Kconfig 87.0 KB
Newer Older
S
Sam Ravnborg 已提交
1 2
# Select 32 or 64 bit
config 64BIT
3
	bool "64-bit kernel" if ARCH = "x86"
4
	default ARCH != "i386"
I
Ingo Molnar 已提交
5
	---help---
S
Sam Ravnborg 已提交
6 7 8 9
	  Say yes to build a 64-bit kernel - formerly known as x86_64
	  Say no to build a 32-bit kernel - formerly known as i386

config X86_32
10 11
	def_bool y
	depends on !64BIT
S
Sam Ravnborg 已提交
12 13

config X86_64
14 15
	def_bool y
	depends on 64BIT
16 17

### Arch settings
18
config X86
19
	def_bool y
20 21 22 23 24 25
	select ACPI_LEGACY_TABLES_LOOKUP	if ACPI
	select ACPI_SYSTEM_POWER_STATES_SUPPORT	if ACPI
	select ANON_INODES
	select ARCH_CLOCKSOURCE_DATA
	select ARCH_DISCARD_MEMBLOCK
	select ARCH_HAS_ATOMIC64_DEC_IF_POSITIVE
26
	select ARCH_HAS_DEBUG_STRICT_USER_COPY_CHECKS
27
	select ARCH_HAS_DEVMEM_IS_ALLOWED
28
	select ARCH_HAS_ELF_RANDOMIZE
29
	select ARCH_HAS_FAST_MULTIPLIER
30
	select ARCH_HAS_GCOV_PROFILE_ALL
31
	select ARCH_HAS_PMEM_API		if X86_64
32
	select ARCH_HAS_MMIO_FLUSH
33 34 35
	select ARCH_HAS_SG_CHAIN
	select ARCH_HAVE_NMI_SAFE_CMPXCHG
	select ARCH_MIGHT_HAVE_ACPI_PDC		if ACPI
36
	select ARCH_MIGHT_HAVE_PC_PARPORT
37
	select ARCH_MIGHT_HAVE_PC_SERIO
38
	select ARCH_SUPPORTS_ATOMIC_RMW
39
	select ARCH_SUPPORTS_DEFERRED_STRUCT_PAGE_INIT
40 41 42 43 44 45
	select ARCH_SUPPORTS_INT128		if X86_64
	select ARCH_SUPPORTS_NUMA_BALANCING	if X86_64
	select ARCH_USE_BUILTIN_BSWAP
	select ARCH_USE_CMPXCHG_LOCKREF		if X86_64
	select ARCH_USE_QUEUED_RWLOCKS
	select ARCH_USE_QUEUED_SPINLOCKS
46
	select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH if SMP
47
	select ARCH_WANTS_DYNAMIC_TASK_STRUCT
48
	select ARCH_WANT_FRAME_POINTERS
49 50 51 52 53 54 55 56 57 58
	select ARCH_WANT_IPC_PARSE_VERSION	if X86_32
	select ARCH_WANT_OPTIONAL_GPIOLIB
	select BUILDTIME_EXTABLE_SORT
	select CLKEVT_I8253
	select CLKSRC_I8253			if X86_32
	select CLOCKSOURCE_VALIDATE_LAST_CYCLE
	select CLOCKSOURCE_WATCHDOG
	select CLONE_BACKWARDS			if X86_32
	select COMPAT_OLD_SIGACTION		if IA32_EMULATION
	select DCACHE_WORD_ACCESS
59 60
	select EDAC_ATOMIC_SCRUB
	select EDAC_SUPPORT
61 62 63 64 65
	select GENERIC_CLOCKEVENTS
	select GENERIC_CLOCKEVENTS_BROADCAST	if X86_64 || (X86_32 && X86_LOCAL_APIC)
	select GENERIC_CLOCKEVENTS_MIN_ADJUST
	select GENERIC_CMOS_UPDATE
	select GENERIC_CPU_AUTOPROBE
M
Mark Salter 已提交
66
	select GENERIC_EARLY_IOREMAP
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
	select GENERIC_FIND_FIRST_BIT
	select GENERIC_IOMAP
	select GENERIC_IRQ_PROBE
	select GENERIC_IRQ_SHOW
	select GENERIC_PENDING_IRQ		if SMP
	select GENERIC_SMP_IDLE_THREAD
	select GENERIC_STRNCPY_FROM_USER
	select GENERIC_STRNLEN_USER
	select GENERIC_TIME_VSYSCALL
	select HAVE_ACPI_APEI			if ACPI
	select HAVE_ACPI_APEI_NMI		if ACPI
	select HAVE_ALIGNED_STRUCT_PAGE		if SLUB
	select HAVE_AOUT			if X86_32
	select HAVE_ARCH_AUDITSYSCALL
	select HAVE_ARCH_HUGE_VMAP		if X86_64 || X86_PAE
	select HAVE_ARCH_JUMP_LABEL
	select HAVE_ARCH_KASAN			if X86_64 && SPARSEMEM_VMEMMAP
	select HAVE_ARCH_KGDB
	select HAVE_ARCH_KMEMCHECK
	select HAVE_ARCH_SECCOMP_FILTER
	select HAVE_ARCH_SOFT_DIRTY		if X86_64
	select HAVE_ARCH_TRACEHOOK
	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
	select HAVE_BPF_JIT			if X86_64
	select HAVE_CC_STACKPROTECTOR
	select HAVE_CMPXCHG_DOUBLE
	select HAVE_CMPXCHG_LOCAL
	select HAVE_CONTEXT_TRACKING		if X86_64
95
	select HAVE_COPY_THREAD_TLS
96
	select HAVE_C_RECORDMCOUNT
97 98 99 100 101
	select HAVE_DEBUG_KMEMLEAK
	select HAVE_DEBUG_STACKOVERFLOW
	select HAVE_DMA_API_DEBUG
	select HAVE_DMA_ATTRS
	select HAVE_DMA_CONTIGUOUS
102
	select HAVE_DYNAMIC_FTRACE
103
	select HAVE_DYNAMIC_FTRACE_WITH_REGS
104
	select HAVE_EFFICIENT_UNALIGNED_ACCESS
105 106 107 108 109 110 111 112 113 114 115
	select HAVE_FENTRY			if X86_64
	select HAVE_FTRACE_MCOUNT_RECORD
	select HAVE_FUNCTION_GRAPH_FP_TEST
	select HAVE_FUNCTION_GRAPH_TRACER
	select HAVE_FUNCTION_TRACER
	select HAVE_GENERIC_DMA_COHERENT	if X86_32
	select HAVE_HW_BREAKPOINT
	select HAVE_IDE
	select HAVE_IOREMAP_PROT
	select HAVE_IRQ_EXIT_ON_IRQ_STACK	if X86_64
	select HAVE_IRQ_TIME_ACCOUNTING
116
	select HAVE_KERNEL_BZIP2
117 118
	select HAVE_KERNEL_GZIP
	select HAVE_KERNEL_LZ4
119
	select HAVE_KERNEL_LZMA
120
	select HAVE_KERNEL_LZO
121 122 123 124 125 126 127 128
	select HAVE_KERNEL_XZ
	select HAVE_KPROBES
	select HAVE_KPROBES_ON_FTRACE
	select HAVE_KRETPROBES
	select HAVE_KVM
	select HAVE_LIVEPATCH			if X86_64
	select HAVE_MEMBLOCK
	select HAVE_MEMBLOCK_NODE_MAP
129
	select HAVE_MIXED_BREAKPOINTS_REGS
130 131 132 133
	select HAVE_OPROFILE
	select HAVE_OPTPROBES
	select HAVE_PCSPKR_PLATFORM
	select HAVE_PERF_EVENTS
134
	select HAVE_PERF_EVENTS_NMI
135
	select HAVE_PERF_REGS
136
	select HAVE_PERF_USER_STACK_DUMP
137 138
	select HAVE_REGS_AND_STACK_ACCESS_API
	select HAVE_SYSCALL_TRACEPOINTS
139
	select HAVE_UID16			if X86_32 || IA32_EMULATION
140
	select HAVE_UNSTABLE_SCHED_CLOCK
A
Avi Kivity 已提交
141
	select HAVE_USER_RETURN_NOTIFIER
142
	select IRQ_FORCED_THREADING
143 144 145 146 147
	select MODULES_USE_ELF_RELA		if X86_64
	select MODULES_USE_ELF_REL		if X86_32
	select OLD_SIGACTION			if X86_32
	select OLD_SIGSUSPEND3			if X86_32 || IA32_EMULATION
	select PERF_EVENTS
148
	select RTC_LIB
149
	select SPARSE_IRQ
150
	select SRCU
151 152 153 154 155
	select SYSCTL_EXCEPTION_TRACE
	select USER_STACKTRACE_SUPPORT
	select VIRT_TO_BUS
	select X86_DEV_DMA_OPS			if X86_64
	select X86_FEATURE_NAMES		if PROC_FS
156

