ixgbe_82599.c 85.5 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel 10 Gigabit PCI Express Linux driver
S
Shannon Nelson 已提交
4
  Copyright(c) 1999 - 2010 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/sched.h>

#include "ixgbe.h"
#include "ixgbe_phy.h"
34
#include "ixgbe_mbx.h"
35 36 37 38 39 40 41

#define IXGBE_82599_MAX_TX_QUEUES 128
#define IXGBE_82599_MAX_RX_QUEUES 128
#define IXGBE_82599_RAR_ENTRIES   128
#define IXGBE_82599_MC_TBL_SIZE   128
#define IXGBE_82599_VFT_TBL_SIZE  128

42
void ixgbe_flap_tx_laser_multispeed_fiber(struct ixgbe_hw *hw);
43 44 45 46
s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
                                          ixgbe_link_speed speed,
                                          bool autoneg,
                                          bool autoneg_wait_to_complete);
47 48 49 50
static s32 ixgbe_setup_mac_link_smartspeed(struct ixgbe_hw *hw,
                                           ixgbe_link_speed speed,
                                           bool autoneg,
                                           bool autoneg_wait_to_complete);
51 52 53 54 55 56
s32 ixgbe_start_mac_link_82599(struct ixgbe_hw *hw,
                               bool autoneg_wait_to_complete);
s32 ixgbe_setup_mac_link_82599(struct ixgbe_hw *hw,
                               ixgbe_link_speed speed,
                               bool autoneg,
                               bool autoneg_wait_to_complete);
57 58 59
static s32 ixgbe_get_copper_link_capabilities_82599(struct ixgbe_hw *hw,
                                             ixgbe_link_speed *speed,
                                             bool *autoneg);
60 61 62 63
static s32 ixgbe_setup_copper_link_82599(struct ixgbe_hw *hw,
                                         ixgbe_link_speed speed,
                                         bool autoneg,
                                         bool autoneg_wait_to_complete);
64
static s32 ixgbe_verify_fw_version_82599(struct ixgbe_hw *hw);
65

66
static void ixgbe_init_mac_link_ops_82599(struct ixgbe_hw *hw)
67 68 69 70
{
	struct ixgbe_mac_info *mac = &hw->mac;
	if (hw->phy.multispeed_fiber) {
		/* Set up dual speed SFP+ support */
71
		mac->ops.setup_link = &ixgbe_setup_mac_link_multispeed_fiber;
72
		mac->ops.flap_tx_laser = &ixgbe_flap_tx_laser_multispeed_fiber;
73
	} else {
74
		mac->ops.flap_tx_laser = NULL;
75 76 77 78 79 80 81
		if ((mac->ops.get_media_type(hw) ==
		     ixgbe_media_type_backplane) &&
		    (hw->phy.smart_speed == ixgbe_smart_speed_auto ||
		     hw->phy.smart_speed == ixgbe_smart_speed_on))
			mac->ops.setup_link = &ixgbe_setup_mac_link_smartspeed;
		else
			mac->ops.setup_link = &ixgbe_setup_mac_link_82599;
82 83 84
	}
}

85
static s32 ixgbe_setup_sfp_modules_82599(struct ixgbe_hw *hw)
86 87 88 89 90 91
{
	s32 ret_val = 0;
	u16 list_offset, data_offset, data_value;

	if (hw->phy.sfp_type != ixgbe_sfp_type_unknown) {
		ixgbe_init_mac_link_ops_82599(hw);
92 93 94

		hw->phy.ops.reset = NULL;

95 96 97 98 99 100
		ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
		                                              &data_offset);

		if (ret_val != 0)
			goto setup_sfp_out;

101 102 103 104 105 106 107
		/* PHY config will finish before releasing the semaphore */
		ret_val = ixgbe_acquire_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
		if (ret_val != 0) {
			ret_val = IXGBE_ERR_SWFW_SYNC;
			goto setup_sfp_out;
		}

108 109 110 111 112 113
		hw->eeprom.ops.read(hw, ++data_offset, &data_value);
		while (data_value != 0xffff) {
			IXGBE_WRITE_REG(hw, IXGBE_CORECTL, data_value);
			IXGBE_WRITE_FLUSH(hw);
			hw->eeprom.ops.read(hw, ++data_offset, &data_value);
		}
114 115 116
		/* Now restart DSP by setting Restart_AN */
		IXGBE_WRITE_REG(hw, IXGBE_AUTOC,
		    (IXGBE_READ_REG(hw, IXGBE_AUTOC) | IXGBE_AUTOC_AN_RESTART));
117 118 119 120 121

		/* Release the semaphore */
		ixgbe_release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
		/* Delay obtaining semaphore again to allow FW access */
		msleep(hw->eeprom.semaphore_delay);
122 123 124 125 126 127 128 129 130 131 132 133 134
	}

setup_sfp_out:
	return ret_val;
}

/**
 *  ixgbe_get_pcie_msix_count_82599 - Gets MSI-X vector count
 *  @hw: pointer to hardware structure
 *
 *  Read PCIe configuration space, and get the MSI-X vector count from
 *  the capabilities table.
 **/
135
static u32 ixgbe_get_pcie_msix_count_82599(struct ixgbe_hw *hw)
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
{
	struct ixgbe_adapter *adapter = hw->back;
	u16 msix_count;
	pci_read_config_word(adapter->pdev, IXGBE_PCIE_MSIX_82599_CAPS,
	                     &msix_count);
	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;

	/* MSI-X count is zero-based in HW, so increment to give proper value */
	msix_count++;

	return msix_count;
}

static s32 ixgbe_get_invariants_82599(struct ixgbe_hw *hw)
{
	struct ixgbe_mac_info *mac = &hw->mac;

153
	ixgbe_init_mac_link_ops_82599(hw);
154

155 156 157 158 159 160
	mac->mcft_size = IXGBE_82599_MC_TBL_SIZE;
	mac->vft_size = IXGBE_82599_VFT_TBL_SIZE;
	mac->num_rar_entries = IXGBE_82599_RAR_ENTRIES;
	mac->max_rx_queues = IXGBE_82599_MAX_RX_QUEUES;
	mac->max_tx_queues = IXGBE_82599_MAX_TX_QUEUES;
	mac->max_msix_vectors = ixgbe_get_pcie_msix_count_82599(hw);
161

162 163
	return 0;
}
164

165 166 167 168 169 170 171 172 173
/**
 *  ixgbe_init_phy_ops_82599 - PHY/SFP specific init
 *  @hw: pointer to hardware structure
 *
 *  Initialize any function pointers that were not able to be
 *  set during get_invariants because the PHY/SFP type was
 *  not known.  Perform the SFP init if necessary.
 *
 **/
174
static s32 ixgbe_init_phy_ops_82599(struct ixgbe_hw *hw)
175 176 177 178
{
	struct ixgbe_mac_info *mac = &hw->mac;
	struct ixgbe_phy_info *phy = &hw->phy;
	s32 ret_val = 0;
179

180 181 182 183 184
	/* Identify the PHY or SFP module */
	ret_val = phy->ops.identify(hw);

	/* Setup function pointers based on detected SFP module and speeds */
	ixgbe_init_mac_link_ops_82599(hw);
185 186 187 188 189 190 191 192

	/* If copper media, overwrite with copper function pointers */
	if (mac->ops.get_media_type(hw) == ixgbe_media_type_copper) {
		mac->ops.setup_link = &ixgbe_setup_copper_link_82599;
		mac->ops.get_link_capabilities =
		                  &ixgbe_get_copper_link_capabilities_82599;
	}

193
	/* Set necessary function pointers based on phy type */
194 195 196 197
	switch (hw->phy.type) {
	case ixgbe_phy_tn:
		phy->ops.check_link = &ixgbe_check_phy_link_tnx;
		phy->ops.get_firmware_version =
198
		             &ixgbe_get_phy_firmware_version_tnx;
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
		break;
	default:
		break;
	}

	return ret_val;
}

/**
 *  ixgbe_get_link_capabilities_82599 - Determines link capabilities
 *  @hw: pointer to hardware structure
 *  @speed: pointer to link speed
 *  @negotiation: true when autoneg or autotry is enabled
 *
 *  Determines the link capabilities by reading the AUTOC register.
 **/
215 216 217
static s32 ixgbe_get_link_capabilities_82599(struct ixgbe_hw *hw,
                                             ixgbe_link_speed *speed,
                                             bool *negotiation)
218 219
{
	s32 status = 0;
220
	u32 autoc = 0;
221

222 223 224 225 226 227 228 229 230 231 232
	/*
	 * Determine link capabilities based on the stored value of AUTOC,
	 * which represents EEPROM defaults.  If AUTOC value has not been
	 * stored, use the current register value.
	 */
	if (hw->mac.orig_link_settings_stored)
		autoc = hw->mac.orig_autoc;
	else
		autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);

	switch (autoc & IXGBE_AUTOC_LMS_MASK) {
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
	case IXGBE_AUTOC_LMS_1G_LINK_NO_AN:
		*speed = IXGBE_LINK_SPEED_1GB_FULL;
		*negotiation = false;
		break;

	case IXGBE_AUTOC_LMS_10G_LINK_NO_AN:
		*speed = IXGBE_LINK_SPEED_10GB_FULL;
		*negotiation = false;
		break;

	case IXGBE_AUTOC_LMS_1G_AN:
		*speed = IXGBE_LINK_SPEED_1GB_FULL;
		*negotiation = true;
		break;

	case IXGBE_AUTOC_LMS_10G_SERIAL:
		*speed = IXGBE_LINK_SPEED_10GB_FULL;
		*negotiation = false;
		break;

	case IXGBE_AUTOC_LMS_KX4_KX_KR:
	case IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN:
		*speed = IXGBE_LINK_SPEED_UNKNOWN;
256
		if (autoc & IXGBE_AUTOC_KR_SUPP)
257
			*speed |= IXGBE_LINK_SPEED_10GB_FULL;
258
		if (autoc & IXGBE_AUTOC_KX4_SUPP)
259
			*speed |= IXGBE_LINK_SPEED_10GB_FULL;
260
		if (autoc & IXGBE_AUTOC_KX_SUPP)
261 262 263 264 265 266
			*speed |= IXGBE_LINK_SPEED_1GB_FULL;
		*negotiation = true;
		break;

	case IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII:
		*speed = IXGBE_LINK_SPEED_100_FULL;
267
		if (autoc & IXGBE_AUTOC_KR_SUPP)
268
			*speed |= IXGBE_LINK_SPEED_10GB_FULL;
269
		if (autoc & IXGBE_AUTOC_KX4_SUPP)
270
			*speed |= IXGBE_LINK_SPEED_10GB_FULL;
271
		if (autoc & IXGBE_AUTOC_KX_SUPP)
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
			*speed |= IXGBE_LINK_SPEED_1GB_FULL;
		*negotiation = true;
		break;

	case IXGBE_AUTOC_LMS_SGMII_1G_100M:
		*speed = IXGBE_LINK_SPEED_1GB_FULL | IXGBE_LINK_SPEED_100_FULL;
		*negotiation = false;
		break;

	default:
		status = IXGBE_ERR_LINK_SETUP;
		goto out;
		break;
	}

	if (hw->phy.multispeed_fiber) {
		*speed |= IXGBE_LINK_SPEED_10GB_FULL |
		          IXGBE_LINK_SPEED_1GB_FULL;
		*negotiation = true;
	}

out:
	return status;
}

/**
 *  ixgbe_get_copper_link_capabilities_82599 - Determines link capabilities
 *  @hw: pointer to hardware structure
 *  @speed: pointer to link speed
 *  @autoneg: boolean auto-negotiation value
 *
 *  Determines the link capabilities by reading the AUTOC register.
 **/
static s32 ixgbe_get_copper_link_capabilities_82599(struct ixgbe_hw *hw,
                                                    ixgbe_link_speed *speed,
                                                    bool *autoneg)
{
	s32 status = IXGBE_ERR_LINK_SETUP;
	u16 speed_ability;

	*speed = 0;
	*autoneg = true;

315
	status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
316 317 318
	                              &speed_ability);

	if (status == 0) {
319
		if (speed_ability & MDIO_SPEED_10G)
320
		    *speed |= IXGBE_LINK_SPEED_10GB_FULL;
321
		if (speed_ability & MDIO_PMA_SPEED_1000)
322 323 324 325 326 327 328 329 330 331 332 333
		    *speed |= IXGBE_LINK_SPEED_1GB_FULL;
	}

	return status;
}

/**
 *  ixgbe_get_media_type_82599 - Get media type
 *  @hw: pointer to hardware structure
 *
 *  Returns the media type (fiber, copper, backplane)
 **/
334
static enum ixgbe_media_type ixgbe_get_media_type_82599(struct ixgbe_hw *hw)
335 336 337 338 339 340 341 342 343 344 345 346
{
	enum ixgbe_media_type media_type;

