amd.c 21.7 KB
Newer Older
1 2
/*
 *  AMD CPU Microcode Update Driver for Linux
3 4 5 6
 *
 *  This driver allows to upgrade microcode on F10h AMD
 *  CPUs and later.
 *
7
 *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
8
 *	          2013-2016 Borislav Petkov <bp@alien8.de>
9 10 11 12 13 14
 *
 *  Author: Peter Oruba <peter.oruba@amd.com>
 *
 *  Based on work by:
 *  Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
 *
15 16 17 18 19
 *  early loader:
 *  Copyright (C) 2013 Advanced Micro Devices, Inc.
 *
 *  Author: Jacob Shin <jacob.shin@amd.com>
 *  Fixes: Borislav Petkov <bp@suse.de>
20
 *
21
 *  Licensed under the terms of the GNU General Public
22
 *  License version 2. See file COPYING for details.
I
Ingo Molnar 已提交
23
 */
24
#define pr_fmt(fmt) "microcode: " fmt
25

26
#include <linux/earlycpio.h>
I
Ingo Molnar 已提交
27 28 29
#include <linux/firmware.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
30
#include <linux/initrd.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel.h>
32 33
#include <linux/pci.h>

34
#include <asm/microcode_amd.h>
35
#include <asm/microcode.h>
I
Ingo Molnar 已提交
36
#include <asm/processor.h>
37 38
#include <asm/setup.h>
#include <asm/cpu.h>
I
Ingo Molnar 已提交
39
#include <asm/msr.h>
40

D
Dmitry Adamushko 已提交
41
static struct equiv_cpu_entry *equiv_cpu_table;
42

43 44
/*
 * This points to the current valid container of microcode patches which we will
45
 * save from the initrd/builtin before jettisoning its contents.
46
 */
47 48 49 50
struct container {
	u8 *data;
	size_t size;
} cont;
51 52

static u32 ucode_new_rev;
53
static u8 amd_ucode_patch[PATCH_MAX_SIZE];
54 55
static u16 this_equiv_id;

56 57 58 59 60 61
/*
 * Microcode patch container file is prepended to the initrd in cpio
 * format. See Documentation/x86/early-microcode.txt
 */
static const char
ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

static size_t compute_container_size(u8 *data, u32 total_size)
{
	size_t size = 0;
	u32 *header = (u32 *)data;

	if (header[0] != UCODE_MAGIC ||
	    header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
	    header[2] == 0)                            /* size */
		return size;

	size = header[2] + CONTAINER_HDR_SZ;
	total_size -= size;
	data += size;

	while (total_size) {
		u16 patch_size;

		header = (u32 *)data;

		if (header[0] != UCODE_UCODE_TYPE)
			break;

		/*
		 * Sanity-check patch size.
		 */
		patch_size = header[1];
		if (patch_size > PATCH_MAX_SIZE)
			break;

		size	   += patch_size + SECTION_HDR_SIZE;
		data	   += patch_size + SECTION_HDR_SIZE;
		total_size -= patch_size + SECTION_HDR_SIZE;
	}

	return size;
}

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
static inline u16 find_equiv_id(struct equiv_cpu_entry *equiv_cpu_table,
				unsigned int sig)
{
	int i = 0;

	if (!equiv_cpu_table)
		return 0;

	while (equiv_cpu_table[i].installed_cpu != 0) {
		if (sig == equiv_cpu_table[i].installed_cpu)
			return equiv_cpu_table[i].equiv_cpu;

		i++;
	}
	return 0;
}

117
/*
118
 * This scans the ucode blob for the proper container as we can have multiple
119 120
 * containers glued together. Returns the equivalence ID from the equivalence
 * table or 0 if none found.
121
 */
122 123
static u16
find_proper_container(u8 *ucode, size_t size, struct container *ret_cont)
124
{
125 126
	struct container ret = { NULL, 0 };
	u32 eax, ebx, ecx, edx;
127 128
	struct equiv_cpu_entry *eq;
	int offset, left;
129 130 131
	u16 eq_id = 0;
	u32 *header;
	u8 *data;
132 133 134 135 136

	data   = ucode;
	left   = size;
	header = (u32 *)data;