157
config INSTRUCTION_DECODER
158 159
	def_bool y
	depends on KPROBES || PERF_EVENTS || UPROBES
160

161 162
config PERF_EVENTS_INTEL_UNCORE
	def_bool y
163
	depends on PERF_EVENTS && CPU_SUP_INTEL && PCI
164

165 166 167 168 169
config OUTPUT_FORMAT
	string
	default "elf32-i386" if X86_32
	default "elf64-x86-64" if X86_64

170
config ARCH_DEFCONFIG
171
	string
172 173
	default "arch/x86/configs/i386_defconfig" if X86_32
	default "arch/x86/configs/x86_64_defconfig" if X86_64
174

175
config LOCKDEP_SUPPORT
176
	def_bool y
177 178

config STACKTRACE_SUPPORT
179
	def_bool y
180

181 182 183
config HAVE_LATENCYTOP_SUPPORT
	def_bool y

184
config MMU
185
	def_bool y
186 187 188 189

config SBUS
	bool

190
config NEED_DMA_MAP_STATE
191
	def_bool y
192
	depends on X86_64 || INTEL_IOMMU || DMA_API_DEBUG || SWIOTLB
193

194
config NEED_SG_DMA_LENGTH
195
	def_bool y
196

197
config GENERIC_ISA_DMA
198 199
	def_bool y
	depends on ISA_DMA_API
200 201

config GENERIC_BUG
202
	def_bool y
203
	depends on BUG
204 205 206 207
	select GENERIC_BUG_RELATIVE_POINTERS if X86_64

config GENERIC_BUG_RELATIVE_POINTERS
	bool
208 209

config GENERIC_HWEIGHT
210
	def_bool y
211 212

config ARCH_MAY_HAVE_PC_FDC
213 214
	def_bool y
	depends on ISA_DMA_API
215

216
config RWSEM_XCHGADD_ALGORITHM
217
	def_bool y
218 219 220 221

config GENERIC_CALIBRATE_DELAY
	def_bool y

222 223 224
config ARCH_HAS_CPU_RELAX
	def_bool y

225 226 227
config ARCH_HAS_CACHE_LINE_SIZE
	def_bool y

228
config HAVE_SETUP_PER_CPU_AREA
229
	def_bool y
230

231 232 233 234
config NEED_PER_CPU_EMBED_FIRST_CHUNK
	def_bool y

config NEED_PER_CPU_PAGE_FIRST_CHUNK
235 236
	def_bool y

237 238 239
config ARCH_HIBERNATION_POSSIBLE
	def_bool y

J
Johannes Berg 已提交
240 241 242
config ARCH_SUSPEND_POSSIBLE
	def_bool y

243 244 245
config ARCH_WANT_HUGE_PMD_SHARE
	def_bool y

246 247 248
config ARCH_WANT_GENERAL_HUGETLB
	def_bool y

249
config ZONE_DMA32
250
	def_bool y if X86_64
251 252

config AUDIT_ARCH
253
	def_bool y if X86_64
254

255 256 257
config ARCH_SUPPORTS_OPTIMIZED_INLINING
	def_bool y

A
Akinobu Mita 已提交
258 259 260
config ARCH_SUPPORTS_DEBUG_PAGEALLOC
	def_bool y

261 262 263 264 265
config KASAN_SHADOW_OFFSET
	hex
	depends on KASAN
	default 0xdffffc0000000000

266 267
config HAVE_INTEL_TXT
	def_bool y
268
	depends on INTEL_IOMMU && ACPI
269

270 271 272 273 274 275 276 277
config X86_32_SMP
	def_bool y
	depends on X86_32 && SMP

config X86_64_SMP
	def_bool y
	depends on X86_64 && SMP

278 279
config X86_32_LAZY_GS
	def_bool y
280
	depends on X86_32 && !CC_STACKPROTECTOR
281

282 283 284 285 286
config ARCH_HWEIGHT_CFLAGS
	string
	default "-fcall-saved-ecx -fcall-saved-edx" if X86_32
	default "-fcall-saved-rdi -fcall-saved-rsi -fcall-saved-rdx -fcall-saved-rcx -fcall-saved-r8 -fcall-saved-r9 -fcall-saved-r10 -fcall-saved-r11" if X86_64

287 288 289
config ARCH_SUPPORTS_UPROBES
	def_bool y

290 291 292
config FIX_EARLYCON_MEM
	def_bool y

293 294 295 296 297 298
config PGTABLE_LEVELS
	int
	default 4 if X86_64
	default 3 if X86_PAE
	default 2

299
source "init/Kconfig"
300
source "kernel/Kconfig.freezer"
301

302 303
menu "Processor type and features"

304 305 306 307 308 309 310 311 312 313
config ZONE_DMA
	bool "DMA memory allocation support" if EXPERT
	default y
	help
	  DMA memory allocation support allows devices with less than 32-bit
	  addressing to allocate within the first 16MB of address space.
	  Disable if no such devices will be used.

	  If unsure, say Y.

314 315 316 317
config SMP
	bool "Symmetric multi-processing support"
	---help---
	  This enables support for systems with more than one CPU. If you have
318 319
	  a system with only one CPU, say N. If you have a system with more
	  than one CPU, say Y.
320

321
	  If you say N here, the kernel will run on uni- and multiprocessor
322 323
	  machines, but will use only one CPU of a multiprocessor machine. If
	  you say Y here, the kernel will run on many, but not all,
324
	  uniprocessor machines. On a uniprocessor machine, the kernel
325 326 327 328 329 330 331 332 333 334 335
	  will run faster if you say N here.

	  Note that if you say Y here and choose architecture "586" or
	  "Pentium" under "Processor family", the kernel will not work on 486
	  architectures. Similarly, multiprocessor kernels for the "PPro"
	  architecture may not work on all Pentium based boards.

	  People using multiprocessor machines who say Y here should also say
	  Y to "Enhanced Real Time Clock Support", below. The "Advanced Power
	  Management" code will be disabled if you say Y here.

P
Paul Bolle 已提交
336
	  See also <file:Documentation/x86/i386/IO-APIC.txt>,
337 338 339 340 341
	  <file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at
	  <http://www.tldp.org/docs.html#howto>.

	  If you don't know what to do here, say N.

342 343 344 345 346 347 348 349 350 351 352
config X86_FEATURE_NAMES
	bool "Processor feature human-readable names" if EMBEDDED
	default y
	---help---
	  This option compiles in a table of x86 feature bits and corresponding
	  names.  This is required to support /proc/cpuinfo and a few kernel
	  messages.  You can disable this to save space, at the expense of
	  making those few kernel messages show numeric feature bits instead.

	  If in doubt, say Y.