	/* Detect if there is a copper PHY attached. */
	if (hw->phy.type == ixgbe_phy_cu_unknown ||
	    hw->phy.type == ixgbe_phy_tn) {
		media_type = ixgbe_media_type_copper;
		goto out;
	}

	switch (hw->device_id) {
	case IXGBE_DEV_ID_82599_KX4:
347
	case IXGBE_DEV_ID_82599_KX4_MEZZ:
348
	case IXGBE_DEV_ID_82599_COMBO_BACKPLANE:
349
	case IXGBE_DEV_ID_82599_KR:
350
	case IXGBE_DEV_ID_82599_XAUI_LOM:
351 352 353 354
		/* Default device ID is mezzanine card KX/KX4 */
		media_type = ixgbe_media_type_backplane;
		break;
	case IXGBE_DEV_ID_82599_SFP:
355
	case IXGBE_DEV_ID_82599_SFP_EM:
356 357
		media_type = ixgbe_media_type_fiber;
		break;
358
	case IXGBE_DEV_ID_82599_CX4:
359
		media_type = ixgbe_media_type_cx4;
360
		break;
361 362 363 364 365 366 367 368 369
	default:
		media_type = ixgbe_media_type_unknown;
		break;
	}
out:
	return media_type;
}

/**
370
 *  ixgbe_start_mac_link_82599 - Setup MAC link settings
371
 *  @hw: pointer to hardware structure
372
 *  @autoneg_wait_to_complete: true when waiting for completion is needed
373 374 375 376
 *
 *  Configures link settings based on values in the ixgbe_hw struct.
 *  Restarts the link.  Performs autonegotiation if needed.
 **/
377 378
s32 ixgbe_start_mac_link_82599(struct ixgbe_hw *hw,
                               bool autoneg_wait_to_complete)
379 380 381 382 383 384 385 386 387 388 389 390
{
	u32 autoc_reg;
	u32 links_reg;
	u32 i;
	s32 status = 0;

	/* Restart link */
	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);

	/* Only poll for autoneg to complete if specified to do so */
391
	if (autoneg_wait_to_complete) {
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
		if ((autoc_reg & IXGBE_AUTOC_LMS_MASK) ==
		     IXGBE_AUTOC_LMS_KX4_KX_KR ||
		    (autoc_reg & IXGBE_AUTOC_LMS_MASK) ==
		     IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN ||
		    (autoc_reg & IXGBE_AUTOC_LMS_MASK) ==
		     IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) {
			links_reg = 0; /* Just in case Autoneg time = 0 */
			for (i = 0; i < IXGBE_AUTO_NEG_TIME; i++) {
				links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
				if (links_reg & IXGBE_LINKS_KX_AN_COMP)
					break;
				msleep(100);
			}
			if (!(links_reg & IXGBE_LINKS_KX_AN_COMP)) {
				status = IXGBE_ERR_AUTONEG_NOT_COMPLETE;
				hw_dbg(hw, "Autoneg did not complete.\n");
			}
		}
	}

	/* Add delay to filter out noises during initial link setup */
	msleep(50);

	return status;
}

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
/**
 *  ixgbe_flap_tx_laser_multispeed_fiber - Flap Tx laser
 *  @hw: pointer to hardware structure
 *
 *  When the driver changes the link speeds that it can support,
 *  it sets autotry_restart to true to indicate that we need to
 *  initiate a new autotry session with the link partner.  To do
 *  so, we set the speed then disable and re-enable the tx laser, to
 *  alert the link partner that it also needs to restart autotry on its
 *  end.  This is consistent with true clause 37 autoneg, which also
 *  involves a loss of signal.
 **/
void ixgbe_flap_tx_laser_multispeed_fiber(struct ixgbe_hw *hw)
{
	u32 esdp_reg = IXGBE_READ_REG(hw, IXGBE_ESDP);

	hw_dbg(hw, "ixgbe_flap_tx_laser_multispeed_fiber\n");

	if (hw->mac.autotry_restart) {
		/* Disable tx laser; allow 100us to go dark per spec */
		esdp_reg |= IXGBE_ESDP_SDP3;
		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
		IXGBE_WRITE_FLUSH(hw);
		udelay(100);

		/* Enable tx laser; allow 100ms to light up */
		esdp_reg &= ~IXGBE_ESDP_SDP3;
		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
		IXGBE_WRITE_FLUSH(hw);
		msleep(100);

		hw->mac.autotry_restart = false;
	}
}

453
/**
454
 *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
455 456 457 458 459 460 461
 *  @hw: pointer to hardware structure
 *  @speed: new link speed
 *  @autoneg: true if autonegotiation enabled
 *  @autoneg_wait_to_complete: true when waiting for completion is needed
 *
 *  Set the link speed in the AUTOC register and restarts link.
 **/
462 463 464 465
s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
                                          ixgbe_link_speed speed,
                                          bool autoneg,
                                          bool autoneg_wait_to_complete)
466 467 468 469 470 471 472 473
{
	s32 status = 0;
	ixgbe_link_speed phy_link_speed;
	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
	u32 speedcnt = 0;
	u32 esdp_reg = IXGBE_READ_REG(hw, IXGBE_ESDP);
	bool link_up = false;
	bool negotiation;
474
	int i;
475 476 477 478 479 480 481 482 483 484 485 486 487

	/* Mask off requested but non-supported speeds */
	hw->mac.ops.get_link_capabilities(hw, &phy_link_speed, &negotiation);
	speed &= phy_link_speed;

	/*
	 * Try each speed one by one, highest priority first.  We do this in
	 * software because 10gb fiber doesn't support speed autonegotiation.
	 */
	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
		speedcnt++;
		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;

488 489 490 491 492 493 494
		/* If we already have link at this speed, just jump out */
		hw->mac.ops.check_link(hw, &phy_link_speed, &link_up, false);

		if ((phy_link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up)
			goto out;

		/* Set the module link speed */
495 496
		esdp_reg |= (IXGBE_ESDP_SDP5_DIR | IXGBE_ESDP_SDP5);
		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
497
		IXGBE_WRITE_FLUSH(hw);
498

499 500
		/* Allow module to change analog characteristics (1G->10G) */
		msleep(40);
501

502 503 504 505
		status = ixgbe_setup_mac_link_82599(hw,
		                               IXGBE_LINK_SPEED_10GB_FULL,
		                               autoneg,
		                               autoneg_wait_to_complete);
506
		if (status != 0)
507
			return status;
508 509

		/* Flap the tx laser if it has not already been done */
510
		hw->mac.ops.flap_tx_laser(hw);
511

512 513 514 515 516 517
		/*
		 * Wait for the controller to acquire link.  Per IEEE 802.3ap,
		 * Section 73.10.2, we may have to wait up to 500ms if KR is
		 * attempted.  82599 uses the same timing for 10g SFI.
		 */

518 519 520 521 522 523 524 525 526 527
		for (i = 0; i < 5; i++) {
			/* Wait for the link partner to also set speed */
			msleep(100);

			/* If we have link, just jump out */
			hw->mac.ops.check_link(hw, &phy_link_speed,
			                       &link_up, false);
			if (link_up)
				goto out;
		}
528 529 530 531 532 533 534
	}

	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
		speedcnt++;
		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;

535 536 537 538 539 540 541
		/* If we already have link at this speed, just jump out */
		hw->mac.ops.check_link(hw, &phy_link_speed, &link_up, false);

		if ((phy_link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up)
			goto out;

		/* Set the module link speed */
542 543 544
		esdp_reg &= ~IXGBE_ESDP_SDP5;
		esdp_reg |= IXGBE_ESDP_SDP5_DIR;
		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
545
		IXGBE_WRITE_FLUSH(hw);
546

547 548
		/* Allow module to change analog characteristics (10G->1G) */
		msleep(40);
549

550
		status = ixgbe_setup_mac_link_82599(hw,
551 552 553 554
		                                      IXGBE_LINK_SPEED_1GB_FULL,
		                                      autoneg,
		                                      autoneg_wait_to_complete);
		if (status != 0)
555
			return status;
556 557

		/* Flap the tx laser if it has not already been done */
558
		hw->mac.ops.flap_tx_laser(hw);
559 560 561

		/* Wait for the link partner to also set speed */
		msleep(100);
562 563 564 565 566 567 568 569 570 571 572 573 574

		/* If we have link, just jump out */
		hw->mac.ops.check_link(hw, &phy_link_speed, &link_up, false);
		if (link_up)
			goto out;
	}

	/*
	 * We didn't get link.  Configure back to the highest speed we tried,
	 * (if there was more than one).  We call ourselves back with just the
	 * single highest speed that the user requested.
	 */
	if (speedcnt > 1)
575 576 577 578
		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
		                                               highest_link_speed,
		                                               autoneg,
		                                               autoneg_wait_to_complete);
579 580

out:
581 582 583 584 585 586 587 588 589
	/* Set autoneg_advertised value based on input link speed */
	hw->phy.autoneg_advertised = 0;

	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;

	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;

590 591 592
	return status;
}

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
/**
 *  ixgbe_setup_mac_link_smartspeed - Set MAC link speed using SmartSpeed
 *  @hw: pointer to hardware structure
 *  @speed: new link speed
 *  @autoneg: true if autonegotiation enabled
 *  @autoneg_wait_to_complete: true when waiting for completion is needed
 *
 *  Implements the Intel SmartSpeed algorithm.
 **/
static s32 ixgbe_setup_mac_link_smartspeed(struct ixgbe_hw *hw,
				     ixgbe_link_speed speed, bool autoneg,
				     bool autoneg_wait_to_complete)
{
	s32 status = 0;
	ixgbe_link_speed link_speed;
	s32 i, j;
	bool link_up = false;
	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);

	hw_dbg(hw, "ixgbe_setup_mac_link_smartspeed.\n");

	 /* Set autoneg_advertised value based on input link speed */
	hw->phy.autoneg_advertised = 0;

	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;

	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;

	if (speed & IXGBE_LINK_SPEED_100_FULL)
		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;

	/*
	 * Implement Intel SmartSpeed algorithm.  SmartSpeed will reduce the
	 * autoneg advertisement if link is unable to be established at the
	 * highest negotiated rate.  This can sometimes happen due to integrity
	 * issues with the physical media connection.
	 */

	/* First, try to get link with full advertisement */
	hw->phy.smart_speed_active = false;
	for (j = 0; j < IXGBE_SMARTSPEED_MAX_RETRIES; j++) {
		status = ixgbe_setup_mac_link_82599(hw, speed, autoneg,
						    autoneg_wait_to_complete);
		if (status)
			goto out;

		/*
		 * Wait for the controller to acquire link.  Per IEEE 802.3ap,
		 * Section 73.10.2, we may have to wait up to 500ms if KR is
		 * attempted, or 200ms if KX/KX4/BX/BX4 is attempted, per
		 * Table 9 in the AN MAS.
		 */
		for (i = 0; i < 5; i++) {
			mdelay(100);

			/* If we have link, just jump out */
			hw->mac.ops.check_link(hw, &link_speed,
			                       &link_up, false);
			if (link_up)
				goto out;
		}
	}

	/*
	 * We didn't get link.  If we advertised KR plus one of KX4/KX
	 * (or BX4/BX), then disable KR and try again.
	 */
	if (((autoc_reg & IXGBE_AUTOC_KR_SUPP) == 0) ||
	    ((autoc_reg & IXGBE_AUTOC_KX4_KX_SUPP_MASK) == 0))
		goto out;

	/* Turn SmartSpeed on to disable KR support */
	hw->phy.smart_speed_active = true;
	status = ixgbe_setup_mac_link_82599(hw, speed, autoneg,
					    autoneg_wait_to_complete);
	if (status)
		goto out;

	/*
	 * Wait for the controller to acquire link.  600ms will allow for
	 * the AN link_fail_inhibit_timer as well for multiple cycles of
	 * parallel detect, both 10g and 1g. This allows for the maximum
	 * connect attempts as defined in the AN MAS table 73-7.
	 */
	for (i = 0; i < 6; i++) {
		mdelay(100);

		/* If we have link, just jump out */
		hw->mac.ops.check_link(hw, &link_speed,
		                       &link_up, false);
		if (link_up)
			goto out;
	}

	/* We didn't get link.  Turn SmartSpeed back off. */
	hw->phy.smart_speed_active = false;
	status = ixgbe_setup_mac_link_82599(hw, speed, autoneg,
					    autoneg_wait_to_complete);

out:
	return status;
}

698 699 700 701 702 703 704 705 706
/**
 *  ixgbe_check_mac_link_82599 - Determine link and speed status
 *  @hw: pointer to hardware structure
 *  @speed: pointer to link speed
 *  @link_up: true when link is up
 *  @link_up_wait_to_complete: bool used to wait for link up or not
 *
 *  Reads the links register to determine if link is up and the current speed
 **/
707 708 709 710
static s32 ixgbe_check_mac_link_82599(struct ixgbe_hw *hw,
                                      ixgbe_link_speed *speed,
                                      bool *link_up,
                                      bool link_up_wait_to_complete)
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
{
	u32 links_reg;
	u32 i;

	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
	if (link_up_wait_to_complete) {
		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
			if (links_reg & IXGBE_LINKS_UP) {
				*link_up = true;
				break;
			} else {
				*link_up = false;
			}
			msleep(100);
			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
		}
	} else {
		if (links_reg & IXGBE_LINKS_UP)
			*link_up = true;
		else
			*link_up = false;
	}

