				return 0;
		}
		fp+=16;
	}

	return -1;
}

static int try_init_smbios(int intf_num, struct smi_info **new_info)
{
	struct smi_info   *info;
	dmi_ipmi_data_t   *ipmi_data = dmi_data+intf_num;
	char              *io_type;

	if (intf_num >= dmi_data_entries)
		return -ENODEV;

	switch(ipmi_data->type) {
		case 0x01: /* KCS */
			si_type[intf_num] = "kcs";
			break;
		case 0x02: /* SMIC */
			si_type[intf_num] = "smic";
			break;
		case 0x03: /* BT */
			si_type[intf_num] = "bt";
			break;
		default:
			return -EIO;
	}

	info = kmalloc(sizeof(*info), GFP_KERNEL);
	if (!info) {
		printk(KERN_ERR "ipmi_si: Could not allocate SI data (4)\n");
		return -ENOMEM;
	}
	memset(info, 0, sizeof(*info));

	if (ipmi_data->addr_space == 1) {
		io_type = "memory";
		info->io_setup = mem_setup;
		addrs[intf_num] = ipmi_data->base_addr;
		info->io.info = &(addrs[intf_num]);
	} else if (ipmi_data->addr_space == 2) {
		io_type = "I/O";
		info->io_setup = port_setup;
		ports[intf_num] = ipmi_data->base_addr;
		info->io.info = &(ports[intf_num]);
	} else {
		kfree(info);
		printk("ipmi_si: Unknown SMBIOS I/O Address type.\n");
		return -EIO;
	}

	regspacings[intf_num] = ipmi_data->offset;
	info->io.regspacing = regspacings[intf_num];
	if (!info->io.regspacing)
		info->io.regspacing = DEFAULT_REGSPACING;
	info->io.regsize = DEFAULT_REGSPACING;
	info->io.regshift = regshifts[intf_num];

	info->slave_addr = ipmi_data->slave_addr;

	irqs[intf_num] = ipmi_data->irq;

	*new_info = info;

	printk("ipmi_si: Found SMBIOS-specified state machine at %s"
	       " address 0x%lx, slave address 0x%x\n",
	       io_type, (unsigned long)ipmi_data->base_addr,
	       ipmi_data->slave_addr);
	return 0;
}
#endif /* CONFIG_X86 */

#ifdef CONFIG_PCI

#define PCI_ERMC_CLASSCODE  0x0C0700
#define PCI_HP_VENDOR_ID    0x103C
#define PCI_MMC_DEVICE_ID   0x121A
#define PCI_MMC_ADDR_CW     0x10

/* Avoid more than one attempt to probe pci smic. */
static int pci_smic_checked = 0;

static int find_pci_smic(int intf_num, struct smi_info **new_info)
{
	struct smi_info  *info;
	int              error;
	struct pci_dev   *pci_dev = NULL;
	u16    		 base_addr;
	int              fe_rmc = 0;

	if (pci_smic_checked)
		return -ENODEV;

	pci_smic_checked = 1;

	if ((pci_dev = pci_get_device(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID,
				       NULL)))
		;
	else if ((pci_dev = pci_get_class(PCI_ERMC_CLASSCODE, NULL)) &&
		 pci_dev->subsystem_vendor == PCI_HP_VENDOR_ID)
		fe_rmc = 1;
	else
		return -ENODEV;

	error = pci_read_config_word(pci_dev, PCI_MMC_ADDR_CW, &base_addr);
	if (error)
	{
		pci_dev_put(pci_dev);
		printk(KERN_ERR
		       "ipmi_si: pci_read_config_word() failed (%d).\n",
		       error);
		return -ENODEV;
	}