353 354 355 356 357 358 359 360 361 362 363
config X86_FAST_FEATURE_TESTS
	bool "Fast CPU feature tests" if EMBEDDED
	default y
	---help---
	  Some fast-paths in the kernel depend on the capabilities of the CPU.
	  Say Y here for the kernel to patch in the appropriate code at runtime
	  based on the capabilities of the CPU. The infrastructure for patching
	  code at runtime takes up some additional space; space-constrained
	  embedded systems may wish to say N here to produce smaller, slightly
	  slower code.

Y
Yinghai Lu 已提交
364 365
config X86_X2APIC
	bool "Support x2apic"
366
	depends on X86_LOCAL_APIC && X86_64 && (IRQ_REMAP || HYPERVISOR_GUEST)
Y
Yinghai Lu 已提交
367 368 369 370 371 372 373 374
	---help---
	  This enables x2apic support on CPUs that have this feature.

	  This allows 32-bit apic IDs (so it can support very large systems),
	  and accesses the local apic via MSRs not via mmio.

	  If you don't know what to do here, say N.

375
config X86_MPPARSE
376
	bool "Enable MPS table" if ACPI || SFI
377
	default y
378
	depends on X86_LOCAL_APIC
I
Ingo Molnar 已提交
379
	---help---
380 381 382
	  For old smp systems that do not have proper acpi support. Newer systems
	  (esp with 64bit cpus) with acpi support, MADT and DSDT will override it

383 384 385
config X86_BIGSMP
	bool "Support for big SMP systems with more than 8 CPUs"
	depends on X86_32 && SMP
I
Ingo Molnar 已提交
386
	---help---
387
	  This option is needed for the systems that have more than 8 CPUs
388

J
Jun Nakajima 已提交
389 390 391 392
config GOLDFISH
       def_bool y
       depends on X86_GOLDFISH

393
if X86_32
394 395 396
config X86_EXTENDED_PLATFORM
	bool "Support for extended (non-PC) x86 platforms"
	default y
I
Ingo Molnar 已提交
397
	---help---
398 399 400 401
	  If you disable this option then the kernel will only support
	  standard PC platforms. (which covers the vast majority of
	  systems out there.)

402 403
	  If you enable this option then you'll be able to select support
	  for the following (non-PC) 32 bit x86 platforms:
404
		Goldfish (Android emulator)
405 406 407
		AMD Elan
		RDC R-321x SoC
		SGI 320/540 (Visual Workstation)
408
		STA2X11-based (e.g. Northville)
409
		Moorestown MID devices
410 411 412

	  If you have one of these systems, or if you want to build a
	  generic distribution kernel, say Y here - otherwise say N.
413
endif
414

415 416 417 418 419 420 421 422 423 424 425
if X86_64
config X86_EXTENDED_PLATFORM
	bool "Support for extended (non-PC) x86 platforms"
	default y
	---help---
	  If you disable this option then the kernel will only support
	  standard PC platforms. (which covers the vast majority of
	  systems out there.)

	  If you enable this option then you'll be able to select support
	  for the following (non-PC) 64 bit x86 platforms:
S
Steffen Persvold 已提交
426
		Numascale NumaChip
427 428 429 430 431 432
		ScaleMP vSMP
		SGI Ultraviolet

	  If you have one of these systems, or if you want to build a
	  generic distribution kernel, say Y here - otherwise say N.
endif
433 434
# This is an alphabetically sorted list of 64 bit extended platforms
# Please maintain the alphabetic order if and when there are additions
S
Steffen Persvold 已提交
435 436 437 438 439 440 441
config X86_NUMACHIP
	bool "Numascale NumaChip"
	depends on X86_64
	depends on X86_EXTENDED_PLATFORM
	depends on NUMA
	depends on SMP
	depends on X86_X2APIC
442
	depends on PCI_MMCONFIG
S
Steffen Persvold 已提交
443 444 445 446
	---help---
	  Adds support for Numascale NumaChip large-SMP systems. Needed to
	  enable more than ~168 cores.
	  If you don't have one of these, you should say N here.
447

448 449
config X86_VSMP
	bool "ScaleMP vSMP"
450
	select HYPERVISOR_GUEST
451 452 453
	select PARAVIRT
	depends on X86_64 && PCI
	depends on X86_EXTENDED_PLATFORM
454
	depends on SMP
I
Ingo Molnar 已提交
455
	---help---
456 457 458
	  Support for ScaleMP vSMP systems.  Say 'Y' here if this kernel is
	  supposed to run on these EM64T-based machines.  Only choose this option
	  if you have one of these machines.
459

N
Nick Piggin 已提交
460 461 462
config X86_UV
	bool "SGI Ultraviolet"
	depends on X86_64
463
	depends on X86_EXTENDED_PLATFORM
464
	depends on NUMA
465
	depends on X86_X2APIC
466
	depends on PCI
I
Ingo Molnar 已提交
467
	---help---
N
Nick Piggin 已提交
468 469 470
	  This option is needed in order to support SGI Ultraviolet systems.
	  If you don't have one of these, you should say N here.

471 472
# Following is an alphabetically sorted list of 32 bit extended platforms
# Please maintain the alphabetic order if and when there are additions
473

J
Jun Nakajima 已提交
474 475
config X86_GOLDFISH
       bool "Goldfish (Virtual Platform)"
476
       depends on X86_EXTENDED_PLATFORM
J
Jun Nakajima 已提交
477 478 479 480 481
       ---help---
	 Enable support for the Goldfish virtual platform used primarily
	 for Android development. Unless you are building for the Android
	 Goldfish emulator say N here.

T
Thomas Gleixner 已提交
482 483 484 485
config X86_INTEL_CE
	bool "CE4100 TV platform"
	depends on PCI
	depends on PCI_GODIRECT
486
	depends on X86_IO_APIC
T
Thomas Gleixner 已提交
487 488
	depends on X86_32
	depends on X86_EXTENDED_PLATFORM
489
	select X86_REBOOTFIXUPS
490 491
	select OF
	select OF_EARLY_FLATTREE
T
Thomas Gleixner 已提交
492 493 494 495 496
	---help---
	  Select for the Intel CE media processor (CE4100) SOC.
	  This option compiles in support for the CE4100 SOC for settop
	  boxes and media devices.

497
config X86_INTEL_MID
498 499 500
	bool "Intel MID platform support"
	depends on X86_32
	depends on X86_EXTENDED_PLATFORM
501
	depends on X86_PLATFORM_DEVICES
502 503 504
	depends on PCI
	depends on PCI_GOANY
	depends on X86_IO_APIC
505
	select SFI
506
	select I2C
507
	select DW_APB_TIMER
508 509
	select APB_TIMER
	select INTEL_SCU_IPC
510
	select MFD_INTEL_MSIC
511
	---help---
512 513 514
	  Select to build a kernel capable of supporting Intel MID (Mobile
	  Internet Device) platform systems which do not have the PCI legacy
	  interfaces. If you are building for a PC class system say N here.
515

516 517
	  Intel MID platforms are based on an Intel processor and chipset which
	  consume less power than most of the x86 derivatives.
518

519 520 521 522 523 524 525 526 527 528 529
config X86_INTEL_QUARK
	bool "Intel Quark platform support"
	depends on X86_32
	depends on X86_EXTENDED_PLATFORM
	depends on X86_PLATFORM_DEVICES
	depends on X86_TSC
	depends on PCI
	depends on PCI_GOANY
	depends on X86_IO_APIC
	select IOSF_MBI
	select INTEL_IMR
530
	select COMMON_CLK
531 532 533 534 535
	---help---
	  Select to include support for Quark X1000 SoC.
	  Say Y here if you have a Quark based system such as the Arduino
	  compatible Intel Galileo.