	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
	    IXGBE_LINKS_SPEED_10G_82599)
		*speed = IXGBE_LINK_SPEED_10GB_FULL;
	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
	         IXGBE_LINKS_SPEED_1G_82599)
		*speed = IXGBE_LINK_SPEED_1GB_FULL;
	else
		*speed = IXGBE_LINK_SPEED_100_FULL;

743 744 745 746 747
	/* if link is down, zero out the current_mode */
	if (*link_up == false) {
		hw->fc.current_mode = ixgbe_fc_none;
		hw->fc.fc_was_autonegged = false;
	}
748 749 750 751 752

	return 0;
}

/**
753
 *  ixgbe_setup_mac_link_82599 - Set MAC link speed
754 755 756 757 758 759 760
 *  @hw: pointer to hardware structure
 *  @speed: new link speed
 *  @autoneg: true if autonegotiation enabled
 *  @autoneg_wait_to_complete: true when waiting for completion is needed
 *
 *  Set the link speed in the AUTOC register and restarts link.
 **/
761 762 763
s32 ixgbe_setup_mac_link_82599(struct ixgbe_hw *hw,
                               ixgbe_link_speed speed, bool autoneg,
                               bool autoneg_wait_to_complete)
764 765 766 767
{
	s32 status = 0;
	u32 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	u32 autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2);
768
	u32 start_autoc = autoc;
769
	u32 orig_autoc = 0;
770 771 772 773 774 775 776 777 778 779 780
	u32 link_mode = autoc & IXGBE_AUTOC_LMS_MASK;
	u32 pma_pmd_1g = autoc & IXGBE_AUTOC_1G_PMA_PMD_MASK;
	u32 pma_pmd_10g_serial = autoc2 & IXGBE_AUTOC2_10G_SERIAL_PMA_PMD_MASK;
	u32 links_reg;
	u32 i;
	ixgbe_link_speed link_capabilities = IXGBE_LINK_SPEED_UNKNOWN;

	/* Check to see if speed passed in is supported. */
	hw->mac.ops.get_link_capabilities(hw, &link_capabilities, &autoneg);
	speed &= link_capabilities;

781 782 783 784 785
	if (speed == IXGBE_LINK_SPEED_UNKNOWN) {
		status = IXGBE_ERR_LINK_SETUP;
		goto out;
	}

786 787 788 789 790 791 792
	/* Use stored value (EEPROM defaults) of AUTOC to find KR/KX4 support*/
	if (hw->mac.orig_link_settings_stored)
		orig_autoc = hw->mac.orig_autoc;
	else
		orig_autoc = autoc;


793 794 795
	if (link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR ||
	    link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN ||
	    link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) {
796 797 798
		/* Set KX4/KX/KR support according to speed requested */
		autoc &= ~(IXGBE_AUTOC_KX4_KX_SUPP_MASK | IXGBE_AUTOC_KR_SUPP);
		if (speed & IXGBE_LINK_SPEED_10GB_FULL)
799
			if (orig_autoc & IXGBE_AUTOC_KX4_SUPP)
800
				autoc |= IXGBE_AUTOC_KX4_SUPP;
801 802
			if ((orig_autoc & IXGBE_AUTOC_KR_SUPP) &&
			    (hw->phy.smart_speed_active == false))
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
				autoc |= IXGBE_AUTOC_KR_SUPP;
		if (speed & IXGBE_LINK_SPEED_1GB_FULL)
			autoc |= IXGBE_AUTOC_KX_SUPP;
	} else if ((pma_pmd_1g == IXGBE_AUTOC_1G_SFI) &&
	           (link_mode == IXGBE_AUTOC_LMS_1G_LINK_NO_AN ||
	            link_mode == IXGBE_AUTOC_LMS_1G_AN)) {
		/* Switch from 1G SFI to 10G SFI if requested */
		if ((speed == IXGBE_LINK_SPEED_10GB_FULL) &&
		    (pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI)) {
			autoc &= ~IXGBE_AUTOC_LMS_MASK;
			autoc |= IXGBE_AUTOC_LMS_10G_SERIAL;
		}
	} else if ((pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI) &&
	           (link_mode == IXGBE_AUTOC_LMS_10G_SERIAL)) {
		/* Switch from 10G SFI to 1G SFI if requested */
		if ((speed == IXGBE_LINK_SPEED_1GB_FULL) &&
		    (pma_pmd_1g == IXGBE_AUTOC_1G_SFI)) {
			autoc &= ~IXGBE_AUTOC_LMS_MASK;
			if (autoneg)
				autoc |= IXGBE_AUTOC_LMS_1G_AN;
			else
				autoc |= IXGBE_AUTOC_LMS_1G_LINK_NO_AN;
		}
	}

828
	if (autoc != start_autoc) {
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
		/* Restart link */
		autoc |= IXGBE_AUTOC_AN_RESTART;
		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc);

		/* Only poll for autoneg to complete if specified to do so */
		if (autoneg_wait_to_complete) {
			if (link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR ||
			    link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN ||
			    link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) {
				links_reg = 0; /*Just in case Autoneg time=0*/
				for (i = 0; i < IXGBE_AUTO_NEG_TIME; i++) {
					links_reg =
					       IXGBE_READ_REG(hw, IXGBE_LINKS);
					if (links_reg & IXGBE_LINKS_KX_AN_COMP)
						break;
					msleep(100);
				}
				if (!(links_reg & IXGBE_LINKS_KX_AN_COMP)) {
					status =
					        IXGBE_ERR_AUTONEG_NOT_COMPLETE;
					hw_dbg(hw, "Autoneg did not "
					       "complete.\n");
				}
			}
		}

		/* Add delay to filter out noises during initial link setup */
		msleep(50);
	}

859
out:
860 861 862 863
	return status;
}

/**
864
 *  ixgbe_setup_copper_link_82599 - Set the PHY autoneg advertised field
865 866 867 868 869 870 871
 *  @hw: pointer to hardware structure
 *  @speed: new link speed
 *  @autoneg: true if autonegotiation enabled
 *  @autoneg_wait_to_complete: true if waiting is needed to complete
 *
 *  Restarts link on PHY and MAC based on settings passed in.
 **/
872 873 874 875
static s32 ixgbe_setup_copper_link_82599(struct ixgbe_hw *hw,
                                         ixgbe_link_speed speed,
                                         bool autoneg,
                                         bool autoneg_wait_to_complete)
876 877 878 879 880 881 882
{
	s32 status;

	/* Setup the PHY according to input speed */
	status = hw->phy.ops.setup_link_speed(hw, speed, autoneg,
	                                      autoneg_wait_to_complete);
	/* Set up MAC */
883
	ixgbe_start_mac_link_82599(hw, autoneg_wait_to_complete);
884 885 886 887 888 889 890 891 892 893 894 895

	return status;
}

/**
 *  ixgbe_reset_hw_82599 - Perform hardware reset
 *  @hw: pointer to hardware structure
 *
 *  Resets the hardware by resetting the transmit and receive units, masks
 *  and clears all interrupts, perform a PHY reset, and perform a link (MAC)
 *  reset.
 **/
896
static s32 ixgbe_reset_hw_82599(struct ixgbe_hw *hw)
897 898
{
	s32 status = 0;
899
	u32 ctrl;
900 901 902 903 904 905 906
	u32 i;
	u32 autoc;
	u32 autoc2;

	/* Call adapter stop to disable tx/rx and clear interrupts */
	hw->mac.ops.stop_adapter(hw);

907
	/* PHY ops must be identified and initialized prior to reset */
908

909 910
	/* Init PHY and function pointers, perform SFP setup */
	status = hw->phy.ops.init(hw);
911

912 913
	if (status == IXGBE_ERR_SFP_NOT_SUPPORTED)
		goto reset_hw_out;
914

915 916 917 918
	/* Setup SFP module if there is one present. */
	if (hw->phy.sfp_setup_needed) {
		status = hw->mac.ops.setup_sfp(hw);
		hw->phy.sfp_setup_needed = false;
919
	}
920

921 922 923 924
	/* Reset PHY */
	if (hw->phy.reset_disable == false && hw->phy.ops.reset != NULL)
		hw->phy.ops.reset(hw);

925 926 927 928
	/*
	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
	 * access and verify no pending requests before reset
	 */
929 930
	status = ixgbe_disable_pcie_master(hw);
	if (status != 0) {
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
		status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
		hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
	}

	/*
	 * Issue global reset to the MAC.  This needs to be a SW reset.
	 * If link reset is used, it might reset the MAC when mng is using it
	 */
	ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL);
	IXGBE_WRITE_REG(hw, IXGBE_CTRL, (ctrl | IXGBE_CTRL_RST));
	IXGBE_WRITE_FLUSH(hw);

	/* Poll for reset bit to self-clear indicating reset is complete */
	for (i = 0; i < 10; i++) {
		udelay(1);
		ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL);
		if (!(ctrl & IXGBE_CTRL_RST))
			break;
	}
	if (ctrl & IXGBE_CTRL_RST) {
		status = IXGBE_ERR_RESET_FAILED;
		hw_dbg(hw, "Reset polling failed to complete.\n");
	}

	msleep(50);

	/*
	 * Store the original AUTOC/AUTOC2 values if they have not been
	 * stored off yet.  Otherwise restore the stored original
	 * values since the reset operation sets back to defaults.
	 */
	autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2);
	if (hw->mac.orig_link_settings_stored == false) {
		hw->mac.orig_autoc = autoc;
		hw->mac.orig_autoc2 = autoc2;
		hw->mac.orig_link_settings_stored = true;
968
	} else {
969 970 971 972 973 974 975 976 977 978 979 980 981
		if (autoc != hw->mac.orig_autoc)
			IXGBE_WRITE_REG(hw, IXGBE_AUTOC, (hw->mac.orig_autoc |
			                IXGBE_AUTOC_AN_RESTART));

		if ((autoc2 & IXGBE_AUTOC2_UPPER_MASK) !=
		    (hw->mac.orig_autoc2 & IXGBE_AUTOC2_UPPER_MASK)) {
			autoc2 &= ~IXGBE_AUTOC2_UPPER_MASK;
			autoc2 |= (hw->mac.orig_autoc2 &
			           IXGBE_AUTOC2_UPPER_MASK);
			IXGBE_WRITE_REG(hw, IXGBE_AUTOC2, autoc2);
		}
	}

982 983 984 985 986 987 988 989
	/*
	 * Store MAC address from RAR0, clear receive address registers, and
	 * clear the multicast table.  Also reset num_rar_entries to 128,
	 * since we modify this value when programming the SAN MAC address.
	 */
	hw->mac.num_rar_entries = 128;
	hw->mac.ops.init_rx_addrs(hw);

990 991 992
	/* Store the permanent mac address */
	hw->mac.ops.get_mac_addr(hw, hw->mac.perm_addr);

993 994 995
	/* Store the permanent SAN mac address */
	hw->mac.ops.get_san_mac_addr(hw, hw->mac.san_addr);

996 997 998 999 1000 1001 1002 1003 1004
	/* Add the SAN MAC address to the RAR only if it's a valid address */
	if (ixgbe_validate_mac_addr(hw->mac.san_addr) == 0) {
		hw->mac.ops.set_rar(hw, hw->mac.num_rar_entries - 1,
		                    hw->mac.san_addr, 0, IXGBE_RAH_AV);

		/* Reserve the last RAR for the SAN MAC address */
		hw->mac.num_rar_entries--;
	}

1005 1006 1007 1008
	/* Store the alternative WWNN/WWPN prefix */
	hw->mac.ops.get_wwn_prefix(hw, &hw->mac.wwnn_prefix,
	                               &hw->mac.wwpn_prefix);

1009
reset_hw_out:
1010 1011 1012 1013 1014 1015 1016 1017 1018
	return status;
}

/**
 *  ixgbe_clear_vmdq_82599 - Disassociate a VMDq pool index from a rx address
 *  @hw: pointer to hardware struct
 *  @rar: receive address register index to disassociate
 *  @vmdq: VMDq pool index to remove from the rar
 **/
1019
static s32 ixgbe_clear_vmdq_82599(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
{
	u32 mpsar_lo, mpsar_hi;
	u32 rar_entries = hw->mac.num_rar_entries;

	if (rar < rar_entries) {
		mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
		mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));

		if (!mpsar_lo && !mpsar_hi)
			goto done;

		if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
			if (mpsar_lo) {
				IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
				mpsar_lo = 0;
			}
			if (mpsar_hi) {
				IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
				mpsar_hi = 0;
			}
		} else if (vmdq < 32) {
			mpsar_lo &= ~(1 << vmdq);
			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
		} else {
			mpsar_hi &= ~(1 << (vmdq - 32));
			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
		}

		/* was that the last pool using this rar? */
		if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
			hw->mac.ops.clear_rar(hw, rar);
	} else {
		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
	}

done:
	return 0;
}

/**
 *  ixgbe_set_vmdq_82599 - Associate a VMDq pool index with a rx address
 *  @hw: pointer to hardware struct
 *  @rar: receive address register index to associate with a VMDq index
 *  @vmdq: VMDq pool index
 **/
1065
static s32 ixgbe_set_vmdq_82599(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
{
	u32 mpsar;
	u32 rar_entries = hw->mac.num_rar_entries;

	if (rar < rar_entries) {
		if (vmdq < 32) {
			mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
			mpsar |= 1 << vmdq;
			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
		} else {
			mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
			mpsar |= 1 << (vmdq - 32);
			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
		}
	} else {
		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
	}
	return 0;
}