	/* Bit 0: 1 specifies programmed I/O, 0 specifies memory mapped I/O */
	if (!(base_addr & 0x0001))
	{
		pci_dev_put(pci_dev);
		printk(KERN_ERR
		       "ipmi_si: memory mapped I/O not supported for PCI"
		       " smic.\n");
		return -ENODEV;
	}

	base_addr &= 0xFFFE;
	if (!fe_rmc)
		/* Data register starts at base address + 1 in eRMC */
		++base_addr;

	if (!is_new_interface(-1, IPMI_IO_ADDR_SPACE, base_addr)) {
		pci_dev_put(pci_dev);
		return -ENODEV;
	}

	info = kmalloc(sizeof(*info), GFP_KERNEL);
	if (!info) {
		pci_dev_put(pci_dev);
		printk(KERN_ERR "ipmi_si: Could not allocate SI data (5)\n");
		return -ENOMEM;
	}
	memset(info, 0, sizeof(*info));

	info->io_setup = port_setup;
	ports[intf_num] = base_addr;
	info->io.info = &(ports[intf_num]);
	info->io.regspacing = regspacings[intf_num];
	if (!info->io.regspacing)
		info->io.regspacing = DEFAULT_REGSPACING;
	info->io.regsize = DEFAULT_REGSPACING;
	info->io.regshift = regshifts[intf_num];

	*new_info = info;

	irqs[intf_num] = pci_dev->irq;
	si_type[intf_num] = "smic";

	printk("ipmi_si: Found PCI SMIC at I/O address 0x%lx\n",
		(long unsigned int) base_addr);

	pci_dev_put(pci_dev);
	return 0;
}
#endif /* CONFIG_PCI */

static int try_init_plug_and_play(int intf_num, struct smi_info **new_info)
{
#ifdef CONFIG_PCI
	if (find_pci_smic(intf_num, new_info)==0)
		return 0;
#endif
	/* Include other methods here. */

	return -ENODEV;
}


static int try_get_dev_id(struct smi_info *smi_info)
{
	unsigned char      msg[2];
	unsigned char      *resp;
	unsigned long      resp_len;
	enum si_sm_result smi_result;
	int               rv = 0;

	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
	if (!resp)
		return -ENOMEM;

	/* Do a Get Device ID command, since it comes back with some
	   useful info. */
	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
	msg[1] = IPMI_GET_DEVICE_ID_CMD;
	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);

	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
	for (;;)
	{
		if (smi_result == SI_SM_CALL_WITH_DELAY) {
			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_timeout(1);
			smi_result = smi_info->handlers->event(
				smi_info->si_sm, 100);
		}
		else if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
		{
			smi_result = smi_info->handlers->event(
				smi_info->si_sm, 0);
		}
		else
			break;
	}
	if (smi_result == SI_SM_HOSED) {
		/* We couldn't get the state machine to run, so whatever's at
		   the port is probably not an IPMI SMI interface. */
		rv = -ENODEV;
		goto out;
	}

	/* Otherwise, we got some data. */
	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
						  resp, IPMI_MAX_MSG_LENGTH);
	if (resp_len < 6) {
		/* That's odd, it should be longer. */
		rv = -EINVAL;
		goto out;
	}

	if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) {
		/* That's odd, it shouldn't be able to fail. */
		rv = -EINVAL;
		goto out;
	}

	/* Record info from the get device id, in case we need it. */
	smi_info->ipmi_si_dev_rev = resp[4] & 0xf;
	smi_info->ipmi_si_fw_rev_major = resp[5] & 0x7f;
	smi_info->ipmi_si_fw_rev_minor = resp[6];
	smi_info->ipmi_version_major = resp[7] & 0xf;
	smi_info->ipmi_version_minor = resp[7] >> 4;

 out:
	kfree(resp);
	return rv;
}

static int type_file_read_proc(char *page, char **start, off_t off,
			       int count, int *eof, void *data)
{
	char            *out = (char *) page;
	struct smi_info *smi = data;

	switch (smi->si_type) {
	    case SI_KCS:
		return sprintf(out, "kcs\n");
	    case SI_SMIC:
		return sprintf(out, "smic\n");
	    case SI_BT:
		return sprintf(out, "bt\n");
	    default:
		return 0;
	}
}