536 537
config X86_INTEL_LPSS
	bool "Intel Low Power Subsystem Support"
538
	depends on X86 && ACPI
539
	select COMMON_CLK
540
	select PINCTRL
541
	select IOSF_MBI
542 543 544
	---help---
	  Select to build support for Intel Low Power Subsystem such as
	  found on Intel Lynxpoint PCH. Selecting this option enables
545 546
	  things like clock tree (common clock framework) and pincontrol
	  which are needed by the LPSS peripheral drivers.
547

548 549 550 551 552 553 554 555 556 557 558
config X86_AMD_PLATFORM_DEVICE
	bool "AMD ACPI2Platform devices support"
	depends on ACPI
	select COMMON_CLK
	select PINCTRL
	---help---
	  Select to interpret AMD specific ACPI device to platform device
	  such as I2C, UART, GPIO found on AMD Carrizo and later chipsets.
	  I2C and UART depend on COMMON_CLK to set clock. GPIO driver is
	  implemented under PINCTRL subsystem.

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
config IOSF_MBI
	tristate "Intel SoC IOSF Sideband support for SoC platforms"
	depends on PCI
	---help---
	  This option enables sideband register access support for Intel SoC
	  platforms. On these platforms the IOSF sideband is used in lieu of
	  MSR's for some register accesses, mostly but not limited to thermal
	  and power. Drivers may query the availability of this device to
	  determine if they need the sideband in order to work on these
	  platforms. The sideband is available on the following SoC products.
	  This list is not meant to be exclusive.
	   - BayTrail
	   - Braswell
	   - Quark

	  You should say Y if you are running a kernel on one of these SoC's.

576 577 578 579 580 581 582 583 584 585 586 587 588
config IOSF_MBI_DEBUG
	bool "Enable IOSF sideband access through debugfs"
	depends on IOSF_MBI && DEBUG_FS
	---help---
	  Select this option to expose the IOSF sideband access registers (MCR,
	  MDR, MCRX) through debugfs to write and read register information from
	  different units on the SoC. This is most useful for obtaining device
	  state information for debug and analysis. As this is a general access
	  mechanism, users of this option would have specific knowledge of the
	  device they want to access.

	  If you don't require the option or are in doubt, say N.

589 590
config X86_RDC321X
	bool "RDC R-321x SoC"
591
	depends on X86_32
592 593 594 595 596 597 598 599
	depends on X86_EXTENDED_PLATFORM
	select M486
	select X86_REBOOTFIXUPS
	---help---
	  This option is needed for RDC R-321x system-on-chip, also known
	  as R-8610-(G).
	  If you don't have one of these chips, you should say N here.

600
config X86_32_NON_STANDARD
601 602
	bool "Support non-standard 32-bit SMP architectures"
	depends on X86_32 && SMP
603
	depends on X86_EXTENDED_PLATFORM
I
Ingo Molnar 已提交
604
	---help---
H
H. Peter Anvin 已提交
605 606 607 608
	  This option compiles in the bigsmp and STA2X11 default
	  subarchitectures.  It is intended for a generic binary
	  kernel. If you select them all, kernel will probe it one by
	  one and will fallback to default.
609

610
# Alphabetically sorted list of Non standard 32 bit platforms
611

612
config X86_SUPPORTS_MEMORY_FAILURE
J
Jan Beulich 已提交
613
	def_bool y
614 615 616 617 618 619 620
	# MCE code calls memory_failure():
	depends on X86_MCE
	# On 32-bit this adds too big of NODES_SHIFT and we run out of page flags:
	# On 32-bit SPARSEMEM adds too big of SECTIONS_WIDTH:
	depends on X86_64 || !SPARSEMEM
	select ARCH_SUPPORTS_MEMORY_FAILURE

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
config STA2X11
	bool "STA2X11 Companion Chip Support"
	depends on X86_32_NON_STANDARD && PCI
	select X86_DEV_DMA_OPS
	select X86_DMA_REMAP
	select SWIOTLB
	select MFD_STA2X11
	select ARCH_REQUIRE_GPIOLIB
	default n
	---help---
	  This adds support for boards based on the STA2X11 IO-Hub,
	  a.k.a. "ConneXt". The chip is used in place of the standard
	  PC chipset, so all "standard" peripherals are missing. If this
	  option is selected the kernel will still be able to boot on
	  standard PC machines.

637 638 639 640 641 642 643 644 645 646 647 648 649
config X86_32_IRIS
	tristate "Eurobraille/Iris poweroff module"
	depends on X86_32
	---help---
	  The Iris machines from EuroBraille do not have APM or ACPI support
	  to shut themselves down properly.  A special I/O sequence is
	  needed to do so, which is what this module does at
	  kernel shutdown.

	  This is only for Iris machines from EuroBraille.

	  If unused, say N.

650
config SCHED_OMIT_FRAME_POINTER
651 652
	def_bool y
	prompt "Single-depth WCHAN output"
653
	depends on X86
I
Ingo Molnar 已提交
654
	---help---
655 656 657 658 659 660 661
	  Calculate simpler /proc/<PID>/wchan values. If this option
	  is disabled then wchan values will recurse back to the
	  caller function. This provides more accurate wchan values,
	  at the expense of slightly more scheduling overhead.

	  If in doubt, say "Y".

662 663
menuconfig HYPERVISOR_GUEST
	bool "Linux guest support"
I
Ingo Molnar 已提交
664
	---help---
665 666 667
	  Say Y here to enable options for running Linux under various hyper-
	  visors. This option enables basic hypervisor detection and platform
	  setup.
668

669 670
	  If you say N, all options in this submenu will be skipped and
	  disabled, and Linux guest support won't be built in.
671

672
if HYPERVISOR_GUEST
673

674 675
config PARAVIRT
	bool "Enable paravirtualization code"
I
Ingo Molnar 已提交
676
	---help---
677 678 679 680 681
	  This changes the kernel so it can modify itself when it is run
	  under a hypervisor, potentially improving performance significantly
	  over full virtualization.  However, when run without a hypervisor
	  the kernel is theoretically slower and slightly larger.

682 683 684 685 686 687 688
config PARAVIRT_DEBUG
	bool "paravirt-ops debugging"
	depends on PARAVIRT && DEBUG_KERNEL
	---help---
	  Enable to debug paravirt_ops internals.  Specifically, BUG if
	  a paravirt_op is missing when it is called.

689 690
config PARAVIRT_SPINLOCKS
	bool "Paravirtualization layer for spinlocks"
691
	depends on PARAVIRT && SMP
692
	select UNINLINE_SPIN_UNLOCK if !QUEUED_SPINLOCKS
693 694 695 696 697
	---help---
	  Paravirtualized spinlocks allow a pvops backend to replace the
	  spinlock implementation with something virtualization-friendly
	  (for example, block the virtual CPU rather than spinning).

698 699
	  It has a minimal impact on native kernels and gives a nice performance
	  benefit on paravirtualized KVM / Xen kernels.
700

701
	  If you are unsure how to answer this question, answer Y.
702

703 704 705 706 707 708 709 710
config QUEUED_LOCK_STAT
	bool "Paravirt queued spinlock statistics"
	depends on PARAVIRT_SPINLOCKS && DEBUG_FS && QUEUED_SPINLOCKS
	---help---
	  Enable the collection of statistical data on the slowpath
	  behavior of paravirtualized queued spinlocks and report
	  them on debugfs.

711
source "arch/x86/xen/Kconfig"
712

713 714 715 716 717
config KVM_GUEST
	bool "KVM Guest support (including kvmclock)"
	depends on PARAVIRT
	select PARAVIRT_CLOCK
	default y
I
Ingo Molnar 已提交
718
	---help---
719 720 721 722 723
	  This option enables various optimizations for running under the KVM
	  hypervisor. It includes a paravirtualized clock, so that instead
	  of relying on a PIT (or probably other) emulation by the
	  underlying device model, the host provides the guest with
	  timing infrastructure such as time of day, and system time
724

725 726 727 728 729 730 731 732 733
config KVM_DEBUG_FS
	bool "Enable debug information for KVM Guests in debugfs"
	depends on KVM_GUEST && DEBUG_FS
	default n
	---help---
	  This option enables collection of various statistics for KVM guest.
	  Statistics are displayed in debugfs filesystem. Enabling this option
	  may incur significant overhead.