/**
 *  ixgbe_set_vfta_82599 - Set VLAN filter table
 *  @hw: pointer to hardware structure
 *  @vlan: VLAN id to write to VLAN filter
 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
 *
 *  Turn on/off specified VLAN in the VLAN filter table.
 **/
1095 1096
static s32 ixgbe_set_vfta_82599(struct ixgbe_hw *hw, u32 vlan, u32 vind,
                                bool vlan_on)
1097 1098
{
	u32 regindex;
1099
	u32 vlvf_index;
1100 1101 1102
	u32 bitindex;
	u32 bits;
	u32 first_empty_slot;
1103
	u32 vt_ctl;
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129

	if (vlan > 4095)
		return IXGBE_ERR_PARAM;

	/*
	 * this is a 2 part operation - first the VFTA, then the
	 * VLVF and VLVFB if vind is set
	 */

	/* Part 1
	 * The VFTA is a bitstring made up of 128 32-bit registers
	 * that enable the particular VLAN id, much like the MTA:
	 *    bits[11-5]: which register
	 *    bits[4-0]:  which bit in the register
	 */
	regindex = (vlan >> 5) & 0x7F;
	bitindex = vlan & 0x1F;
	bits = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
	if (vlan_on)
		bits |= (1 << bitindex);
	else
		bits &= ~(1 << bitindex);
	IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), bits);


	/* Part 2
1130
	 * If VT mode is set
1131 1132 1133 1134 1135 1136
	 *   Either vlan_on
	 *     make sure the vlan is in VLVF
	 *     set the vind bit in the matching VLVFB
	 *   Or !vlan_on
	 *     clear the pool bit and possibly the vind
	 */
1137 1138 1139
	vt_ctl = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
	if (!(vt_ctl & IXGBE_VT_CTL_VT_ENABLE))
		goto out;
1140

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	/* find the vlanid or the first empty slot */
	first_empty_slot = 0;

	for (vlvf_index = 1; vlvf_index < IXGBE_VLVF_ENTRIES; vlvf_index++) {
		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(vlvf_index));
		if (!bits && !first_empty_slot)
			first_empty_slot = vlvf_index;
		else if ((bits & 0x0FFF) == vlan)
			break;
	}

	if (vlvf_index >= IXGBE_VLVF_ENTRIES) {
		if (first_empty_slot)
			vlvf_index = first_empty_slot;
		else {
			hw_dbg(hw, "No space in VLVF.\n");
			goto out;
1158
		}
1159
	}
1160

1161 1162 1163 1164 1165 1166 1167 1168
	if (vlan_on) {
		/* set the pool bit */
		if (vind < 32) {
			bits = IXGBE_READ_REG(hw,
					      IXGBE_VLVFB(vlvf_index * 2));
			bits |= (1 << vind);
			IXGBE_WRITE_REG(hw,
					IXGBE_VLVFB(vlvf_index * 2), bits);
1169
		} else {
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
			bits = IXGBE_READ_REG(hw,
				IXGBE_VLVFB((vlvf_index * 2) + 1));
			bits |= (1 << (vind - 32));
			IXGBE_WRITE_REG(hw,
				IXGBE_VLVFB((vlvf_index * 2) + 1), bits);
		}
	} else {
		/* clear the pool bit */
		if (vind < 32) {
			bits = IXGBE_READ_REG(hw,
					      IXGBE_VLVFB(vlvf_index * 2));
1181
			bits &= ~(1 << vind);
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
			IXGBE_WRITE_REG(hw,
					IXGBE_VLVFB(vlvf_index * 2), bits);
			bits |= IXGBE_READ_REG(hw,
					IXGBE_VLVFB((vlvf_index * 2) + 1));
		} else {
			bits = IXGBE_READ_REG(hw,
				IXGBE_VLVFB((vlvf_index * 2) + 1));
			bits &= ~(1 << (vind - 32));
			IXGBE_WRITE_REG(hw,
				IXGBE_VLVFB((vlvf_index * 2) + 1), bits);
			bits |= IXGBE_READ_REG(hw,
					       IXGBE_VLVFB(vlvf_index * 2));
1194
		}
1195
	}
1196

1197 1198 1199 1200 1201 1202 1203 1204
	if (bits) {
		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
				(IXGBE_VLVF_VIEN | vlan));
		/* if bits is non-zero then some pools/VFs are still
		 * using this VLAN ID.  Force the VFTA entry to on */
		bits = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
		bits |= (1 << bitindex);
		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), bits);
1205
	}
1206 1207
	else
		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

out:
	return 0;
}

/**
 *  ixgbe_clear_vfta_82599 - Clear VLAN filter table
 *  @hw: pointer to hardware structure
 *
 *  Clears the VLAN filer table, and the VMDq index associated with the filter
 **/
1219
static s32 ixgbe_clear_vfta_82599(struct ixgbe_hw *hw)
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
{
	u32 offset;

	for (offset = 0; offset < hw->mac.vft_size; offset++)
		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);

	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
	}

	return 0;
}

/**
 *  ixgbe_init_uta_tables_82599 - Initialize the Unicast Table Array
 *  @hw: pointer to hardware structure
 **/
1239
static s32 ixgbe_init_uta_tables_82599(struct ixgbe_hw *hw)
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
{
	int i;
	hw_dbg(hw, " Clearing UTA\n");

	for (i = 0; i < 128; i++)
		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);

	return 0;
}

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
/**
 *  ixgbe_reinit_fdir_tables_82599 - Reinitialize Flow Director tables.
 *  @hw: pointer to hardware structure
 **/
s32 ixgbe_reinit_fdir_tables_82599(struct ixgbe_hw *hw)
{
	int i;
	u32 fdirctrl = IXGBE_READ_REG(hw, IXGBE_FDIRCTRL);
	fdirctrl &= ~IXGBE_FDIRCTRL_INIT_DONE;

	/*
	 * Before starting reinitialization process,
	 * FDIRCMD.CMD must be zero.
	 */
	for (i = 0; i < IXGBE_FDIRCMD_CMD_POLL; i++) {
		if (!(IXGBE_READ_REG(hw, IXGBE_FDIRCMD) &
		      IXGBE_FDIRCMD_CMD_MASK))
			break;
		udelay(10);
	}
	if (i >= IXGBE_FDIRCMD_CMD_POLL) {
		hw_dbg(hw ,"Flow Director previous command isn't complete, "
		       "aborting table re-initialization. \n");
		return IXGBE_ERR_FDIR_REINIT_FAILED;
	}

	IXGBE_WRITE_REG(hw, IXGBE_FDIRFREE, 0);
	IXGBE_WRITE_FLUSH(hw);
	/*
	 * 82599 adapters flow director init flow cannot be restarted,
	 * Workaround 82599 silicon errata by performing the following steps
	 * before re-writing the FDIRCTRL control register with the same value.
	 * - write 1 to bit 8 of FDIRCMD register &
	 * - write 0 to bit 8 of FDIRCMD register
	 */
	IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD,
	                (IXGBE_READ_REG(hw, IXGBE_FDIRCMD) |
	                 IXGBE_FDIRCMD_CLEARHT));
	IXGBE_WRITE_FLUSH(hw);
	IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD,
	                (IXGBE_READ_REG(hw, IXGBE_FDIRCMD) &
	                 ~IXGBE_FDIRCMD_CLEARHT));
	IXGBE_WRITE_FLUSH(hw);
	/*
	 * Clear FDIR Hash register to clear any leftover hashes
	 * waiting to be programmed.
	 */
	IXGBE_WRITE_REG(hw, IXGBE_FDIRHASH, 0x00);
	IXGBE_WRITE_FLUSH(hw);

	IXGBE_WRITE_REG(hw, IXGBE_FDIRCTRL, fdirctrl);
	IXGBE_WRITE_FLUSH(hw);

	/* Poll init-done after we write FDIRCTRL register */
	for (i = 0; i < IXGBE_FDIR_INIT_DONE_POLL; i++) {
		if (IXGBE_READ_REG(hw, IXGBE_FDIRCTRL) &
		                   IXGBE_FDIRCTRL_INIT_DONE)
			break;
		udelay(10);
	}
	if (i >= IXGBE_FDIR_INIT_DONE_POLL) {
		hw_dbg(hw, "Flow Director Signature poll time exceeded!\n");
		return IXGBE_ERR_FDIR_REINIT_FAILED;
	}

	/* Clear FDIR statistics registers (read to clear) */
	IXGBE_READ_REG(hw, IXGBE_FDIRUSTAT);
	IXGBE_READ_REG(hw, IXGBE_FDIRFSTAT);
	IXGBE_READ_REG(hw, IXGBE_FDIRMATCH);
	IXGBE_READ_REG(hw, IXGBE_FDIRMISS);
	IXGBE_READ_REG(hw, IXGBE_FDIRLEN);

	return 0;
}

/**
 *  ixgbe_init_fdir_signature_82599 - Initialize Flow Director signature filters
 *  @hw: pointer to hardware structure
 *  @pballoc: which mode to allocate filters with
 **/
s32 ixgbe_init_fdir_signature_82599(struct ixgbe_hw *hw, u32 pballoc)
{
	u32 fdirctrl = 0;
	u32 pbsize;
	int i;

	/*
	 * Before enabling Flow Director, the Rx Packet Buffer size
	 * must be reduced.  The new value is the current size minus
	 * flow director memory usage size.
	 */
	pbsize = (1 << (IXGBE_FDIR_PBALLOC_SIZE_SHIFT + pballoc));
	IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(0),
	    (IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(0)) - pbsize));

	/*
	 * The defaults in the HW for RX PB 1-7 are not zero and so should be
	 * intialized to zero for non DCB mode otherwise actual total RX PB
	 * would be bigger than programmed and filter space would run into
	 * the PB 0 region.
	 */
	for (i = 1; i < 8; i++)
		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);

	/* Send interrupt when 64 filters are left */
	fdirctrl |= 4 << IXGBE_FDIRCTRL_FULL_THRESH_SHIFT;

	/* Set the maximum length per hash bucket to 0xA filters */
	fdirctrl |= 0xA << IXGBE_FDIRCTRL_MAX_LENGTH_SHIFT;

	switch (pballoc) {
	case IXGBE_FDIR_PBALLOC_64K:
		/* 8k - 1 signature filters */
		fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_64K;
		break;
	case IXGBE_FDIR_PBALLOC_128K:
		/* 16k - 1 signature filters */
		fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_128K;
		break;
	case IXGBE_FDIR_PBALLOC_256K:
		/* 32k - 1 signature filters */
		fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_256K;
		break;
	default:
		/* bad value */
		return IXGBE_ERR_CONFIG;
	};

	/* Move the flexible bytes to use the ethertype - shift 6 words */
	fdirctrl |= (0x6 << IXGBE_FDIRCTRL_FLEX_SHIFT);

	fdirctrl |= IXGBE_FDIRCTRL_REPORT_STATUS;

	/* Prime the keys for hashing */
	IXGBE_WRITE_REG(hw, IXGBE_FDIRHKEY,
	                htonl(IXGBE_ATR_BUCKET_HASH_KEY));
	IXGBE_WRITE_REG(hw, IXGBE_FDIRSKEY,
	                htonl(IXGBE_ATR_SIGNATURE_HASH_KEY));

	/*
	 * Poll init-done after we write the register.  Estimated times:
	 *      10G: PBALLOC = 11b, timing is 60us
	 *       1G: PBALLOC = 11b, timing is 600us
	 *     100M: PBALLOC = 11b, timing is 6ms
	 *
	 *     Multiple these timings by 4 if under full Rx load
	 *
	 * So we'll poll for IXGBE_FDIR_INIT_DONE_POLL times, sleeping for
	 * 1 msec per poll time.  If we're at line rate and drop to 100M, then
	 * this might not finish in our poll time, but we can live with that
	 * for now.
	 */
	IXGBE_WRITE_REG(hw, IXGBE_FDIRCTRL, fdirctrl);
	IXGBE_WRITE_FLUSH(hw);
	for (i = 0; i < IXGBE_FDIR_INIT_DONE_POLL; i++) {
		if (IXGBE_READ_REG(hw, IXGBE_FDIRCTRL) &
		                   IXGBE_FDIRCTRL_INIT_DONE)
			break;
		msleep(1);
	}
	if (i >= IXGBE_FDIR_INIT_DONE_POLL)
		hw_dbg(hw, "Flow Director Signature poll time exceeded!\n");

	return 0;
}

/**
 *  ixgbe_init_fdir_perfect_82599 - Initialize Flow Director perfect filters
 *  @hw: pointer to hardware structure
 *  @pballoc: which mode to allocate filters with
 **/
s32 ixgbe_init_fdir_perfect_82599(struct ixgbe_hw *hw, u32 pballoc)
{
	u32 fdirctrl = 0;
	u32 pbsize;
	int i;

	/*
	 * Before enabling Flow Director, the Rx Packet Buffer size
	 * must be reduced.  The new value is the current size minus
	 * flow director memory usage size.
	 */
	pbsize = (1 << (IXGBE_FDIR_PBALLOC_SIZE_SHIFT + pballoc));
	IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(0),
	    (IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(0)) - pbsize));