static int stat_file_read_proc(char *page, char **start, off_t off,
			       int count, int *eof, void *data)
{
	char            *out = (char *) page;
	struct smi_info *smi = data;

	out += sprintf(out, "interrupts_enabled:    %d\n",
		       smi->irq && !smi->interrupt_disabled);
	out += sprintf(out, "short_timeouts:        %ld\n",
		       smi->short_timeouts);
	out += sprintf(out, "long_timeouts:         %ld\n",
		       smi->long_timeouts);
	out += sprintf(out, "timeout_restarts:      %ld\n",
		       smi->timeout_restarts);
	out += sprintf(out, "idles:                 %ld\n",
		       smi->idles);
	out += sprintf(out, "interrupts:            %ld\n",
		       smi->interrupts);
	out += sprintf(out, "attentions:            %ld\n",
		       smi->attentions);
	out += sprintf(out, "flag_fetches:          %ld\n",
		       smi->flag_fetches);
	out += sprintf(out, "hosed_count:           %ld\n",
		       smi->hosed_count);
	out += sprintf(out, "complete_transactions: %ld\n",
		       smi->complete_transactions);
	out += sprintf(out, "events:                %ld\n",
		       smi->events);
	out += sprintf(out, "watchdog_pretimeouts:  %ld\n",
		       smi->watchdog_pretimeouts);
	out += sprintf(out, "incoming_messages:     %ld\n",
		       smi->incoming_messages);

	return (out - ((char *) page));
}

/* Returns 0 if initialized, or negative on an error. */
static int init_one_smi(int intf_num, struct smi_info **smi)
{
	int		rv;
	struct smi_info *new_smi;


	rv = try_init_mem(intf_num, &new_smi);
	if (rv)
		rv = try_init_port(intf_num, &new_smi);
#ifdef CONFIG_ACPI_INTERPRETER
	if ((rv) && (si_trydefaults)) {
		rv = try_init_acpi(intf_num, &new_smi);
	}
#endif
#ifdef CONFIG_X86
	if ((rv) && (si_trydefaults)) {
		rv = try_init_smbios(intf_num, &new_smi);
        }
#endif
	if ((rv) && (si_trydefaults)) {
		rv = try_init_plug_and_play(intf_num, &new_smi);
	}


	if (rv)
		return rv;

	/* So we know not to free it unless we have allocated one. */
	new_smi->intf = NULL;
	new_smi->si_sm = NULL;
	new_smi->handlers = NULL;

	if (!new_smi->irq_setup) {
		new_smi->irq = irqs[intf_num];
		new_smi->irq_setup = std_irq_setup;
		new_smi->irq_cleanup = std_irq_cleanup;
	}

	/* Default to KCS if no type is specified. */
	if (si_type[intf_num] == NULL) {
		if (si_trydefaults)
			si_type[intf_num] = "kcs";
		else {
			rv = -EINVAL;
			goto out_err;
		}
	}

	/* Set up the state machine to use. */
	if (strcmp(si_type[intf_num], "kcs") == 0) {
		new_smi->handlers = &kcs_smi_handlers;
		new_smi->si_type = SI_KCS;
	} else if (strcmp(si_type[intf_num], "smic") == 0) {
		new_smi->handlers = &smic_smi_handlers;
		new_smi->si_type = SI_SMIC;
	} else if (strcmp(si_type[intf_num], "bt") == 0) {
		new_smi->handlers = &bt_smi_handlers;
		new_smi->si_type = SI_BT;
	} else {
		/* No support for anything else yet. */
		rv = -EIO;
		goto out_err;
	}

	/* Allocate the state machine's data and initialize it. */
	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
	if (!new_smi->si_sm) {
		printk(" Could not allocate state machine memory\n");
		rv = -ENOMEM;
		goto out_err;
	}
	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
							&new_smi->io);