734 735 736 737 738 739
source "arch/x86/lguest/Kconfig"

config PARAVIRT_TIME_ACCOUNTING
	bool "Paravirtual steal time accounting"
	depends on PARAVIRT
	default n
I
Ingo Molnar 已提交
740
	---help---
741 742 743 744 745 746 747 748 749
	  Select this option to enable fine granularity task steal time
	  accounting. Time spent executing other tasks in parallel with
	  the current vCPU is discounted from the vCPU power. To account for
	  that, there can be a small performance impact.

	  If in doubt, say N here.

config PARAVIRT_CLOCK
	bool
750

751
endif #HYPERVISOR_GUEST
752

753
config NO_BOOTMEM
Y
Yinghai Lu 已提交
754
	def_bool y
755

756 757 758
source "arch/x86/Kconfig.cpu"

config HPET_TIMER
759
	def_bool X86_64
760
	prompt "HPET Timer Support" if X86_32
I
Ingo Molnar 已提交
761 762 763 764 765 766 767 768 769
	---help---
	  Use the IA-PC HPET (High Precision Event Timer) to manage
	  time in preference to the PIT and RTC, if a HPET is
	  present.
	  HPET is the next generation timer replacing legacy 8254s.
	  The HPET provides a stable time base on SMP
	  systems, unlike the TSC, but it is more expensive to access,
	  as it is off-chip.  You can find the HPET spec at
	  <http://www.intel.com/hardwaredesign/hpetspec_1.pdf>.
770

I
Ingo Molnar 已提交
771 772 773
	  You can safely choose Y here.  However, HPET will only be
	  activated if the platform and the BIOS support this feature.
	  Otherwise the 8254 will be used for timing services.
774

I
Ingo Molnar 已提交
775
	  Choose N to continue using the legacy 8254 timer.
776 777

config HPET_EMULATE_RTC
778
	def_bool y
779
	depends on HPET_TIMER && (RTC=y || RTC=m || RTC_DRV_CMOS=m || RTC_DRV_CMOS=y)
780

781
config APB_TIMER
782 783
       def_bool y if X86_INTEL_MID
       prompt "Intel MID APB Timer Support" if X86_INTEL_MID
784
       select DW_APB_TIMER
A
Alan Cox 已提交
785
       depends on X86_INTEL_MID && SFI
786 787 788 789 790 791 792
       help
         APB timer is the replacement for 8254, HPET on X86 MID platforms.
         The APBT provides a stable time base on SMP
         systems, unlike the TSC, but it is more expensive to access,
         as it is off-chip. APB timers are always running regardless of CPU
         C states, they are used as per CPU clockevent device when possible.

793
# Mark as expert because too many people got it wrong.
794
# The code disables itself when not needed.
795 796
config DMI
	default y
797
	select DMI_SCAN_MACHINE_NON_EFI_FALLBACK
798
	bool "Enable DMI scanning" if EXPERT
I
Ingo Molnar 已提交
799
	---help---
800 801 802 803 804
	  Enabled scanning of DMI to identify machine quirks. Say Y
	  here unless you have verified that your setup is not
	  affected by entries in the DMI blacklist. Required by PNP
	  BIOS code.

805
config GART_IOMMU
806
	bool "Old AMD GART IOMMU support"
807
	select SWIOTLB
808
	depends on X86_64 && PCI && AMD_NB
I
Ingo Molnar 已提交
809
	---help---
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
	  Provides a driver for older AMD Athlon64/Opteron/Turion/Sempron
	  GART based hardware IOMMUs.

	  The GART supports full DMA access for devices with 32-bit access
	  limitations, on systems with more than 3 GB. This is usually needed
	  for USB, sound, many IDE/SATA chipsets and some other devices.

	  Newer systems typically have a modern AMD IOMMU, supported via
	  the CONFIG_AMD_IOMMU=y config option.

	  In normal configurations this driver is only active when needed:
	  there's more than 3 GB of memory and the system contains a
	  32-bit limited device.

	  If unsure, say Y.
825 826 827 828

config CALGARY_IOMMU
	bool "IBM Calgary IOMMU support"
	select SWIOTLB
829
	depends on X86_64 && PCI
I
Ingo Molnar 已提交
830
	---help---
831 832 833 834 835 836 837 838 839 840 841 842 843 844
	  Support for hardware IOMMUs in IBM's xSeries x366 and x460
	  systems. Needed to run systems with more than 3GB of memory
	  properly with 32-bit PCI devices that do not support DAC
	  (Double Address Cycle). Calgary also supports bus level
	  isolation, where all DMAs pass through the IOMMU.  This
	  prevents them from going anywhere except their intended
	  destination. This catches hard-to-find kernel bugs and
	  mis-behaving drivers and devices that do not use the DMA-API
	  properly to set up their DMA buffers.  The IOMMU can be
	  turned off at boot time with the iommu=off parameter.
	  Normally the kernel will make the right choice by itself.
	  If unsure, say Y.

config CALGARY_IOMMU_ENABLED_BY_DEFAULT
845 846
	def_bool y
	prompt "Should Calgary be enabled by default?"
847
	depends on CALGARY_IOMMU
I
Ingo Molnar 已提交
848
	---help---
849 850 851 852 853 854 855 856
	  Should Calgary be enabled by default? if you choose 'y', Calgary
	  will be used (if it exists). If you choose 'n', Calgary will not be
	  used even if it exists. If you choose 'n' and would like to use
	  Calgary anyway, pass 'iommu=calgary' on the kernel command line.
	  If unsure, say Y.

# need this always selected by IOMMU for the VIA workaround
config SWIOTLB
J
Joerg Roedel 已提交
857
	def_bool y if X86_64
I
Ingo Molnar 已提交
858
	---help---
859
	  Support for software bounce buffers used on x86-64 systems
860 861 862 863
	  which don't have a hardware IOMMU. Using this PCI devices
	  which can only access 32-bits of memory can be used on systems
	  with more than 3 GB of memory.
	  If unsure, say Y.
864

865
config IOMMU_HELPER
866 867
	def_bool y
	depends on CALGARY_IOMMU || GART_IOMMU || SWIOTLB || AMD_IOMMU
868

869
config MAXSMP
870
	bool "Enable Maximum number of SMP Processors and NUMA Nodes"
871
	depends on X86_64 && SMP && DEBUG_KERNEL
M
Mike Travis 已提交
872
	select CPUMASK_OFFSTACK
I
Ingo Molnar 已提交
873
	---help---
874
	  Enable maximum number of CPUS and NUMA Nodes for this architecture.
875
	  If unsure, say N.
876 877

config NR_CPUS
M
Mike Travis 已提交
878
	int "Maximum number of CPUs" if SMP && !MAXSMP
879
	range 2 8 if SMP && X86_32 && !X86_BIGSMP
J
Josh Boyer 已提交
880
	range 2 512 if SMP && !MAXSMP && !CPUMASK_OFFSTACK
881
	range 2 8192 if SMP && !MAXSMP && CPUMASK_OFFSTACK && X86_64
M
Mike Travis 已提交
882
	default "1" if !SMP
883
	default "8192" if MAXSMP
H
H. Peter Anvin 已提交
884
	default "32" if SMP && X86_BIGSMP
885 886
	default "8" if SMP && X86_32
	default "64" if SMP
I
Ingo Molnar 已提交
887
	---help---
888
	  This allows you to specify the maximum number of CPUs which this
J
Josh Boyer 已提交
889
	  kernel will support.  If CPUMASK_OFFSTACK is enabled, the maximum
890
	  supported value is 8192, otherwise the maximum value is 512.  The
891 892 893 894 895 896 897
	  minimum value which makes sense is 2.