137

138 139 140 141
	/* find equiv cpu table */
	if (header[0] != UCODE_MAGIC ||
	    header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
	    header[2] == 0)                            /* size */
142
		return eq_id;
143 144 145 146 147 148 149 150

	eax = 0x00000001;
	ecx = 0;
	native_cpuid(&eax, &ebx, &ecx, &edx);

	while (left > 0) {
		eq = (struct equiv_cpu_entry *)(data + CONTAINER_HDR_SZ);

151
		ret.data = data;
152 153 154 155 156 157 158 159

		/* Advance past the container header */
		offset = header[2] + CONTAINER_HDR_SZ;
		data  += offset;
		left  -= offset;

		eq_id = find_equiv_id(eq, eax);
		if (eq_id) {
160
			ret.size = compute_container_size(ret.data, left + offset);
161 162 163 164 165

			/*
			 * truncate how much we need to iterate over in the
			 * ucode update loop below
			 */
166
			left = ret.size - offset;
167 168 169

			*ret_cont = ret;
			return eq_id;
170 171 172 173 174 175 176 177 178
		}

		/*
		 * support multiple container files appended together. if this
		 * one does not have a matching equivalent cpu entry, we fast
		 * forward to the next container file.
		 */
		while (left > 0) {
			header = (u32 *)data;
179

180 181 182 183 184 185 186 187 188 189 190 191 192 193
			if (header[0] == UCODE_MAGIC &&
			    header[1] == UCODE_EQUIV_CPU_TABLE_TYPE)
				break;

			offset = header[1] + SECTION_HDR_SIZE;
			data  += offset;
			left  -= offset;
		}

		/* mark where the next microcode container file starts */
		offset    = data - (u8 *)ucode;
		ucode     = data;
	}

194
	return eq_id;
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
}

static int __apply_microcode_amd(struct microcode_amd *mc_amd)
{
	u32 rev, dummy;

	native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc_amd->hdr.data_code);

	/* verify patch application was successful */
	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
	if (rev != mc_amd->hdr.patch_id)
		return -1;

	return 0;
}

/*
 * Early load occurs before we can vmalloc(). So we look for the microcode
 * patch container file in initrd, traverse equivalent cpu table, look for a
 * matching microcode patch, and update, all in initrd memory in place.
 * When vmalloc() is available for use later -- on 64-bit during first AP load,
 * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
 * load_microcode_amd() to save equivalent cpu table and microcode patches in
 * kernel heap memory.
 */
static struct container
apply_microcode_early_amd(void *ucode, size_t size, bool save_patch)
{
	struct container ret = { NULL, 0 };
	u8 (*patch)[PATCH_MAX_SIZE];
	int offset, left;
	u32 rev, *header;
	u8  *data;
	u16 eq_id = 0;
	u32 *new_rev;

#ifdef CONFIG_X86_32
	new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
	patch	= (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
#else
	new_rev = &ucode_new_rev;
	patch	= &amd_ucode_patch;
#endif
238 239

	if (check_current_patch_level(&rev, true))
240 241
		return (struct container){ NULL, 0 };

242
	eq_id = find_proper_container(ucode, size, &ret);
243 244 245 246 247 248 249 250 251
	if (!eq_id)
		return (struct container){ NULL, 0 };

	this_equiv_id = eq_id;
	header = (u32 *)ret.data;

	/* We're pointing to an equiv table, skip over it. */
	data = ret.data +  header[2] + CONTAINER_HDR_SZ;
	left = ret.size - (header[2] + CONTAINER_HDR_SZ);
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

	while (left > 0) {
		struct microcode_amd *mc;

		header = (u32 *)data;
		if (header[0] != UCODE_UCODE_TYPE || /* type */
		    header[1] == 0)                  /* size */
			break;

		mc = (struct microcode_amd *)(data + SECTION_HDR_SIZE);

		if (eq_id == mc->hdr.processor_rev_id && rev < mc->hdr.patch_id) {

			if (!__apply_microcode_amd(mc)) {
				rev = mc->hdr.patch_id;
				*new_rev = rev;

				if (save_patch)
270
					memcpy(patch, mc, min_t(u32, header[1], PATCH_MAX_SIZE));
271 272 273 274 275 276 277
			}
		}

		offset  = header[1] + SECTION_HDR_SIZE;
		data   += offset;
		left   -= offset;
	}
278
	return ret;
279 280
}