	/*
	 * The defaults in the HW for RX PB 1-7 are not zero and so should be
	 * intialized to zero for non DCB mode otherwise actual total RX PB
	 * would be bigger than programmed and filter space would run into
	 * the PB 0 region.
	 */
	for (i = 1; i < 8; i++)
		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);

	/* Send interrupt when 64 filters are left */
	fdirctrl |= 4 << IXGBE_FDIRCTRL_FULL_THRESH_SHIFT;

1448 1449 1450
	/* Initialize the drop queue to Rx queue 127 */
	fdirctrl |= (127 << IXGBE_FDIRCTRL_DROP_Q_SHIFT);

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	switch (pballoc) {
	case IXGBE_FDIR_PBALLOC_64K:
		/* 2k - 1 perfect filters */
		fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_64K;
		break;
	case IXGBE_FDIR_PBALLOC_128K:
		/* 4k - 1 perfect filters */
		fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_128K;
		break;
	case IXGBE_FDIR_PBALLOC_256K:
		/* 8k - 1 perfect filters */
		fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_256K;
		break;
	default:
		/* bad value */
		return IXGBE_ERR_CONFIG;
	};

	/* Turn perfect match filtering on */
	fdirctrl |= IXGBE_FDIRCTRL_PERFECT_MATCH;
	fdirctrl |= IXGBE_FDIRCTRL_REPORT_STATUS;

	/* Move the flexible bytes to use the ethertype - shift 6 words */
	fdirctrl |= (0x6 << IXGBE_FDIRCTRL_FLEX_SHIFT);

	/* Prime the keys for hashing */
	IXGBE_WRITE_REG(hw, IXGBE_FDIRHKEY,
	                htonl(IXGBE_ATR_BUCKET_HASH_KEY));
	IXGBE_WRITE_REG(hw, IXGBE_FDIRSKEY,
	                htonl(IXGBE_ATR_SIGNATURE_HASH_KEY));

	/*
	 * Poll init-done after we write the register.  Estimated times:
	 *      10G: PBALLOC = 11b, timing is 60us
	 *       1G: PBALLOC = 11b, timing is 600us
	 *     100M: PBALLOC = 11b, timing is 6ms
	 *
	 *     Multiple these timings by 4 if under full Rx load
	 *
	 * So we'll poll for IXGBE_FDIR_INIT_DONE_POLL times, sleeping for
	 * 1 msec per poll time.  If we're at line rate and drop to 100M, then
	 * this might not finish in our poll time, but we can live with that
	 * for now.
	 */

	/* Set the maximum length per hash bucket to 0xA filters */
	fdirctrl |= (0xA << IXGBE_FDIRCTRL_MAX_LENGTH_SHIFT);

	IXGBE_WRITE_REG(hw, IXGBE_FDIRCTRL, fdirctrl);
	IXGBE_WRITE_FLUSH(hw);
	for (i = 0; i < IXGBE_FDIR_INIT_DONE_POLL; i++) {
		if (IXGBE_READ_REG(hw, IXGBE_FDIRCTRL) &
		                   IXGBE_FDIRCTRL_INIT_DONE)
			break;
		msleep(1);
	}
	if (i >= IXGBE_FDIR_INIT_DONE_POLL)
		hw_dbg(hw, "Flow Director Perfect poll time exceeded!\n");

	return 0;
}


/**
 *  ixgbe_atr_compute_hash_82599 - Compute the hashes for SW ATR
 *  @stream: input bitstream to compute the hash on
 *  @key: 32-bit hash key
 **/
1519 1520
static u16 ixgbe_atr_compute_hash_82599(struct ixgbe_atr_input *atr_input,
                                        u32 key)
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
{
	/*
	 * The algorithm is as follows:
	 *    Hash[15:0] = Sum { S[n] x K[n+16] }, n = 0...350
	 *    where Sum {A[n]}, n = 0...n is bitwise XOR of A[0], A[1]...A[n]
	 *    and A[n] x B[n] is bitwise AND between same length strings
	 *
	 *    K[n] is 16 bits, defined as:
	 *       for n modulo 32 >= 15, K[n] = K[n % 32 : (n % 32) - 15]
	 *       for n modulo 32 < 15, K[n] =
	 *             K[(n % 32:0) | (31:31 - (14 - (n % 32)))]
	 *
	 *    S[n] is 16 bits, defined as:
	 *       for n >= 15, S[n] = S[n:n - 15]
	 *       for n < 15, S[n] = S[(n:0) | (350:350 - (14 - n))]
	 *
	 *    To simplify for programming, the algorithm is implemented
	 *    in software this way:
	 *
	 *    Key[31:0], Stream[335:0]
	 *
	 *    tmp_key[11 * 32 - 1:0] = 11{Key[31:0] = key concatenated 11 times
	 *    int_key[350:0] = tmp_key[351:1]
	 *    int_stream[365:0] = Stream[14:0] | Stream[335:0] | Stream[335:321]
	 *
	 *    hash[15:0] = 0;
	 *    for (i = 0; i < 351; i++) {
	 *        if (int_key[i])
	 *            hash ^= int_stream[(i + 15):i];
	 *    }
	 */

	union {
		u64    fill[6];
		u32    key[11];
		u8     key_stream[44];
	} tmp_key;

	u8   *stream = (u8 *)atr_input;
	u8   int_key[44];      /* upper-most bit unused */
	u8   hash_str[46];     /* upper-most 2 bits unused */
	u16  hash_result = 0;
	int  i, j, k, h;

	/*
	 * Initialize the fill member to prevent warnings
	 * on some compilers
	 */
	 tmp_key.fill[0] = 0;

	/* First load the temporary key stream */
	for (i = 0; i < 6; i++) {
		u64 fillkey = ((u64)key << 32) | key;
		tmp_key.fill[i] = fillkey;
	}

	/*
	 * Set the interim key for the hashing.  Bit 352 is unused, so we must
	 * shift and compensate when building the key.
	 */

	int_key[0] = tmp_key.key_stream[0] >> 1;
	for (i = 1, j = 0; i < 44; i++) {
		unsigned int this_key = tmp_key.key_stream[j] << 7;
		j++;
		int_key[i] = (u8)(this_key | (tmp_key.key_stream[j] >> 1));
	}

	/*
	 * Set the interim bit string for the hashing.  Bits 368 and 367 are
	 * unused, so shift and compensate when building the string.
	 */
	hash_str[0] = (stream[40] & 0x7f) >> 1;
	for (i = 1, j = 40; i < 46; i++) {
		unsigned int this_str = stream[j] << 7;
		j++;
		if (j > 41)
			j = 0;
		hash_str[i] = (u8)(this_str | (stream[j] >> 1));
	}

	/*
	 * Now compute the hash.  i is the index into hash_str, j is into our
	 * key stream, k is counting the number of bits, and h interates within
	 * each byte.
	 */
	for (i = 45, j = 43, k = 0; k < 351 && i >= 2 && j >= 0; i--, j--) {
		for (h = 0; h < 8 && k < 351; h++, k++) {
			if (int_key[j] & (1 << h)) {
				/*
				 * Key bit is set, XOR in the current 16-bit
				 * string.  Example of processing:
				 *    h = 0,
				 *      tmp = (hash_str[i - 2] & 0 << 16) |
				 *            (hash_str[i - 1] & 0xff << 8) |
				 *            (hash_str[i] & 0xff >> 0)
				 *      So tmp = hash_str[15 + k:k], since the
				 *      i + 2 clause rolls off the 16-bit value
				 *    h = 7,
				 *      tmp = (hash_str[i - 2] & 0x7f << 9) |
				 *            (hash_str[i - 1] & 0xff << 1) |
				 *            (hash_str[i] & 0x80 >> 7)
				 */
				int tmp = (hash_str[i] >> h);
				tmp |= (hash_str[i - 1] << (8 - h));
				tmp |= (int)(hash_str[i - 2] & ((1 << h) - 1))
				             << (16 - h);
				hash_result ^= (u16)tmp;
			}
		}
	}

	return hash_result;
}

/**
 *  ixgbe_atr_set_vlan_id_82599 - Sets the VLAN id in the ATR input stream
 *  @input: input stream to modify
 *  @vlan: the VLAN id to load
 **/
s32 ixgbe_atr_set_vlan_id_82599(struct ixgbe_atr_input *input, u16 vlan)
{
	input->byte_stream[IXGBE_ATR_VLAN_OFFSET + 1] = vlan >> 8;
	input->byte_stream[IXGBE_ATR_VLAN_OFFSET] = vlan & 0xff;

	return 0;
}

/**
 *  ixgbe_atr_set_src_ipv4_82599 - Sets the source IPv4 address
 *  @input: input stream to modify
 *  @src_addr: the IP address to load
 **/
s32 ixgbe_atr_set_src_ipv4_82599(struct ixgbe_atr_input *input, u32 src_addr)
{
	input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 3] = src_addr >> 24;
	input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 2] =
	                                               (src_addr >> 16) & 0xff;
	input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 1] =
	                                                (src_addr >> 8) & 0xff;
	input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET] = src_addr & 0xff;

	return 0;
}

/**
 *  ixgbe_atr_set_dst_ipv4_82599 - Sets the destination IPv4 address
 *  @input: input stream to modify
 *  @dst_addr: the IP address to load
 **/
s32 ixgbe_atr_set_dst_ipv4_82599(struct ixgbe_atr_input *input, u32 dst_addr)
{
	input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 3] = dst_addr >> 24;
	input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 2] =
	                                               (dst_addr >> 16) & 0xff;
	input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 1] =
	                                                (dst_addr >> 8) & 0xff;
	input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET] = dst_addr & 0xff;

	return 0;
}

/**
 *  ixgbe_atr_set_src_ipv6_82599 - Sets the source IPv6 address
 *  @input: input stream to modify
 *  @src_addr_1: the first 4 bytes of the IP address to load
 *  @src_addr_2: the second 4 bytes of the IP address to load
 *  @src_addr_3: the third 4 bytes of the IP address to load
 *  @src_addr_4: the fourth 4 bytes of the IP address to load
 **/
s32 ixgbe_atr_set_src_ipv6_82599(struct ixgbe_atr_input *input,
1692 1693
                                 u32 src_addr_1, u32 src_addr_2,
                                 u32 src_addr_3, u32 src_addr_4)
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
{
	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET] = src_addr_4 & 0xff;
	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 1] =
	                                               (src_addr_4 >> 8) & 0xff;
	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 2] =
	                                              (src_addr_4 >> 16) & 0xff;
	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 3] = src_addr_4 >> 24;

	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 4] = src_addr_3 & 0xff;
	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 5] =
	                                               (src_addr_3 >> 8) & 0xff;
	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 6] =
	                                              (src_addr_3 >> 16) & 0xff;
	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 7] = src_addr_3 >> 24;

	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 8] = src_addr_2 & 0xff;
	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 9] =
	                                               (src_addr_2 >> 8) & 0xff;
	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 10] =
	                                              (src_addr_2 >> 16) & 0xff;
	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 11] = src_addr_2 >> 24;

	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 12] = src_addr_1 & 0xff;
	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 13] =
	                                               (src_addr_1 >> 8) & 0xff;
	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 14] =
	                                              (src_addr_1 >> 16) & 0xff;
	input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 15] = src_addr_1 >> 24;

	return 0;
}

/**
 *  ixgbe_atr_set_dst_ipv6_82599 - Sets the destination IPv6 address
 *  @input: input stream to modify
 *  @dst_addr_1: the first 4 bytes of the IP address to load
 *  @dst_addr_2: the second 4 bytes of the IP address to load
 *  @dst_addr_3: the third 4 bytes of the IP address to load
 *  @dst_addr_4: the fourth 4 bytes of the IP address to load
 **/
s32 ixgbe_atr_set_dst_ipv6_82599(struct ixgbe_atr_input *input,
1735 1736
                                 u32 dst_addr_1, u32 dst_addr_2,
                                 u32 dst_addr_3, u32 dst_addr_4)
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
{
	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET] = dst_addr_4 & 0xff;
	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 1] =
	                                               (dst_addr_4 >> 8) & 0xff;
	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 2] =
	                                              (dst_addr_4 >> 16) & 0xff;
	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 3] = dst_addr_4 >> 24;

	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 4] = dst_addr_3 & 0xff;
	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 5] =
	                                               (dst_addr_3 >> 8) & 0xff;
	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 6] =
	                                              (dst_addr_3 >> 16) & 0xff;
	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 7] = dst_addr_3 >> 24;

	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 8] = dst_addr_2 & 0xff;
	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 9] =
	                                               (dst_addr_2 >> 8) & 0xff;
	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 10] =
	                                              (dst_addr_2 >> 16) & 0xff;
	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 11] = dst_addr_2 >> 24;