	  This is purely to save memory - each supported CPU adds
	  approximately eight kilobytes to the kernel image.

config SCHED_SMT
	bool "SMT (Hyperthreading) scheduler support"
B
Borislav Petkov 已提交
898
	depends on SMP
I
Ingo Molnar 已提交
899
	---help---
900 901 902 903 904 905
	  SMT scheduler support improves the CPU scheduler's decision making
	  when dealing with Intel Pentium 4 chips with HyperThreading at a
	  cost of slightly increased overhead in some places. If unsure say
	  N here.

config SCHED_MC
906 907
	def_bool y
	prompt "Multi-core scheduler support"
B
Borislav Petkov 已提交
908
	depends on SMP
I
Ingo Molnar 已提交
909
	---help---
910 911 912 913 914 915
	  Multi-core scheduler support improves the CPU scheduler's decision
	  making when dealing with multi-core CPU chips at a cost of slightly
	  increased overhead in some places. If unsure say N here.

source "kernel/Kconfig.preempt"

T
Thomas Gleixner 已提交
916 917
config UP_LATE_INIT
       def_bool y
918
       depends on !SMP && X86_LOCAL_APIC
T
Thomas Gleixner 已提交
919

920
config X86_UP_APIC
921 922
	bool "Local APIC support on uniprocessors" if !PCI_MSI
	default PCI_MSI
923
	depends on X86_32 && !SMP && !X86_32_NON_STANDARD
I
Ingo Molnar 已提交
924
	---help---
925 926 927 928 929 930 931 932 933 934 935 936
	  A local APIC (Advanced Programmable Interrupt Controller) is an
	  integrated interrupt controller in the CPU. If you have a single-CPU
	  system which has a processor with a local APIC, you can say Y here to
	  enable and use it. If you say Y here even though your machine doesn't
	  have a local APIC, then the kernel will still run with no slowdown at
	  all. The local APIC supports CPU-generated self-interrupts (timer,
	  performance counters), and the NMI watchdog which detects hard
	  lockups.

config X86_UP_IOAPIC
	bool "IO-APIC support on uniprocessors"
	depends on X86_UP_APIC
I
Ingo Molnar 已提交
937
	---help---
938 939 940 941 942 943 944 945 946
	  An IO-APIC (I/O Advanced Programmable Interrupt Controller) is an
	  SMP-capable replacement for PC-style interrupt controllers. Most
	  SMP systems and many recent uniprocessor systems have one.

	  If you have a single-CPU system with an IO-APIC, you can say Y here
	  to use it. If you say Y here even though your machine doesn't have
	  an IO-APIC, then the kernel will still run with no slowdown at all.

config X86_LOCAL_APIC
947
	def_bool y
948
	depends on X86_64 || SMP || X86_32_NON_STANDARD || X86_UP_APIC || PCI_MSI
949
	select IRQ_DOMAIN_HIERARCHY
950
	select PCI_MSI_IRQ_DOMAIN if PCI_MSI
951 952

config X86_IO_APIC
953 954
	def_bool y
	depends on X86_LOCAL_APIC || X86_UP_IOAPIC
955

956 957 958
config X86_REROUTE_FOR_BROKEN_BOOT_IRQS
	bool "Reroute for broken boot IRQs"
	depends on X86_IO_APIC
I
Ingo Molnar 已提交
959
	---help---
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
	  This option enables a workaround that fixes a source of
	  spurious interrupts. This is recommended when threaded
	  interrupt handling is used on systems where the generation of
	  superfluous "boot interrupts" cannot be disabled.

	  Some chipsets generate a legacy INTx "boot IRQ" when the IRQ
	  entry in the chipset's IO-APIC is masked (as, e.g. the RT
	  kernel does during interrupt handling). On chipsets where this
	  boot IRQ generation cannot be disabled, this workaround keeps
	  the original IRQ line masked so that only the equivalent "boot
	  IRQ" is delivered to the CPUs. The workaround also tells the
	  kernel to set up the IRQ handler on the boot IRQ line. In this
	  way only one interrupt is delivered to the kernel. Otherwise
	  the spurious second interrupt may cause the kernel to bring
	  down (vital) interrupt lines.

	  Only affects "broken" chipsets. Interrupt sharing may be
	  increased on these systems.

979
config X86_MCE
980
	bool "Machine Check / overheating reporting"
981
	select GENERIC_ALLOCATOR
982
	default y
983
	---help---
984 985
	  Machine Check support allows the processor to notify the
	  kernel if it detects a problem (e.g. overheating, data corruption).
986
	  The action the kernel takes depends on the severity of the problem,
987
	  ranging from warning messages to halting the machine.
988

989
config X86_MCE_INTEL
990 991
	def_bool y
	prompt "Intel MCE features"
992
	depends on X86_MCE && X86_LOCAL_APIC
I
Ingo Molnar 已提交
993
	---help---
994 995 996 997
	   Additional support for intel specific MCE features such as
	   the thermal monitor.

config X86_MCE_AMD
998 999
	def_bool y
	prompt "AMD MCE features"
1000
	depends on X86_MCE && X86_LOCAL_APIC
I
Ingo Molnar 已提交
1001
	---help---
1002 1003 1004
	   Additional support for AMD specific MCE features such as
	   the DRAM Error Threshold.

1005
config X86_ANCIENT_MCE
J
Jan Beulich 已提交
1006
	bool "Support for old Pentium 5 / WinChip machine checks"
1007
	depends on X86_32 && X86_MCE
1008 1009
	---help---
	  Include support for machine check handling on old Pentium 5 or WinChip
M
Masanari Iida 已提交
1010
	  systems. These typically need to be enabled explicitly on the command
1011
	  line.
1012

1013 1014
config X86_MCE_THRESHOLD
	depends on X86_MCE_AMD || X86_MCE_INTEL
J
Jan Beulich 已提交
1015
	def_bool y
1016

1017
config X86_MCE_INJECT
1018
	depends on X86_MCE
1019 1020 1021 1022 1023 1024
	tristate "Machine check injector support"
	---help---
	  Provide support for injecting machine checks for testing purposes.
	  If you don't know what a machine check is and you don't do kernel
	  QA it is safe to say n.

1025 1026
config X86_THERMAL_VECTOR
	def_bool y
1027
	depends on X86_MCE_INTEL
1028

1029
config X86_LEGACY_VM86
1030
	bool "Legacy VM86 support"
1031
	default n
1032
	depends on X86_32
I
Ingo Molnar 已提交
1033
	---help---
1034 1035 1036 1037 1038 1039 1040 1041
	  This option allows user programs to put the CPU into V8086
	  mode, which is an 80286-era approximation of 16-bit real mode.

	  Some very old versions of X and/or vbetool require this option
	  for user mode setting.  Similarly, DOSEMU will use it if
	  available to accelerate real mode DOS programs.  However, any
	  recent version of DOSEMU, X, or vbetool should be fully
	  functional even without kernel VM86 support, as they will all
1042 1043 1044 1045
	  fall back to software emulation. Nevertheless, if you are using
	  a 16-bit DOS program where 16-bit performance matters, vm86
	  mode might be faster than emulation and you might want to
	  enable this option.
1046

1047 1048 1049 1050
	  Note that any app that works on a 64-bit kernel is unlikely to
	  need this option, as 64-bit kernels don't, and can't, support
	  V8086 mode. This option is also unrelated to 16-bit protected
	  mode and is not needed to run most 16-bit programs under Wine.
1051

1052 1053
	  Enabling this option increases the complexity of the kernel
	  and slows down exception handling a tiny bit.
1054

1055
	  If unsure, say N here.
1056 1057 1058 1059

config VM86
       bool
       default X86_LEGACY_VM86
1060 1061 1062 1063

config X86_16BIT
	bool "Enable support for 16-bit segments" if EXPERT
	default y
1064
	depends on MODIFY_LDT_SYSCALL
1065 1066 1067 1068 1069 1070 1071 1072 1073
	---help---
	  This option is required by programs like Wine to run 16-bit
	  protected mode legacy code on x86 processors.  Disabling
	  this option saves about 300 bytes on i386, or around 6K text
	  plus 16K runtime memory on x86-64,

config X86_ESPFIX32
	def_bool y
	depends on X86_16BIT && X86_32
1074

1075 1076
config X86_ESPFIX64
	def_bool y
1077
	depends on X86_16BIT && X86_64
1078

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
config X86_VSYSCALL_EMULATION
       bool "Enable vsyscall emulation" if EXPERT
       default y
       depends on X86_64
       ---help---
	 This enables emulation of the legacy vsyscall page.  Disabling
	 it is roughly equivalent to booting with vsyscall=none, except
	 that it will also disable the helpful warning if a program
	 tries to use a vsyscall.  With this option set to N, offending
	 programs will just segfault, citing addresses of the form
	 0xffffffffff600?00.