281
static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
{
#ifdef CONFIG_X86_64
	char fw_name[36] = "amd-ucode/microcode_amd.bin";

	if (family >= 0x15)
		snprintf(fw_name, sizeof(fw_name),
			 "amd-ucode/microcode_amd_fam%.2xh.bin", family);

	return get_builtin_firmware(cp, fw_name);
#else
	return false;
#endif
}

void __init load_ucode_amd_bsp(unsigned int family)
{
298
	struct ucode_cpu_info *uci;
299
	struct cpio_data cp;
300 301
	const char *path;
	bool use_pa;
302

303 304 305 306 307 308 309 310 311
	if (IS_ENABLED(CONFIG_X86_32)) {
		uci	= (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info);
		path	= (const char *)__pa_nodebug(ucode_path);
		use_pa	= true;
	} else {
		uci     = ucode_cpu_info;
		path	= ucode_path;
		use_pa	= false;
	}
312

313 314
	if (!get_builtin_microcode(&cp, family))
		cp = find_microcode_in_initrd(path, use_pa);
315 316 317

	if (!(cp.data && cp.size))
		return;
318

319 320
	/* Get BSP's CPUID.EAX(1), needed in load_microcode_amd() */
	uci->cpu_sig.sig = cpuid_eax(1);
321

322
	apply_microcode_early_amd(cp.data, cp.size, true);
323 324 325 326 327
}

#ifdef CONFIG_X86_32
/*
 * On 32-bit, since AP's early load occurs before paging is turned on, we
328 329 330
 * cannot traverse cpu_equiv_table and microcode_cache in kernel heap memory.
 * So during cold boot, AP will apply_ucode_in_initrd() just like the BSP.
 * In save_microcode_in_initrd_amd() BSP's patch is copied to amd_ucode_patch,
331 332
 * which is used upon resume from suspend.
 */
333
void load_ucode_amd_ap(unsigned int family)
334 335
{
	struct microcode_amd *mc;
336
	struct cpio_data cp;
337 338 339 340 341 342 343

	mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
	if (mc->hdr.patch_id && mc->hdr.processor_rev_id) {
		__apply_microcode_amd(mc);
		return;
	}

344 345
	if (!get_builtin_microcode(&cp, family))
		cp = find_microcode_in_initrd((const char *)__pa_nodebug(ucode_path), true);
346

347
	if (!(cp.data && cp.size))
348 349
		return;

350 351 352 353 354
	/*
	 * This would set amd_ucode_patch above so that the following APs can
	 * use it directly instead of going down this path again.
	 */
	apply_microcode_early_amd(cp.data, cp.size, true);
355 356
}
#else
357
void load_ucode_amd_ap(unsigned int family)
358 359 360 361 362 363
{
	struct equiv_cpu_entry *eq;
	struct microcode_amd *mc;
	u32 rev, eax;
	u16 eq_id;

364
	/* 64-bit runs with paging enabled, thus early==false. */
365 366 367
	if (check_current_patch_level(&rev, false))
		return;

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
	/* First AP hasn't cached it yet, go through the blob. */
	if (!cont.data) {
		struct cpio_data cp = { NULL, 0, "" };

		if (cont.size == -1)
			return;

reget:
		if (!get_builtin_microcode(&cp, family)) {
#ifdef CONFIG_BLK_DEV_INITRD
			cp = find_cpio_data(ucode_path, (void *)initrd_start,
					    initrd_end - initrd_start, NULL);
#endif
			if (!(cp.data && cp.size)) {
				/*
				 * Mark it so that other APs do not scan again
				 * for no real reason and slow down boot
				 * needlessly.
				 */
				cont.size = -1;
				return;
			}
		}

		cont = apply_microcode_early_amd(cp.data, cp.size, false);
		if (!(cont.data && cont.size)) {
			cont.size = -1;
			return;
		}
	}
398

399
	eax = cpuid_eax(0x00000001);
400
	eq  = (struct equiv_cpu_entry *)(cont.data + CONTAINER_HDR_SZ);
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419

	eq_id = find_equiv_id(eq, eax);
	if (!eq_id)
		return;

	if (eq_id == this_equiv_id) {
		mc = (struct microcode_amd *)amd_ucode_patch;

		if (mc && rev < mc->hdr.patch_id) {
			if (!__apply_microcode_amd(mc))
				ucode_new_rev = mc->hdr.patch_id;
		}

	} else {

		/*
		 * AP has a different equivalence ID than BSP, looks like
		 * mixed-steppings silicon so go through the ucode blob anew.
		 */
420
		goto reget;
421 422
	}
}
423
#endif /* CONFIG_X86_32 */
424