	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 12] = dst_addr_1 & 0xff;
	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 13] =
	                                               (dst_addr_1 >> 8) & 0xff;
	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 14] =
	                                              (dst_addr_1 >> 16) & 0xff;
	input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 15] = dst_addr_1 >> 24;

	return 0;
}

/**
 *  ixgbe_atr_set_src_port_82599 - Sets the source port
 *  @input: input stream to modify
 *  @src_port: the source port to load
 **/
s32 ixgbe_atr_set_src_port_82599(struct ixgbe_atr_input *input, u16 src_port)
{
	input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET + 1] = src_port >> 8;
	input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET] = src_port & 0xff;

	return 0;
}

/**
 *  ixgbe_atr_set_dst_port_82599 - Sets the destination port
 *  @input: input stream to modify
 *  @dst_port: the destination port to load
 **/
s32 ixgbe_atr_set_dst_port_82599(struct ixgbe_atr_input *input, u16 dst_port)
{
	input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET + 1] = dst_port >> 8;
	input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET] = dst_port & 0xff;

	return 0;
}

/**
 *  ixgbe_atr_set_flex_byte_82599 - Sets the flexible bytes
 *  @input: input stream to modify
 *  @flex_bytes: the flexible bytes to load
 **/
s32 ixgbe_atr_set_flex_byte_82599(struct ixgbe_atr_input *input, u16 flex_byte)
{
	input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET + 1] = flex_byte >> 8;
	input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET] = flex_byte & 0xff;

	return 0;
}

/**
 *  ixgbe_atr_set_vm_pool_82599 - Sets the Virtual Machine pool
 *  @input: input stream to modify
 *  @vm_pool: the Virtual Machine pool to load
 **/
1813
s32 ixgbe_atr_set_vm_pool_82599(struct ixgbe_atr_input *input,
1814
                                u8 vm_pool)
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
{
	input->byte_stream[IXGBE_ATR_VM_POOL_OFFSET] = vm_pool;

	return 0;
}

/**
 *  ixgbe_atr_set_l4type_82599 - Sets the layer 4 packet type
 *  @input: input stream to modify
 *  @l4type: the layer 4 type value to load
 **/
s32 ixgbe_atr_set_l4type_82599(struct ixgbe_atr_input *input, u8 l4type)
{
	input->byte_stream[IXGBE_ATR_L4TYPE_OFFSET] = l4type;

	return 0;
}

/**
 *  ixgbe_atr_get_vlan_id_82599 - Gets the VLAN id from the ATR input stream
 *  @input: input stream to search
 *  @vlan: the VLAN id to load
 **/
1838
static s32 ixgbe_atr_get_vlan_id_82599(struct ixgbe_atr_input *input, u16 *vlan)
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
{
	*vlan = input->byte_stream[IXGBE_ATR_VLAN_OFFSET];
	*vlan |= input->byte_stream[IXGBE_ATR_VLAN_OFFSET + 1] << 8;

	return 0;
}

/**
 *  ixgbe_atr_get_src_ipv4_82599 - Gets the source IPv4 address
 *  @input: input stream to search
 *  @src_addr: the IP address to load
 **/
1851 1852
static s32 ixgbe_atr_get_src_ipv4_82599(struct ixgbe_atr_input *input,
                                        u32 *src_addr)
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
{
	*src_addr = input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET];
	*src_addr |= input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 1] << 8;
	*src_addr |= input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 2] << 16;
	*src_addr |= input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 3] << 24;

	return 0;
}

/**
 *  ixgbe_atr_get_dst_ipv4_82599 - Gets the destination IPv4 address
 *  @input: input stream to search
 *  @dst_addr: the IP address to load
 **/
1867 1868
static s32 ixgbe_atr_get_dst_ipv4_82599(struct ixgbe_atr_input *input,
                                        u32 *dst_addr)
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
{
	*dst_addr = input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET];
	*dst_addr |= input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 1] << 8;
	*dst_addr |= input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 2] << 16;
	*dst_addr |= input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 3] << 24;

	return 0;
}

/**
 *  ixgbe_atr_get_src_ipv6_82599 - Gets the source IPv6 address
 *  @input: input stream to search
 *  @src_addr_1: the first 4 bytes of the IP address to load
 *  @src_addr_2: the second 4 bytes of the IP address to load
 *  @src_addr_3: the third 4 bytes of the IP address to load
 *  @src_addr_4: the fourth 4 bytes of the IP address to load
 **/
1886 1887 1888
static s32 ixgbe_atr_get_src_ipv6_82599(struct ixgbe_atr_input *input,
                                        u32 *src_addr_1, u32 *src_addr_2,
                                        u32 *src_addr_3, u32 *src_addr_4)
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
{
	*src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 12];
	*src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 13] << 8;
	*src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 14] << 16;
	*src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 15] << 24;

	*src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 8];
	*src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 9] << 8;
	*src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 10] << 16;
	*src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 11] << 24;

	*src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 4];
	*src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 5] << 8;
	*src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 6] << 16;
	*src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 7] << 24;

	*src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET];
	*src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 1] << 8;
	*src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 2] << 16;
	*src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 3] << 24;

	return 0;
}

/**
 *  ixgbe_atr_get_dst_ipv6_82599 - Gets the destination IPv6 address
 *  @input: input stream to search
 *  @dst_addr_1: the first 4 bytes of the IP address to load
 *  @dst_addr_2: the second 4 bytes of the IP address to load
 *  @dst_addr_3: the third 4 bytes of the IP address to load
 *  @dst_addr_4: the fourth 4 bytes of the IP address to load
 **/
s32 ixgbe_atr_get_dst_ipv6_82599(struct ixgbe_atr_input *input,
1922 1923
                                        u32 *dst_addr_1, u32 *dst_addr_2,
                                        u32 *dst_addr_3, u32 *dst_addr_4)
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
{
	*dst_addr_1 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 12];
	*dst_addr_1 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 13] << 8;
	*dst_addr_1 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 14] << 16;
	*dst_addr_1 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 15] << 24;

	*dst_addr_2 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 8];
	*dst_addr_2 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 9] << 8;
	*dst_addr_2 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 10] << 16;
	*dst_addr_2 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 11] << 24;

	*dst_addr_3 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 4];
	*dst_addr_3 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 5] << 8;
	*dst_addr_3 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 6] << 16;
	*dst_addr_3 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 7] << 24;

	*dst_addr_4 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET];
	*dst_addr_4 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 1] << 8;
	*dst_addr_4 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 2] << 16;
	*dst_addr_4 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 3] << 24;

	return 0;
}

/**
 *  ixgbe_atr_get_src_port_82599 - Gets the source port
 *  @input: input stream to modify
 *  @src_port: the source port to load
 *
 *  Even though the input is given in big-endian, the FDIRPORT registers
 *  expect the ports to be programmed in little-endian.  Hence the need to swap
 *  endianness when retrieving the data.  This can be confusing since the
 *  internal hash engine expects it to be big-endian.
 **/
1958 1959
static s32 ixgbe_atr_get_src_port_82599(struct ixgbe_atr_input *input,
                                        u16 *src_port)
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
{
	*src_port = input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET] << 8;
	*src_port |= input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET + 1];

	return 0;
}

/**
 *  ixgbe_atr_get_dst_port_82599 - Gets the destination port
 *  @input: input stream to modify
 *  @dst_port: the destination port to load
 *
 *  Even though the input is given in big-endian, the FDIRPORT registers
 *  expect the ports to be programmed in little-endian.  Hence the need to swap
 *  endianness when retrieving the data.  This can be confusing since the
 *  internal hash engine expects it to be big-endian.
 **/
1977 1978
static s32 ixgbe_atr_get_dst_port_82599(struct ixgbe_atr_input *input,
                                        u16 *dst_port)
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
{
	*dst_port = input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET] << 8;
	*dst_port |= input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET + 1];

	return 0;
}

/**
 *  ixgbe_atr_get_flex_byte_82599 - Gets the flexible bytes
 *  @input: input stream to modify
 *  @flex_bytes: the flexible bytes to load
 **/
1991 1992
static s32 ixgbe_atr_get_flex_byte_82599(struct ixgbe_atr_input *input,
                                         u16 *flex_byte)
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
{
	*flex_byte = input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET];
	*flex_byte |= input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET + 1] << 8;

	return 0;
}

/**
 *  ixgbe_atr_get_vm_pool_82599 - Gets the Virtual Machine pool
 *  @input: input stream to modify
 *  @vm_pool: the Virtual Machine pool to load
 **/
2005 2006
s32 ixgbe_atr_get_vm_pool_82599(struct ixgbe_atr_input *input,
                                       u8 *vm_pool)
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
{
	*vm_pool = input->byte_stream[IXGBE_ATR_VM_POOL_OFFSET];

	return 0;
}

/**
 *  ixgbe_atr_get_l4type_82599 - Gets the layer 4 packet type
 *  @input: input stream to modify
 *  @l4type: the layer 4 type value to load
 **/
2018 2019
static s32 ixgbe_atr_get_l4type_82599(struct ixgbe_atr_input *input,
                                      u8 *l4type)
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
{
	*l4type = input->byte_stream[IXGBE_ATR_L4TYPE_OFFSET];

	return 0;
}

/**
 *  ixgbe_atr_add_signature_filter_82599 - Adds a signature hash filter
 *  @hw: pointer to hardware structure
 *  @stream: input bitstream
 *  @queue: queue index to direct traffic to
 **/
s32 ixgbe_fdir_add_signature_filter_82599(struct ixgbe_hw *hw,
                                          struct ixgbe_atr_input *input,
                                          u8 queue)
{
	u64  fdirhashcmd;
	u64  fdircmd;
	u32  fdirhash;
	u16  bucket_hash, sig_hash;
	u8   l4type;

	bucket_hash = ixgbe_atr_compute_hash_82599(input,
	                                           IXGBE_ATR_BUCKET_HASH_KEY);

	/* bucket_hash is only 15 bits */
	bucket_hash &= IXGBE_ATR_HASH_MASK;

	sig_hash = ixgbe_atr_compute_hash_82599(input,
	                                        IXGBE_ATR_SIGNATURE_HASH_KEY);

	/* Get the l4type in order to program FDIRCMD properly */
	/* lowest 2 bits are FDIRCMD.L4TYPE, third lowest bit is FDIRCMD.IPV6 */
	ixgbe_atr_get_l4type_82599(input, &l4type);

	/*
	 * The lower 32-bits of fdirhashcmd is for FDIRHASH, the upper 32-bits
	 * is for FDIRCMD.  Then do a 64-bit register write from FDIRHASH.
	 */
	fdirhash = sig_hash << IXGBE_FDIRHASH_SIG_SW_INDEX_SHIFT | bucket_hash;

	fdircmd = (IXGBE_FDIRCMD_CMD_ADD_FLOW | IXGBE_FDIRCMD_FILTER_UPDATE |
	           IXGBE_FDIRCMD_LAST | IXGBE_FDIRCMD_QUEUE_EN);

	switch (l4type & IXGBE_ATR_L4TYPE_MASK) {
	case IXGBE_ATR_L4TYPE_TCP:
		fdircmd |= IXGBE_FDIRCMD_L4TYPE_TCP;
		break;
	case IXGBE_ATR_L4TYPE_UDP:
		fdircmd |= IXGBE_FDIRCMD_L4TYPE_UDP;
		break;
	case IXGBE_ATR_L4TYPE_SCTP:
		fdircmd |= IXGBE_FDIRCMD_L4TYPE_SCTP;
		break;
	default:
		hw_dbg(hw, "Error on l4type input\n");
		return IXGBE_ERR_CONFIG;
	}

	if (l4type & IXGBE_ATR_L4TYPE_IPV6_MASK)
		fdircmd |= IXGBE_FDIRCMD_IPV6;

	fdircmd |= ((u64)queue << IXGBE_FDIRCMD_RX_QUEUE_SHIFT);
	fdirhashcmd = ((fdircmd << 32) | fdirhash);

	IXGBE_WRITE_REG64(hw, IXGBE_FDIRHASH, fdirhashcmd);

	return 0;
}

/**
 *  ixgbe_fdir_add_perfect_filter_82599 - Adds a perfect filter
 *  @hw: pointer to hardware structure
 *  @input: input bitstream
2094 2095
 *  @input_masks: bitwise masks for relevant fields
 *  @soft_id: software index into the silicon hash tables for filter storage
2096 2097 2098 2099 2100 2101
 *  @queue: queue index to direct traffic to
 *
 *  Note that the caller to this function must lock before calling, since the
 *  hardware writes must be protected from one another.
 **/
s32 ixgbe_fdir_add_perfect_filter_82599(struct ixgbe_hw *hw,
2102 2103 2104
                                      struct ixgbe_atr_input *input,
                                      struct ixgbe_atr_input_masks *input_masks,
                                      u16 soft_id, u8 queue)
2105 2106 2107
{
	u32 fdircmd = 0;
	u32 fdirhash;
2108
	u32 src_ipv4 = 0, dst_ipv4 = 0;
2109 2110 2111 2112
	u32 src_ipv6_1, src_ipv6_2, src_ipv6_3, src_ipv6_4;
	u16 src_port, dst_port, vlan_id, flex_bytes;
	u16 bucket_hash;
	u8  l4type;
2113
	u8  fdirm = 0;
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

	/* Get our input values */
	ixgbe_atr_get_l4type_82599(input, &l4type);