	 This option is required by many programs built before 2013, and
	 care should be used even with newer programs if set to N.

	 Disabling this option saves about 7K of kernel size and
	 possibly 4K of additional runtime pagetable memory.

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
config TOSHIBA
	tristate "Toshiba Laptop support"
	depends on X86_32
	---help---
	  This adds a driver to safely access the System Management Mode of
	  the CPU on Toshiba portables with a genuine Toshiba BIOS. It does
	  not work on models with a Phoenix BIOS. The System Management Mode
	  is used to set the BIOS and power saving options on Toshiba portables.

	  For information on utilities to make use of this driver see the
	  Toshiba Linux utilities web site at:
	  <http://www.buzzard.org.uk/toshiba/>.

	  Say Y if you intend to run this kernel on a Toshiba portable.
	  Say N otherwise.

config I8K
1114
	tristate "Dell i8k legacy laptop support"
1115
	select HWMON
1116
	select SENSORS_DELL_SMM
1117
	---help---
1118 1119 1120 1121 1122 1123 1124 1125 1126
	  This option enables legacy /proc/i8k userspace interface in hwmon
	  dell-smm-hwmon driver. Character file /proc/i8k reports bios version,
	  temperature and allows controlling fan speeds of Dell laptops via
	  System Management Mode. For old Dell laptops (like Dell Inspiron 8000)
	  it reports also power and hotkey status. For fan speed control is
	  needed userspace package i8kutils.

	  Say Y if you intend to run this kernel on old Dell laptops or want to
	  use userspace package i8kutils.
1127 1128 1129
	  Say N otherwise.

config X86_REBOOTFIXUPS
1130 1131
	bool "Enable X86 board specific fixups for reboot"
	depends on X86_32
1132 1133 1134 1135 1136 1137 1138 1139
	---help---
	  This enables chipset and/or board specific fixups to be done
	  in order to get reboot to work correctly. This is only needed on
	  some combinations of hardware and BIOS. The symptom, for which
	  this config is intended, is when reboot ends with a stalled/hung
	  system.

	  Currently, the only fixup is for the Geode machines using
1140
	  CS5530A and CS5536 chipsets and the RDC R-321x SoC.
1141 1142 1143 1144 1145 1146

	  Say Y if you want to enable the fixup. Currently, it's safe to
	  enable this option even if you don't need it.
	  Say N otherwise.

config MICROCODE
1147 1148
	bool "CPU microcode loading support"
	default y
1149
	depends on CPU_SUP_AMD || CPU_SUP_INTEL
1150
	depends on BLK_DEV_INITRD
1151 1152
	select FW_LOADER
	---help---
1153

1154
	  If you say Y here, you will be able to update the microcode on
1155
	  certain Intel and AMD processors. The Intel support is for the
1156 1157 1158 1159
	  IA32 family, e.g. Pentium Pro, Pentium II, Pentium III, Pentium 4,
	  Xeon etc. The AMD support is for families 0x10 and later. You will
	  obviously need the actual microcode binary data itself which is not
	  shipped with the Linux kernel.
1160

P
Peter Oruba 已提交
1161 1162
	  This option selects the general module only, you need to select
	  at least one vendor specific module as well.
1163

1164 1165
	  To compile this driver as a module, choose M here: the module
	  will be called microcode.
1166

P
Peter Oruba 已提交
1167
config MICROCODE_INTEL
1168
	bool "Intel microcode loading support"
I
Ingo Molnar 已提交
1169 1170 1171 1172 1173 1174 1175
	depends on MICROCODE
	default MICROCODE
	select FW_LOADER
	---help---
	  This options enables microcode patch loading support for Intel
	  processors.

1176 1177 1178
	  For the current Intel microcode data package go to
	  <https://downloadcenter.intel.com> and search for
	  'Linux Processor Microcode Data File'.
P
Peter Oruba 已提交
1179

1180
config MICROCODE_AMD
1181
	bool "AMD microcode loading support"
I
Ingo Molnar 已提交
1182 1183 1184 1185 1186
	depends on MICROCODE
	select FW_LOADER
	---help---
	  If you select this option, microcode patch loading support for AMD
	  processors will be enabled.
1187

I
Ingo Molnar 已提交
1188
config MICROCODE_OLD_INTERFACE
1189
	def_bool y
1190 1191 1192 1193
	depends on MICROCODE

config X86_MSR
	tristate "/dev/cpu/*/msr - Model-specific register support"
I
Ingo Molnar 已提交
1194
	---help---
1195 1196 1197 1198 1199 1200 1201 1202
	  This device gives privileged processes access to the x86
	  Model-Specific Registers (MSRs).  It is a character device with
	  major 202 and minors 0 to 31 for /dev/cpu/0/msr to /dev/cpu/31/msr.
	  MSR accesses are directed to a specific CPU on multi-processor
	  systems.

config X86_CPUID
	tristate "/dev/cpu/*/cpuid - CPU information support"
I
Ingo Molnar 已提交
1203
	---help---
1204 1205 1206 1207 1208 1209 1210
	  This device gives processes access to the x86 CPUID instruction to
	  be executed on a specific processor.  It is a character device
	  with major 203 and minors 0 to 31 for /dev/cpu/0/cpuid to
	  /dev/cpu/31/cpuid.

choice
	prompt "High Memory Support"
J
Jan Beulich 已提交
1211
	default HIGHMEM4G
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	depends on X86_32

config NOHIGHMEM
	bool "off"
	---help---
	  Linux can use up to 64 Gigabytes of physical memory on x86 systems.
	  However, the address space of 32-bit x86 processors is only 4
	  Gigabytes large. That means that, if you have a large amount of
	  physical memory, not all of it can be "permanently mapped" by the
	  kernel. The physical memory that's not permanently mapped is called
	  "high memory".

	  If you are compiling a kernel which will never run on a machine with
	  more than 1 Gigabyte total physical RAM, answer "off" here (default
	  choice and suitable for most users). This will result in a "3GB/1GB"
	  split: 3GB are mapped so that each process sees a 3GB virtual memory
	  space and the remaining part of the 4GB virtual memory space is used
	  by the kernel to permanently map as much physical memory as
	  possible.

	  If the machine has between 1 and 4 Gigabytes physical RAM, then
	  answer "4GB" here.

	  If more than 4 Gigabytes is used then answer "64GB" here. This
	  selection turns Intel PAE (Physical Address Extension) mode on.
	  PAE implements 3-level paging on IA32 processors. PAE is fully
	  supported by Linux, PAE mode is implemented on all recent Intel
	  processors (Pentium Pro and better). NOTE: If you say "64GB" here,
	  then the kernel will not boot on CPUs that don't support PAE!

	  The actual amount of total physical memory will either be
	  auto detected or can be forced by using a kernel command line option
	  such as "mem=256M". (Try "man bootparam" or see the documentation of
	  your boot loader (lilo or loadlin) about how to pass options to the
	  kernel at boot time.)