425 426 427
static enum ucode_state
load_microcode_amd(int cpu, u8 family, const u8 *data, size_t size);

428
int __init save_microcode_in_initrd_amd(unsigned int fam)
429 430
{
	enum ucode_state ret;
431 432
	int retval = 0;
	u16 eq_id;
433

434 435 436
	if (!cont.data) {
		if (IS_ENABLED(CONFIG_X86_32) && (cont.size != -1)) {
			struct cpio_data cp = { NULL, 0, "" };
437

438 439 440
#ifdef CONFIG_BLK_DEV_INITRD
			cp = find_cpio_data(ucode_path, (void *)initrd_start,
					    initrd_end - initrd_start, NULL);
441 442
#endif

443 444 445 446
			if (!(cp.data && cp.size)) {
				cont.size = -1;
				return -EINVAL;
			}
447

448
			eq_id = find_proper_container(cp.data, cp.size, &cont);
449 450 451 452
			if (!eq_id) {
				cont.size = -1;
				return -EINVAL;
			}
453

454 455 456
		} else
			return -EINVAL;
	}
457

458
	ret = load_microcode_amd(smp_processor_id(), fam, cont.data, cont.size);
459 460 461 462 463 464 465
	if (ret != UCODE_OK)
		retval = -EINVAL;

	/*
	 * This will be freed any msec now, stash patches for the current
	 * family and switch to patch cache for cpu hotplug, etc later.
	 */
466 467
	cont.data = NULL;
	cont.size = 0;
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484

	return retval;
}

void reload_ucode_amd(void)
{
	struct microcode_amd *mc;
	u32 rev;

	/*
	 * early==false because this is a syscore ->resume path and by
	 * that time paging is long enabled.
	 */
	if (check_current_patch_level(&rev, false))
		return;

	mc = (struct microcode_amd *)amd_ucode_patch;
485 486
	if (!mc)
		return;
487

488
	if (rev < mc->hdr.patch_id) {
489 490
		if (!__apply_microcode_amd(mc)) {
			ucode_new_rev = mc->hdr.patch_id;
491
			pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
492 493 494
		}
	}
}
495
static u16 __find_equiv_id(unsigned int cpu)
496 497
{
	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
498
	return find_equiv_id(equiv_cpu_table, uci->cpu_sig.sig);
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
}

static u32 find_cpu_family_by_equiv_cpu(u16 equiv_cpu)
{
	int i = 0;

	BUG_ON(!equiv_cpu_table);

	while (equiv_cpu_table[i].equiv_cpu != 0) {
		if (equiv_cpu == equiv_cpu_table[i].equiv_cpu)
			return equiv_cpu_table[i].installed_cpu;
		i++;
	}
	return 0;
}

515 516 517 518 519 520 521
/*
 * a small, trivial cache of per-family ucode patches
 */
static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
{
	struct ucode_patch *p;

522
	list_for_each_entry(p, &microcode_cache, plist)
523 524 525 526 527 528 529 530 531
		if (p->equiv_cpu == equiv_cpu)
			return p;
	return NULL;
}

static void update_cache(struct ucode_patch *new_patch)
{
	struct ucode_patch *p;

532
	list_for_each_entry(p, &microcode_cache, plist) {
533 534 535 536 537 538 539 540 541 542 543 544
		if (p->equiv_cpu == new_patch->equiv_cpu) {
			if (p->patch_id >= new_patch->patch_id)
				/* we already have the latest patch */
				return;

			list_replace(&p->plist, &new_patch->plist);
			kfree(p->data);
			kfree(p);
			return;
		}
	}
	/* no patch found, add it */
545
	list_add_tail(&new_patch->plist, &microcode_cache);
546 547 548 549
}

static void free_cache(void)
{
550
	struct ucode_patch *p, *tmp;
551

552
	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
553 554 555 556 557 558 559 560 561 562
		__list_del(p->plist.prev, p->plist.next);
		kfree(p->data);
		kfree(p);
	}
}

static struct ucode_patch *find_patch(unsigned int cpu)
{
	u16 equiv_id;

563
	equiv_id = __find_equiv_id(cpu);
564 565 566 567 568 569
	if (!equiv_id)
		return NULL;

	return cache_find_patch(equiv_id);
}

570
static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
571
{
572
	struct cpuinfo_x86 *c = &cpu_data(cpu);
573 574
	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
	struct ucode_patch *p;
575