	/*
	 * Check l4type formatting, and bail out before we touch the hardware
	 * if there's a configuration issue
	 */
	switch (l4type & IXGBE_ATR_L4TYPE_MASK) {
	case IXGBE_ATR_L4TYPE_TCP:
		fdircmd |= IXGBE_FDIRCMD_L4TYPE_TCP;
		break;
	case IXGBE_ATR_L4TYPE_UDP:
		fdircmd |= IXGBE_FDIRCMD_L4TYPE_UDP;
		break;
	case IXGBE_ATR_L4TYPE_SCTP:
		fdircmd |= IXGBE_FDIRCMD_L4TYPE_SCTP;
		break;
	default:
		hw_dbg(hw, "Error on l4type input\n");
		return IXGBE_ERR_CONFIG;
	}

	bucket_hash = ixgbe_atr_compute_hash_82599(input,
	                                           IXGBE_ATR_BUCKET_HASH_KEY);

	/* bucket_hash is only 15 bits */
	bucket_hash &= IXGBE_ATR_HASH_MASK;

	ixgbe_atr_get_vlan_id_82599(input, &vlan_id);
	ixgbe_atr_get_src_port_82599(input, &src_port);
	ixgbe_atr_get_dst_port_82599(input, &dst_port);
	ixgbe_atr_get_flex_byte_82599(input, &flex_bytes);

	fdirhash = soft_id << IXGBE_FDIRHASH_SIG_SW_INDEX_SHIFT | bucket_hash;

	/* Now figure out if we're IPv4 or IPv6 */
	if (l4type & IXGBE_ATR_L4TYPE_IPV6_MASK) {
		/* IPv6 */
		ixgbe_atr_get_src_ipv6_82599(input, &src_ipv6_1, &src_ipv6_2,
	                                     &src_ipv6_3, &src_ipv6_4);

		IXGBE_WRITE_REG(hw, IXGBE_FDIRSIPv6(0), src_ipv6_1);
		IXGBE_WRITE_REG(hw, IXGBE_FDIRSIPv6(1), src_ipv6_2);
		IXGBE_WRITE_REG(hw, IXGBE_FDIRSIPv6(2), src_ipv6_3);
		/* The last 4 bytes is the same register as IPv4 */
		IXGBE_WRITE_REG(hw, IXGBE_FDIRIPSA, src_ipv6_4);

		fdircmd |= IXGBE_FDIRCMD_IPV6;
		fdircmd |= IXGBE_FDIRCMD_IPv6DMATCH;
	} else {
		/* IPv4 */
		ixgbe_atr_get_src_ipv4_82599(input, &src_ipv4);
		IXGBE_WRITE_REG(hw, IXGBE_FDIRIPSA, src_ipv4);
	}

	ixgbe_atr_get_dst_ipv4_82599(input, &dst_ipv4);
	IXGBE_WRITE_REG(hw, IXGBE_FDIRIPDA, dst_ipv4);

	IXGBE_WRITE_REG(hw, IXGBE_FDIRVLAN, (vlan_id |
	                            (flex_bytes << IXGBE_FDIRVLAN_FLEX_SHIFT)));
	IXGBE_WRITE_REG(hw, IXGBE_FDIRPORT, (src_port |
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
	              (dst_port << IXGBE_FDIRPORT_DESTINATION_SHIFT)));

	/*
	 * Program the relevant mask registers.  If src/dst_port or src/dst_addr
	 * are zero, then assume a full mask for that field.  Also assume that
	 * a VLAN of 0 is unspecified, so mask that out as well.  L4type
	 * cannot be masked out in this implementation.
	 *
	 * This also assumes IPv4 only.  IPv6 masking isn't supported at this
	 * point in time.
	 */
	if (src_ipv4 == 0)
		IXGBE_WRITE_REG(hw, IXGBE_FDIRSIP4M, 0xffffffff);
	else
		IXGBE_WRITE_REG(hw, IXGBE_FDIRSIP4M, input_masks->src_ip_mask);

	if (dst_ipv4 == 0)
		IXGBE_WRITE_REG(hw, IXGBE_FDIRDIP4M, 0xffffffff);
	else
		IXGBE_WRITE_REG(hw, IXGBE_FDIRDIP4M, input_masks->dst_ip_mask);

	switch (l4type & IXGBE_ATR_L4TYPE_MASK) {
	case IXGBE_ATR_L4TYPE_TCP:
		if (src_port == 0)
			IXGBE_WRITE_REG(hw, IXGBE_FDIRTCPM, 0xffff);
		else
			IXGBE_WRITE_REG(hw, IXGBE_FDIRTCPM,
			                input_masks->src_port_mask);

		if (dst_port == 0)
			IXGBE_WRITE_REG(hw, IXGBE_FDIRTCPM,
			               (IXGBE_READ_REG(hw, IXGBE_FDIRTCPM) |
			                (0xffff << 16)));
		else
			IXGBE_WRITE_REG(hw, IXGBE_FDIRTCPM,
			               (IXGBE_READ_REG(hw, IXGBE_FDIRTCPM) |
			                (input_masks->dst_port_mask << 16)));
		break;
	case IXGBE_ATR_L4TYPE_UDP:
		if (src_port == 0)
			IXGBE_WRITE_REG(hw, IXGBE_FDIRUDPM, 0xffff);
		else
			IXGBE_WRITE_REG(hw, IXGBE_FDIRUDPM,
			                input_masks->src_port_mask);

		if (dst_port == 0)
			IXGBE_WRITE_REG(hw, IXGBE_FDIRUDPM,
			               (IXGBE_READ_REG(hw, IXGBE_FDIRUDPM) |
			                (0xffff << 16)));
		else
			IXGBE_WRITE_REG(hw, IXGBE_FDIRUDPM,
			               (IXGBE_READ_REG(hw, IXGBE_FDIRUDPM) |
			                (input_masks->src_port_mask << 16)));
		break;
	default:
		/* this already would have failed above */
		break;
	}

	/* Program the last mask register, FDIRM */
	if (input_masks->vlan_id_mask || !vlan_id)
		/* Mask both VLAN and VLANP - bits 0 and 1 */
		fdirm |= 0x3;

	if (input_masks->data_mask || !flex_bytes)
		/* Flex bytes need masking, so mask the whole thing - bit 4 */
		fdirm |= 0x10;

	/* Now mask VM pool and destination IPv6 - bits 5 and 2 */
	fdirm |= 0x24;

	IXGBE_WRITE_REG(hw, IXGBE_FDIRM, fdirm);
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259

	fdircmd |= IXGBE_FDIRCMD_CMD_ADD_FLOW;
	fdircmd |= IXGBE_FDIRCMD_FILTER_UPDATE;
	fdircmd |= IXGBE_FDIRCMD_LAST;
	fdircmd |= IXGBE_FDIRCMD_QUEUE_EN;
	fdircmd |= queue << IXGBE_FDIRCMD_RX_QUEUE_SHIFT;

	IXGBE_WRITE_REG(hw, IXGBE_FDIRHASH, fdirhash);
	IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD, fdircmd);

	return 0;
}
2260 2261 2262 2263 2264 2265 2266 2267
/**
 *  ixgbe_read_analog_reg8_82599 - Reads 8 bit Omer analog register
 *  @hw: pointer to hardware structure
 *  @reg: analog register to read
 *  @val: read value
 *
 *  Performs read operation to Omer analog register specified.
 **/
2268
static s32 ixgbe_read_analog_reg8_82599(struct ixgbe_hw *hw, u32 reg, u8 *val)
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
{
	u32  core_ctl;

	IXGBE_WRITE_REG(hw, IXGBE_CORECTL, IXGBE_CORECTL_WRITE_CMD |
	                (reg << 8));
	IXGBE_WRITE_FLUSH(hw);
	udelay(10);
	core_ctl = IXGBE_READ_REG(hw, IXGBE_CORECTL);
	*val = (u8)core_ctl;

	return 0;
}

/**
 *  ixgbe_write_analog_reg8_82599 - Writes 8 bit Omer analog register
 *  @hw: pointer to hardware structure
 *  @reg: atlas register to write
 *  @val: value to write
 *
 *  Performs write operation to Omer analog register specified.
 **/
2290
static s32 ixgbe_write_analog_reg8_82599(struct ixgbe_hw *hw, u32 reg, u8 val)
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
{
	u32  core_ctl;

	core_ctl = (reg << 8) | val;
	IXGBE_WRITE_REG(hw, IXGBE_CORECTL, core_ctl);
	IXGBE_WRITE_FLUSH(hw);
	udelay(10);

	return 0;
}

/**
 *  ixgbe_start_hw_82599 - Prepare hardware for Tx/Rx
 *  @hw: pointer to hardware structure
 *
 *  Starts the hardware using the generic start_hw function.
 *  Then performs device-specific:
 *  Clears the rate limiter registers.
 **/
2310
static s32 ixgbe_start_hw_82599(struct ixgbe_hw *hw)
2311 2312
{
	u32 q_num;
2313
	s32 ret_val;
2314

2315
	ret_val = ixgbe_start_hw_generic(hw);
2316 2317 2318 2319 2320 2321 2322 2323

	/* Clear the rate limiters */
	for (q_num = 0; q_num < hw->mac.max_tx_queues; q_num++) {
		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, q_num);
		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
	}
	IXGBE_WRITE_FLUSH(hw);

2324 2325 2326
	/* We need to run link autotry after the driver loads */
	hw->mac.autotry_restart = true;

2327 2328 2329 2330
	if (ret_val == 0)
		ret_val = ixgbe_verify_fw_version_82599(hw);

	return ret_val;
2331 2332 2333 2334 2335 2336 2337 2338
}

/**
 *  ixgbe_identify_phy_82599 - Get physical layer module
 *  @hw: pointer to hardware structure
 *
 *  Determines the physical layer module found on the current adapter.
 **/
2339
static s32 ixgbe_identify_phy_82599(struct ixgbe_hw *hw)
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
{
	s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
	status = ixgbe_identify_phy_generic(hw);
	if (status != 0)
		status = ixgbe_identify_sfp_module_generic(hw);
	return status;
}

/**
 *  ixgbe_get_supported_physical_layer_82599 - Returns physical layer type
 *  @hw: pointer to hardware structure
 *
 *  Determines physical layer capabilities of the current configuration.
 **/
2354
static u32 ixgbe_get_supported_physical_layer_82599(struct ixgbe_hw *hw)
2355 2356
{
	u32 physical_layer = IXGBE_PHYSICAL_LAYER_UNKNOWN;
2357 2358 2359 2360 2361 2362
	u32 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	u32 autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2);
	u32 pma_pmd_10g_serial = autoc2 & IXGBE_AUTOC2_10G_SERIAL_PMA_PMD_MASK;
	u32 pma_pmd_10g_parallel = autoc & IXGBE_AUTOC_10G_PMA_PMD_MASK;
	u32 pma_pmd_1g = autoc & IXGBE_AUTOC_1G_PMA_PMD_MASK;
	u16 ext_ability = 0;
2363
	u8 comp_codes_10g = 0;
2364

2365 2366 2367 2368
	hw->phy.ops.identify(hw);

	if (hw->phy.type == ixgbe_phy_tn ||
	    hw->phy.type == ixgbe_phy_cu_unknown) {
2369 2370 2371
		hw->phy.ops.read_reg(hw, MDIO_PMA_EXTABLE, MDIO_MMD_PMAPMD,
				     &ext_ability);
		if (ext_ability & MDIO_PMA_EXTABLE_10GBT)
2372
			physical_layer |= IXGBE_PHYSICAL_LAYER_10GBASE_T;
2373
		if (ext_ability & MDIO_PMA_EXTABLE_1000BT)
2374
			physical_layer |= IXGBE_PHYSICAL_LAYER_1000BASE_T;
2375
		if (ext_ability & MDIO_PMA_EXTABLE_100BTX)
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
			physical_layer |= IXGBE_PHYSICAL_LAYER_100BASE_TX;
		goto out;
	}

	switch (autoc & IXGBE_AUTOC_LMS_MASK) {
	case IXGBE_AUTOC_LMS_1G_AN:
	case IXGBE_AUTOC_LMS_1G_LINK_NO_AN:
		if (pma_pmd_1g == IXGBE_AUTOC_1G_KX_BX) {
			physical_layer = IXGBE_PHYSICAL_LAYER_1000BASE_KX |
			    IXGBE_PHYSICAL_LAYER_1000BASE_BX;
			goto out;
		} else
			/* SFI mode so read SFP module */
			goto sfp_check;
2390
		break;
2391 2392 2393 2394 2395
	case IXGBE_AUTOC_LMS_10G_LINK_NO_AN:
		if (pma_pmd_10g_parallel == IXGBE_AUTOC_10G_CX4)
			physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_CX4;
		else if (pma_pmd_10g_parallel == IXGBE_AUTOC_10G_KX4)
			physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_KX4;
2396 2397
		else if (pma_pmd_10g_parallel == IXGBE_AUTOC_10G_XAUI)
			physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_XAUI;
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
		goto out;
		break;
	case IXGBE_AUTOC_LMS_10G_SERIAL:
		if (pma_pmd_10g_serial == IXGBE_AUTOC2_10G_KR) {
			physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_KR;
			goto out;
		} else if (pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI)
			goto sfp_check;
		break;
	case IXGBE_AUTOC_LMS_KX4_KX_KR:
	case IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN:
		if (autoc & IXGBE_AUTOC_KX_SUPP)
			physical_layer |= IXGBE_PHYSICAL_LAYER_1000BASE_KX;
		if (autoc & IXGBE_AUTOC_KX4_SUPP)
			physical_layer |= IXGBE_PHYSICAL_LAYER_10GBASE_KX4;
		if (autoc & IXGBE_AUTOC_KR_SUPP)
			physical_layer |= IXGBE_PHYSICAL_LAYER_10GBASE_KR;
		goto out;
		break;
	default:
		goto out;
		break;
	}
2421