	/* Now that we know the I/O size, we can set up the I/O. */
	rv = new_smi->io_setup(new_smi);
	if (rv) {
		printk(" Could not set up I/O space\n");
		goto out_err;
	}

	spin_lock_init(&(new_smi->si_lock));
	spin_lock_init(&(new_smi->msg_lock));
	spin_lock_init(&(new_smi->count_lock));

	/* Do low-level detection first. */
	if (new_smi->handlers->detect(new_smi->si_sm)) {
		rv = -ENODEV;
		goto out_err;
	}

	/* Attempt a get device id command.  If it fails, we probably
           don't have a SMI here. */
	rv = try_get_dev_id(new_smi);
	if (rv)
		goto out_err;

	/* Try to claim any interrupts. */
	new_smi->irq_setup(new_smi);

	INIT_LIST_HEAD(&(new_smi->xmit_msgs));
	INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
	new_smi->curr_msg = NULL;
	atomic_set(&new_smi->req_events, 0);
	new_smi->run_to_completion = 0;

	new_smi->interrupt_disabled = 0;
	new_smi->timer_stopped = 0;
	new_smi->stop_operation = 0;

	/* Start clearing the flags before we enable interrupts or the
	   timer to avoid racing with the timer. */
	start_clear_flags(new_smi);
	/* IRQ is defined to be set when non-zero. */
	if (new_smi->irq)
		new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;

	/* The ipmi_register_smi() code does some operations to
	   determine the channel information, so we must be ready to
	   handle operations before it is called.  This means we have
	   to stop the timer if we get an error after this point. */
	init_timer(&(new_smi->si_timer));
	new_smi->si_timer.data = (long) new_smi;
	new_smi->si_timer.function = smi_timeout;
	new_smi->last_timeout_jiffies = jiffies;
	new_smi->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
	add_timer(&(new_smi->si_timer));

	rv = ipmi_register_smi(&handlers,
			       new_smi,
			       new_smi->ipmi_version_major,
			       new_smi->ipmi_version_minor,
			       new_smi->slave_addr,
			       &(new_smi->intf));
	if (rv) {
		printk(KERN_ERR
		       "ipmi_si: Unable to register device: error %d\n",
		       rv);
		goto out_err_stop_timer;
	}

	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
				     type_file_read_proc, NULL,
				     new_smi, THIS_MODULE);
	if (rv) {
		printk(KERN_ERR
		       "ipmi_si: Unable to create proc entry: %d\n",
		       rv);
		goto out_err_stop_timer;
	}

	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
				     stat_file_read_proc, NULL,
				     new_smi, THIS_MODULE);
	if (rv) {
		printk(KERN_ERR
		       "ipmi_si: Unable to create proc entry: %d\n",
		       rv);
		goto out_err_stop_timer;
	}

	*smi = new_smi;

	printk(" IPMI %s interface initialized\n", si_type[intf_num]);

	return 0;

 out_err_stop_timer:
	new_smi->stop_operation = 1;

	/* Wait for the timer to stop.  This avoids problems with race
	   conditions removing the timer here. */
	while (!new_smi->timer_stopped) {
		set_current_state(TASK_UNINTERRUPTIBLE);
		schedule_timeout(1);
	}

 out_err:
	if (new_smi->intf)
		ipmi_unregister_smi(new_smi->intf);

	new_smi->irq_cleanup(new_smi);

	/* Wait until we know that we are out of any interrupt
	   handlers might have been running before we freed the
	   interrupt. */
2208
	synchronize_sched();
L
Linus Torvalds 已提交
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320

	if (new_smi->si_sm) {
		if (new_smi->handlers)
			new_smi->handlers->cleanup(new_smi->si_sm);
		kfree(new_smi->si_sm);
	}
	new_smi->io_cleanup(new_smi);

	return rv;
}

static __init int init_ipmi_si(void)
{
	int  rv = 0;
	int  pos = 0;
	int  i;
	char *str;

	if (initialized)
		return 0;
	initialized = 1;