576
	csig->sig = cpuid_eax(0x00000001);
577
	csig->rev = c->microcode;
578 579 580 581 582 583 584 585 586

	/*
	 * a patch could have been loaded early, set uci->mc so that
	 * mc_bp_resume() can call apply_microcode()
	 */
	p = find_patch(cpu);
	if (p && (p->patch_id == csig->rev))
		uci->mc = p->data;

587 588
	pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);

589
	return 0;
590 591
}

592
static unsigned int verify_patch_size(u8 family, u32 patch_size,
593
				      unsigned int size)
594
{
595 596 597 598 599
	u32 max_size;

#define F1XH_MPB_MAX_SIZE 2048
#define F14H_MPB_MAX_SIZE 1824
#define F15H_MPB_MAX_SIZE 4096
600
#define F16H_MPB_MAX_SIZE 3458
601

602
	switch (family) {
603 604 605 606 607 608
	case 0x14:
		max_size = F14H_MPB_MAX_SIZE;
		break;
	case 0x15:
		max_size = F15H_MPB_MAX_SIZE;
		break;
609 610 611
	case 0x16:
		max_size = F16H_MPB_MAX_SIZE;
		break;
612 613 614 615 616 617 618 619 620 621 622 623 624
	default:
		max_size = F1XH_MPB_MAX_SIZE;
		break;
	}

	if (patch_size > min_t(u32, size, max_size)) {
		pr_err("patch size mismatch\n");
		return 0;
	}

	return patch_size;
}

625 626 627 628 629 630 631 632 633 634
/*
 * Those patch levels cannot be updated to newer ones and thus should be final.
 */
static u32 final_levels[] = {
	0x01000098,
	0x0100009f,
	0x010000af,
	0, /* T-101 terminator */
};

635 636 637 638 639 640 641 642 643 644
/*
 * Check the current patch level on this CPU.
 *
 * @rev: Use it to return the patch level. It is set to 0 in the case of
 * error.
 *
 * Returns:
 *  - true: if update should stop
 *  - false: otherwise
 */
645
bool check_current_patch_level(u32 *rev, bool early)
646
{
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
	u32 lvl, dummy, i;
	bool ret = false;
	u32 *levels;

	native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);

	if (IS_ENABLED(CONFIG_X86_32) && early)
		levels = (u32 *)__pa_nodebug(&final_levels);
	else
		levels = final_levels;

	for (i = 0; levels[i]; i++) {
		if (lvl == levels[i]) {
			lvl = 0;
			ret = true;
			break;
		}
	}
665

666 667
	if (rev)
		*rev = lvl;
668

669
	return ret;
670 671
}

672
static int apply_microcode_amd(int cpu)
673
{
674
	struct cpuinfo_x86 *c = &cpu_data(cpu);
675 676 677
	struct microcode_amd *mc_amd;
	struct ucode_cpu_info *uci;
	struct ucode_patch *p;
678
	u32 rev;
679 680

	BUG_ON(raw_smp_processor_id() != cpu);
681

682
	uci = ucode_cpu_info + cpu;
683

684 685
	p = find_patch(cpu);
	if (!p)
686
		return 0;
687

688 689 690
	mc_amd  = p->data;
	uci->mc = p->data;

691
	if (check_current_patch_level(&rev, false))
692
		return -1;
693

694 695 696
	/* need to apply patch? */
	if (rev >= mc_amd->hdr.patch_id) {
		c->microcode = rev;
697
		uci->cpu_sig.rev = rev;
698 699 700
		return 0;
	}

701
	if (__apply_microcode_amd(mc_amd)) {
702
		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
703
			cpu, mc_amd->hdr.patch_id);
704 705 706 707
		return -1;
	}
	pr_info("CPU%d: new patch_level=0x%08x\n", cpu,
		mc_amd->hdr.patch_id);
708

709 710
	uci->cpu_sig.rev = mc_amd->hdr.patch_id;
	c->microcode = mc_amd->hdr.patch_id;
711 712

	return 0;
713 714
}

715
static int install_equiv_cpu_table(const u8 *buf)
716
{
717 718 719
	unsigned int *ibuf = (unsigned int *)buf;
	unsigned int type = ibuf[1];
	unsigned int size = ibuf[2];
720