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
sfp_check:
	/* SFP check must be done last since DA modules are sometimes used to
	 * test KR mode -  we need to id KR mode correctly before SFP module.
	 * Call identify_sfp because the pluggable module may have changed */
	hw->phy.ops.identify_sfp(hw);
	if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
		goto out;

	switch (hw->phy.type) {
	case ixgbe_phy_tw_tyco:
	case ixgbe_phy_tw_unknown:
		physical_layer = IXGBE_PHYSICAL_LAYER_SFP_PLUS_CU;
		break;
	case ixgbe_phy_sfp_avago:
	case ixgbe_phy_sfp_ftl:
	case ixgbe_phy_sfp_intel:
	case ixgbe_phy_sfp_unknown:
		hw->phy.ops.read_i2c_eeprom(hw,
		      IXGBE_SFF_10GBE_COMP_CODES, &comp_codes_10g);
		if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
2442
			physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_SR;
2443
		else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
2444 2445 2446 2447 2448 2449
			physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_LR;
		break;
	default:
		break;
	}

2450
out:
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
	return physical_layer;
}

/**
 *  ixgbe_enable_rx_dma_82599 - Enable the Rx DMA unit on 82599
 *  @hw: pointer to hardware structure
 *  @regval: register value to write to RXCTRL
 *
 *  Enables the Rx DMA unit for 82599
 **/
2461
static s32 ixgbe_enable_rx_dma_82599(struct ixgbe_hw *hw, u32 regval)
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
{
#define IXGBE_MAX_SECRX_POLL 30
	int i;
	int secrxreg;

	/*
	 * Workaround for 82599 silicon errata when enabling the Rx datapath.
	 * If traffic is incoming before we enable the Rx unit, it could hang
	 * the Rx DMA unit.  Therefore, make sure the security engine is
	 * completely disabled prior to enabling the Rx unit.
	 */
	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
			break;
		else
			udelay(10);
	}

	/* For informational purposes only */
	if (i >= IXGBE_MAX_SECRX_POLL)
		hw_dbg(hw, "Rx unit being enabled before security "
		       "path fully disabled.  Continuing with init.\n");

	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
	IXGBE_WRITE_FLUSH(hw);

	return 0;
}

2498 2499 2500 2501 2502 2503 2504 2505
/**
 *  ixgbe_get_device_caps_82599 - Get additional device capabilities
 *  @hw: pointer to hardware structure
 *  @device_caps: the EEPROM word with the extra device capabilities
 *
 *  This function will read the EEPROM location for the device capabilities,
 *  and return the word through device_caps.
 **/
2506
static s32 ixgbe_get_device_caps_82599(struct ixgbe_hw *hw, u16 *device_caps)
2507 2508 2509 2510 2511 2512
{
	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);

	return 0;
}

2513 2514 2515 2516 2517 2518 2519 2520 2521
/**
 *  ixgbe_get_san_mac_addr_offset_82599 - SAN MAC address offset for 82599
 *  @hw: pointer to hardware structure
 *  @san_mac_offset: SAN MAC address offset
 *
 *  This function will read the EEPROM location for the SAN MAC address
 *  pointer, and returns the value at that location.  This is used in both
 *  get and set mac_addr routines.
 **/
2522 2523
static s32 ixgbe_get_san_mac_addr_offset_82599(struct ixgbe_hw *hw,
                                               u16 *san_mac_offset)
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
{
	/*
	 * First read the EEPROM pointer to see if the MAC addresses are
	 * available.
	 */
	hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);

	return 0;
}

/**
 *  ixgbe_get_san_mac_addr_82599 - SAN MAC address retrieval for 82599
 *  @hw: pointer to hardware structure
 *  @san_mac_addr: SAN MAC address
 *
 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
 *  per-port, so set_lan_id() must be called before reading the addresses.
 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
 *  upon for non-SFP connections, so we must call it here.
 **/
2544
static s32 ixgbe_get_san_mac_addr_82599(struct ixgbe_hw *hw, u8 *san_mac_addr)
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
{
	u16 san_mac_data, san_mac_offset;
	u8 i;

	/*
	 * First read the EEPROM pointer to see if the MAC addresses are
	 * available.  If they're not, no point in calling set_lan_id() here.
	 */
	ixgbe_get_san_mac_addr_offset_82599(hw, &san_mac_offset);

	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
		/*
		 * No addresses available in this EEPROM.  It's not an
		 * error though, so just wipe the local address and return.
		 */
		for (i = 0; i < 6; i++)
			san_mac_addr[i] = 0xFF;

		goto san_mac_addr_out;
	}

	/* make sure we know which port we need to program */
	hw->mac.ops.set_lan_id(hw);
	/* apply the port offset to the address offset */
	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
	                 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
	for (i = 0; i < 3; i++) {
		hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
		san_mac_addr[i * 2] = (u8)(san_mac_data);
		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
		san_mac_offset++;
	}

san_mac_addr_out:
	return 0;
}

2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
/**
 *  ixgbe_verify_fw_version_82599 - verify fw version for 82599
 *  @hw: pointer to hardware structure
 *
 *  Verifies that installed the firmware version is 0.6 or higher
 *  for SFI devices. All 82599 SFI devices should have version 0.6 or higher.
 *
 *  Returns IXGBE_ERR_EEPROM_VERSION if the FW is not present or
 *  if the FW version is not supported.
 **/
static s32 ixgbe_verify_fw_version_82599(struct ixgbe_hw *hw)
{
	s32 status = IXGBE_ERR_EEPROM_VERSION;
	u16 fw_offset, fw_ptp_cfg_offset;
	u16 fw_version = 0;

	/* firmware check is only necessary for SFI devices */
	if (hw->phy.media_type != ixgbe_media_type_fiber) {
		status = 0;
		goto fw_version_out;
	}

	/* get the offset to the Firmware Module block */
	hw->eeprom.ops.read(hw, IXGBE_FW_PTR, &fw_offset);

	if ((fw_offset == 0) || (fw_offset == 0xFFFF))
		goto fw_version_out;

	/* get the offset to the Pass Through Patch Configuration block */
	hw->eeprom.ops.read(hw, (fw_offset +
	                         IXGBE_FW_PASSTHROUGH_PATCH_CONFIG_PTR),
	                         &fw_ptp_cfg_offset);

	if ((fw_ptp_cfg_offset == 0) || (fw_ptp_cfg_offset == 0xFFFF))
		goto fw_version_out;

	/* get the firmware version */
	hw->eeprom.ops.read(hw, (fw_ptp_cfg_offset +
	                         IXGBE_FW_PATCH_VERSION_4),
	                         &fw_version);

	if (fw_version > 0x5)
		status = 0;

fw_version_out:
	return status;
}

2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
/**
 *  ixgbe_get_wwn_prefix_82599 - Get alternative WWNN/WWPN prefix from
 *  the EEPROM
 *  @hw: pointer to hardware structure
 *  @wwnn_prefix: the alternative WWNN prefix
 *  @wwpn_prefix: the alternative WWPN prefix
 *
 *  This function will read the EEPROM from the alternative SAN MAC address
 *  block to check the support for the alternative WWNN/WWPN prefix support.
 **/
static s32 ixgbe_get_wwn_prefix_82599(struct ixgbe_hw *hw, u16 *wwnn_prefix,
                                      u16 *wwpn_prefix)
{
	u16 offset, caps;
	u16 alt_san_mac_blk_offset;

	/* clear output first */
	*wwnn_prefix = 0xFFFF;
	*wwpn_prefix = 0xFFFF;

	/* check if alternative SAN MAC is supported */
	hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
	                    &alt_san_mac_blk_offset);

	if ((alt_san_mac_blk_offset == 0) ||
	    (alt_san_mac_blk_offset == 0xFFFF))
		goto wwn_prefix_out;

	/* check capability in alternative san mac address block */
	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
	hw->eeprom.ops.read(hw, offset, &caps);
	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
		goto wwn_prefix_out;

	/* get the corresponding prefix for WWNN/WWPN */
	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
	hw->eeprom.ops.read(hw, offset, wwnn_prefix);

	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
	hw->eeprom.ops.read(hw, offset, wwpn_prefix);

wwn_prefix_out:
	return 0;
}

2675 2676 2677 2678 2679 2680 2681 2682 2683
static struct ixgbe_mac_operations mac_ops_82599 = {
	.init_hw                = &ixgbe_init_hw_generic,
	.reset_hw               = &ixgbe_reset_hw_82599,
	.start_hw               = &ixgbe_start_hw_82599,
	.clear_hw_cntrs         = &ixgbe_clear_hw_cntrs_generic,
	.get_media_type         = &ixgbe_get_media_type_82599,
	.get_supported_physical_layer = &ixgbe_get_supported_physical_layer_82599,
	.enable_rx_dma          = &ixgbe_enable_rx_dma_82599,
	.get_mac_addr           = &ixgbe_get_mac_addr_generic,
2684
	.get_san_mac_addr       = &ixgbe_get_san_mac_addr_82599,
2685
	.get_device_caps        = &ixgbe_get_device_caps_82599,
2686
	.get_wwn_prefix         = &ixgbe_get_wwn_prefix_82599,
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
	.stop_adapter           = &ixgbe_stop_adapter_generic,
	.get_bus_info           = &ixgbe_get_bus_info_generic,
	.set_lan_id             = &ixgbe_set_lan_id_multi_port_pcie,
	.read_analog_reg8       = &ixgbe_read_analog_reg8_82599,
	.write_analog_reg8      = &ixgbe_write_analog_reg8_82599,
	.setup_link             = &ixgbe_setup_mac_link_82599,
	.check_link             = &ixgbe_check_mac_link_82599,
	.get_link_capabilities  = &ixgbe_get_link_capabilities_82599,
	.led_on                 = &ixgbe_led_on_generic,
	.led_off                = &ixgbe_led_off_generic,
2697 2698
	.blink_led_start        = &ixgbe_blink_led_start_generic,
	.blink_led_stop         = &ixgbe_blink_led_stop_generic,
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
	.set_rar                = &ixgbe_set_rar_generic,
	.clear_rar              = &ixgbe_clear_rar_generic,
	.set_vmdq               = &ixgbe_set_vmdq_82599,
	.clear_vmdq             = &ixgbe_clear_vmdq_82599,
	.init_rx_addrs          = &ixgbe_init_rx_addrs_generic,
	.update_uc_addr_list    = &ixgbe_update_uc_addr_list_generic,
	.update_mc_addr_list    = &ixgbe_update_mc_addr_list_generic,
	.enable_mc              = &ixgbe_enable_mc_generic,
	.disable_mc             = &ixgbe_disable_mc_generic,
	.clear_vfta             = &ixgbe_clear_vfta_82599,
	.set_vfta               = &ixgbe_set_vfta_82599,
2710
	.fc_enable               = &ixgbe_fc_enable_generic,
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
	.init_uta_tables        = &ixgbe_init_uta_tables_82599,
	.setup_sfp              = &ixgbe_setup_sfp_modules_82599,
};

static struct ixgbe_eeprom_operations eeprom_ops_82599 = {
	.init_params            = &ixgbe_init_eeprom_params_generic,
	.read                   = &ixgbe_read_eeprom_generic,
	.write                  = &ixgbe_write_eeprom_generic,
	.validate_checksum      = &ixgbe_validate_eeprom_checksum_generic,
	.update_checksum        = &ixgbe_update_eeprom_checksum_generic,
};

static struct ixgbe_phy_operations phy_ops_82599 = {
	.identify               = &ixgbe_identify_phy_82599,
	.identify_sfp           = &ixgbe_identify_sfp_module_generic,
2726
	.init			= &ixgbe_init_phy_ops_82599,
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
	.reset                  = &ixgbe_reset_phy_generic,
	.read_reg               = &ixgbe_read_phy_reg_generic,
	.write_reg              = &ixgbe_write_phy_reg_generic,
	.setup_link             = &ixgbe_setup_phy_link_generic,
	.setup_link_speed       = &ixgbe_setup_phy_link_speed_generic,
	.read_i2c_byte          = &ixgbe_read_i2c_byte_generic,
	.write_i2c_byte         = &ixgbe_write_i2c_byte_generic,
	.read_i2c_eeprom        = &ixgbe_read_i2c_eeprom_generic,
	.write_i2c_eeprom       = &ixgbe_write_i2c_eeprom_generic,
};

struct ixgbe_info ixgbe_82599_info = {
	.mac                    = ixgbe_mac_82599EB,
	.get_invariants         = &ixgbe_get_invariants_82599,
	.mac_ops                = &mac_ops_82599,
	.eeprom_ops             = &eeprom_ops_82599,
	.phy_ops                = &phy_ops_82599,
2744
	.mbx_ops                = &mbx_ops_82599,
2745
};