	/* Parse out the si_type string into its components. */
	str = si_type_str;
	if (*str != '\0') {
		for (i=0; (i<SI_MAX_PARMS) && (*str != '\0'); i++) {
			si_type[i] = str;
			str = strchr(str, ',');
			if (str) {
				*str = '\0';
				str++;
			} else {
				break;
			}
		}
	}

	printk(KERN_INFO "IPMI System Interface driver version "
	       IPMI_SI_VERSION);
	if (kcs_smi_handlers.version)
		printk(", KCS version %s", kcs_smi_handlers.version);
	if (smic_smi_handlers.version)
		printk(", SMIC version %s", smic_smi_handlers.version);
	if (bt_smi_handlers.version)
   	        printk(", BT version %s", bt_smi_handlers.version);
	printk("\n");

#ifdef CONFIG_X86
	dmi_decode();
#endif

	rv = init_one_smi(0, &(smi_infos[pos]));
	if (rv && !ports[0] && si_trydefaults) {
		/* If we are trying defaults and the initial port is
                   not set, then set it. */
		si_type[0] = "kcs";
		ports[0] = DEFAULT_KCS_IO_PORT;
		rv = init_one_smi(0, &(smi_infos[pos]));
		if (rv) {
			/* No KCS - try SMIC */
			si_type[0] = "smic";
			ports[0] = DEFAULT_SMIC_IO_PORT;
			rv = init_one_smi(0, &(smi_infos[pos]));
		}
		if (rv) {
			/* No SMIC - try BT */
			si_type[0] = "bt";
			ports[0] = DEFAULT_BT_IO_PORT;
			rv = init_one_smi(0, &(smi_infos[pos]));
		}
	}
	if (rv == 0)
		pos++;

	for (i=1; i < SI_MAX_PARMS; i++) {
		rv = init_one_smi(i, &(smi_infos[pos]));
		if (rv == 0)
			pos++;
	}

	if (smi_infos[0] == NULL) {
		printk("ipmi_si: Unable to find any System Interface(s)\n");
		return -ENODEV;
	}

	return 0;
}
module_init(init_ipmi_si);

static void __exit cleanup_one_si(struct smi_info *to_clean)
{
	int           rv;
	unsigned long flags;

	if (! to_clean)
		return;

	/* Tell the timer and interrupt handlers that we are shutting
	   down. */
	spin_lock_irqsave(&(to_clean->si_lock), flags);
	spin_lock(&(to_clean->msg_lock));

	to_clean->stop_operation = 1;

	to_clean->irq_cleanup(to_clean);

	spin_unlock(&(to_clean->msg_lock));
	spin_unlock_irqrestore(&(to_clean->si_lock), flags);

	/* Wait until we know that we are out of any interrupt
	   handlers might have been running before we freed the
	   interrupt. */
2321
	synchronize_sched();
L
Linus Torvalds 已提交
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365

	/* Wait for the timer to stop.  This avoids problems with race
	   conditions removing the timer here. */
	while (!to_clean->timer_stopped) {
		set_current_state(TASK_UNINTERRUPTIBLE);
		schedule_timeout(1);
	}

	/* Interrupts and timeouts are stopped, now make sure the
	   interface is in a clean state. */
	while ((to_clean->curr_msg) || (to_clean->si_state != SI_NORMAL)) {
		poll(to_clean);
		set_current_state(TASK_UNINTERRUPTIBLE);
		schedule_timeout(1);
	}

	rv = ipmi_unregister_smi(to_clean->intf);
	if (rv) {
		printk(KERN_ERR
		       "ipmi_si: Unable to unregister device: errno=%d\n",
		       rv);
	}

	to_clean->handlers->cleanup(to_clean->si_sm);

	kfree(to_clean->si_sm);

	to_clean->io_cleanup(to_clean);
}

static __exit void cleanup_ipmi_si(void)
{
	int i;

	if (!initialized)
		return;

	for (i=0; i<SI_MAX_DRIVERS; i++) {
		cleanup_one_si(smi_infos[i]);
	}
}
module_exit(cleanup_ipmi_si);

MODULE_LICENSE("GPL");