721
	if (type != UCODE_EQUIV_CPU_TABLE_TYPE || !size) {
722 723
		pr_err("empty section/"
		       "invalid type field in container file section header\n");
724
		return -EINVAL;
725 726
	}

727
	equiv_cpu_table = vmalloc(size);
728
	if (!equiv_cpu_table) {
729
		pr_err("failed to allocate equivalent CPU table\n");
730
		return -ENOMEM;
731 732
	}

733
	memcpy(equiv_cpu_table, buf + CONTAINER_HDR_SZ, size);
734

735 736
	/* add header length */
	return size + CONTAINER_HDR_SZ;
737 738
}

D
Dmitry Adamushko 已提交
739
static void free_equiv_cpu_table(void)
740
{
741 742
	vfree(equiv_cpu_table);
	equiv_cpu_table = NULL;
D
Dmitry Adamushko 已提交
743
}
744

745
static void cleanup(void)
D
Dmitry Adamushko 已提交
746
{
747 748 749 750 751 752 753 754 755 756 757
	free_equiv_cpu_table();
	free_cache();
}

/*
 * We return the current size even if some of the checks failed so that
 * we can skip over the next patch. If we return a negative value, we
 * signal a grave error like a memory allocation has failed and the
 * driver cannot continue functioning normally. In such cases, we tear
 * down everything we've used up so far and exit.
 */
758
static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover)
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
{
	struct microcode_header_amd *mc_hdr;
	struct ucode_patch *patch;
	unsigned int patch_size, crnt_size, ret;
	u32 proc_fam;
	u16 proc_id;

	patch_size  = *(u32 *)(fw + 4);
	crnt_size   = patch_size + SECTION_HDR_SIZE;
	mc_hdr	    = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
	proc_id	    = mc_hdr->processor_rev_id;

	proc_fam = find_cpu_family_by_equiv_cpu(proc_id);
	if (!proc_fam) {
		pr_err("No patch family for equiv ID: 0x%04x\n", proc_id);
		return crnt_size;
	}

	/* check if patch is for the current family */
	proc_fam = ((proc_fam >> 8) & 0xf) + ((proc_fam >> 20) & 0xff);
779
	if (proc_fam != family)
780 781 782 783 784 785 786 787
		return crnt_size;

	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n",
			mc_hdr->patch_id);
		return crnt_size;
	}

788
	ret = verify_patch_size(family, patch_size, leftover);
789 790 791 792 793 794 795 796 797 798 799
	if (!ret) {
		pr_err("Patch-ID 0x%08x: size mismatch.\n", mc_hdr->patch_id);
		return crnt_size;
	}

	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
	if (!patch) {
		pr_err("Patch allocation failure.\n");
		return -EINVAL;
	}

800
	patch->data = kmemdup(fw + SECTION_HDR_SIZE, patch_size, GFP_KERNEL);
801 802 803 804 805 806 807 808 809 810
	if (!patch->data) {
		pr_err("Patch data allocation failure.\n");
		kfree(patch);
		return -EINVAL;
	}

	INIT_LIST_HEAD(&patch->plist);
	patch->patch_id  = mc_hdr->patch_id;
	patch->equiv_cpu = proc_id;

811 812 813
	pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
		 __func__, patch->patch_id, proc_id);

814 815 816 817 818 819
	/* ... and add to cache. */
	update_cache(patch);

	return crnt_size;
}

820 821
static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
					     size_t size)
822 823 824 825 826
{
	enum ucode_state ret = UCODE_ERROR;
	unsigned int leftover;
	u8 *fw = (u8 *)data;
	int crnt_size = 0;
827
	int offset;
828

829
	offset = install_equiv_cpu_table(data);
830
	if (offset < 0) {
831
		pr_err("failed to create equivalent cpu table\n");
832
		return ret;
833
	}
834
	fw += offset;
D
Dmitry Adamushko 已提交
835 836
	leftover = size - offset;

837
	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
838
		pr_err("invalid type field in container file section header\n");
839 840
		free_equiv_cpu_table();
		return ret;
841
	}
D
Dmitry Adamushko 已提交
842

843
	while (leftover) {
844
		crnt_size = verify_and_add_patch(family, fw, leftover);
845 846
		if (crnt_size < 0)
			return ret;
847

848 849
		fw	 += crnt_size;
		leftover -= crnt_size;
850
	}
D
Dmitry Adamushko 已提交
851

852
	return UCODE_OK;
D
Dmitry Adamushko 已提交
853 854
}

855 856
static enum ucode_state
load_microcode_amd(int cpu, u8 family, const u8 *data, size_t size)
857 858 859 860 861 862
{
	enum ucode_state ret;

	/* free old equiv table */
	free_equiv_cpu_table();

863
	ret = __load_microcode_amd(family, data, size);
864 865 866 867

	if (ret != UCODE_OK)
		cleanup();

868
#ifdef CONFIG_X86_32
869
	/* save BSP's matching patch for early load */
870 871
	if (cpu_data(cpu).cpu_index == boot_cpu_data.cpu_index) {
		struct ucode_patch *p = find_patch(cpu);
872
		if (p) {
873 874 875
			memset(amd_ucode_patch, 0, PATCH_MAX_SIZE);
			memcpy(amd_ucode_patch, p->data, min_t(u32, ksize(p->data),
							       PATCH_MAX_SIZE));
876 877 878
		}
	}
#endif
879 880 881
	return ret;
}

882 883 884 885 886 887 888 889
/*
 * AMD microcode firmware naming convention, up to family 15h they are in
 * the legacy file:
 *
 *    amd-ucode/microcode_amd.bin
 *
 * This legacy file is always smaller than 2K in size.
 *
890
 * Beginning with family 15h, they are in family-specific firmware files:
891 892 893 894 895 896 897
 *
 *    amd-ucode/microcode_amd_fam15h.bin
 *    amd-ucode/microcode_amd_fam16h.bin
 *    ...
 *
 * These might be larger than 2K.
 */
898 899
static enum ucode_state request_microcode_amd(int cpu, struct device *device,
					      bool refresh_fw)
D
Dmitry Adamushko 已提交
900
{
901 902
	char fw_name[36] = "amd-ucode/microcode_amd.bin";
	struct cpuinfo_x86 *c = &cpu_data(cpu);
903 904 905 906 907 908
	enum ucode_state ret = UCODE_NFOUND;
	const struct firmware *fw;

	/* reload ucode container only on the boot cpu */
	if (!refresh_fw || c->cpu_index != boot_cpu_data.cpu_index)
		return UCODE_OK;
909 910 911

	if (c->x86 >= 0x15)
		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
D
Dmitry Adamushko 已提交
912

913
	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
914
		pr_debug("failed to load file %s\n", fw_name);
915
		goto out;
916
	}
D
Dmitry Adamushko 已提交
917

918 919
	ret = UCODE_ERROR;
	if (*(u32 *)fw->data != UCODE_MAGIC) {
920
		pr_err("invalid magic value (0x%08x)\n", *(u32 *)fw->data);
921
		goto fw_release;
922 923
	}

924
	ret = load_microcode_amd(cpu, c->x86, fw->data, fw->size);
D
Dmitry Adamushko 已提交
925

926
 fw_release:
927
	release_firmware(fw);
928

929
 out:
D
Dmitry Adamushko 已提交
930 931 932
	return ret;
}

933 934
static enum ucode_state
request_microcode_user(int cpu, const void __user *buf, size_t size)
D
Dmitry Adamushko 已提交
935
{
936
	return UCODE_ERROR;
937 938 939 940 941 942
}

static void microcode_fini_cpu_amd(int cpu)
{
	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;

943
	uci->mc = NULL;
944 945 946
}

static struct microcode_ops microcode_amd_ops = {
D
Dmitry Adamushko 已提交
947
	.request_microcode_user           = request_microcode_user,
948
	.request_microcode_fw             = request_microcode_amd,
949 950 951 952 953
	.collect_cpu_info                 = collect_cpu_info_amd,
	.apply_microcode                  = apply_microcode_amd,
	.microcode_fini_cpu               = microcode_fini_cpu_amd,
};

954
struct microcode_ops * __init init_amd_microcode(void)
955
{
956
	struct cpuinfo_x86 *c = &boot_cpu_data;
957 958

	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
959
		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
960 961 962
		return NULL;
	}

963 964 965 966
	if (ucode_new_rev)
		pr_info_once("microcode updated early to new patch_level=0x%08x\n",
			     ucode_new_rev);

967
	return &microcode_amd_ops;
968
}
969 970 971

void __exit exit_amd_microcode(void)
{
972
	cleanup();
973
}