	  If unsure, say "off".

config HIGHMEM4G
	bool "4GB"
I
Ingo Molnar 已提交
1252
	---help---
1253 1254 1255 1256 1257
	  Select this if you have a 32-bit processor and between 1 and 4
	  gigabytes of physical RAM.

config HIGHMEM64G
	bool "64GB"
1258
	depends on !M486
1259
	select X86_PAE
I
Ingo Molnar 已提交
1260
	---help---
1261 1262 1263 1264 1265 1266
	  Select this if you have a 32-bit processor and more than 4
	  gigabytes of physical RAM.

endchoice

choice
1267
	prompt "Memory split" if EXPERT
1268 1269
	default VMSPLIT_3G
	depends on X86_32
I
Ingo Molnar 已提交
1270
	---help---
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
	  Select the desired split between kernel and user memory.

	  If the address range available to the kernel is less than the
	  physical memory installed, the remaining memory will be available
	  as "high memory". Accessing high memory is a little more costly
	  than low memory, as it needs to be mapped into the kernel first.
	  Note that increasing the kernel address space limits the range
	  available to user programs, making the address space there
	  tighter.  Selecting anything other than the default 3G/1G split
	  will also likely make your kernel incompatible with binary-only
	  kernel modules.

	  If you are not absolutely sure what you are doing, leave this
	  option alone!

	config VMSPLIT_3G
		bool "3G/1G user/kernel split"
	config VMSPLIT_3G_OPT
		depends on !X86_PAE
		bool "3G/1G user/kernel split (for full 1G low memory)"
	config VMSPLIT_2G
		bool "2G/2G user/kernel split"
	config VMSPLIT_2G_OPT
		depends on !X86_PAE
		bool "2G/2G user/kernel split (for full 2G low memory)"
	config VMSPLIT_1G
		bool "1G/3G user/kernel split"
endchoice

config PAGE_OFFSET
	hex
	default 0xB0000000 if VMSPLIT_3G_OPT
	default 0x80000000 if VMSPLIT_2G
	default 0x78000000 if VMSPLIT_2G_OPT
	default 0x40000000 if VMSPLIT_1G
	default 0xC0000000
	depends on X86_32

config HIGHMEM
1310
	def_bool y
1311 1312 1313
	depends on X86_32 && (HIGHMEM64G || HIGHMEM4G)

config X86_PAE
1314
	bool "PAE (Physical Address Extension) Support"
1315
	depends on X86_32 && !HIGHMEM4G
C
Christian Melki 已提交
1316
	select SWIOTLB
I
Ingo Molnar 已提交
1317
	---help---
1318 1319 1320 1321 1322
	  PAE is required for NX support, and furthermore enables
	  larger swapspace support for non-overcommit purposes. It
	  has the cost of more pagetable lookup overhead, and also
	  consumes more pagetable space per process.

1323
config ARCH_PHYS_ADDR_T_64BIT
1324 1325
	def_bool y
	depends on X86_64 || X86_PAE
1326

1327
config ARCH_DMA_ADDR_T_64BIT
1328 1329
	def_bool y
	depends on X86_64 || HIGHMEM64G
1330

1331
config X86_DIRECT_GBPAGES
1332 1333
	def_bool y
	depends on X86_64 && !DEBUG_PAGEALLOC && !KMEMCHECK
I
Ingo Molnar 已提交
1334
	---help---
1335 1336 1337 1338
	  Certain kernel features effectively disable kernel
	  linear 1 GB mappings (even if the CPU otherwise
	  supports them), so don't confuse the user by printing
	  that we have them enabled.
1339

1340 1341
# Common NUMA Features
config NUMA
1342
	bool "Numa Memory Allocation and Scheduler Support"
1343
	depends on SMP
H
H. Peter Anvin 已提交
1344 1345
	depends on X86_64 || (X86_32 && HIGHMEM64G && X86_BIGSMP)
	default y if X86_BIGSMP
I
Ingo Molnar 已提交
1346
	---help---
1347
	  Enable NUMA (Non Uniform Memory Access) support.
1348

1349 1350 1351 1352
	  The kernel will try to allocate memory used by a CPU on the
	  local memory controller of the CPU and add some more
	  NUMA awareness to the kernel.

1353
	  For 64-bit this is recommended if the system is Intel Core i7
1354 1355
	  (or later), AMD Opteron, or EM64T NUMA.

H
H. Peter Anvin 已提交
1356
	  For 32-bit this is only needed if you boot a 32-bit
1357
	  kernel on a 64-bit NUMA platform.
1358 1359

	  Otherwise, you should say N.
1360

1361
config AMD_NUMA
1362 1363
	def_bool y
	prompt "Old style AMD Opteron NUMA detection"
1364
	depends on X86_64 && NUMA && PCI
I
Ingo Molnar 已提交
1365
	---help---
1366 1367 1368 1369 1370
	  Enable AMD NUMA node topology detection.  You should say Y here if
	  you have a multi processor AMD system. This uses an old method to
	  read the NUMA configuration directly from the builtin Northbridge
	  of Opteron. It is recommended to use X86_64_ACPI_NUMA instead,
	  which also takes priority if both are compiled in.
1371 1372

config X86_64_ACPI_NUMA
1373 1374
	def_bool y
	prompt "ACPI NUMA detection"
1375 1376
	depends on X86_64 && NUMA && ACPI && PCI
	select ACPI_NUMA
I
Ingo Molnar 已提交
1377
	---help---
1378 1379
	  Enable ACPI SRAT based node topology detection.

1380 1381 1382 1383 1384 1385 1386 1387 1388
# Some NUMA nodes have memory ranges that span
# other nodes.  Even though a pfn is valid and
# between a node's start and end pfns, it may not
# reside on that node.  See memmap_init_zone()
# for details.
config NODES_SPAN_OTHER_NODES
	def_bool y
	depends on X86_64_ACPI_NUMA

1389 1390
config NUMA_EMU
	bool "NUMA emulation"
1391
	depends on NUMA
I
Ingo Molnar 已提交
1392
	---help---
1393 1394 1395 1396 1397
	  Enable NUMA emulation. A flat machine will be split
	  into virtual nodes when booted with "numa=fake=N", where N is the
	  number of nodes. This is only useful for debugging.

config NODES_SHIFT
1398
	int "Maximum NUMA Nodes (as a power of 2)" if !MAXSMP
1399 1400
	range 1 10
	default "10" if MAXSMP
1401 1402 1403
	default "6" if X86_64
	default "3"
	depends on NEED_MULTIPLE_NODES
I
Ingo Molnar 已提交
1404
	---help---
1405
	  Specify the maximum number of NUMA Nodes available on the target
1406
	  system.  Increases memory reserved to accommodate various tables.
1407 1408

config ARCH_HAVE_MEMORY_PRESENT
1409
	def_bool y
1410 1411 1412
	depends on X86_32 && DISCONTIGMEM

config NEED_NODE_MEMMAP_SIZE
1413
	def_bool y
1414 1415 1416 1417
	depends on X86_32 && (DISCONTIGMEM || SPARSEMEM)

config ARCH_FLATMEM_ENABLE
	def_bool y
1418
	depends on X86_32 && !NUMA
1419 1420 1421

config ARCH_DISCONTIGMEM_ENABLE
	def_bool y
1422
	depends on NUMA && X86_32
1423 1424 1425

config ARCH_DISCONTIGMEM_DEFAULT
	def_bool y
1426 1427
	depends on NUMA && X86_32

1428 1429
config ARCH_SPARSEMEM_ENABLE
	def_bool y
1430
	depends on X86_64 || NUMA || X86_32 || X86_32_NON_STANDARD
1431 1432 1433
	select SPARSEMEM_STATIC if X86_32
	select SPARSEMEM_VMEMMAP_ENABLE if X86_64

1434 1435 1436 1437
config ARCH_SPARSEMEM_DEFAULT
	def_bool y
	depends on X86_64

1438 1439
config ARCH_SELECT_MEMORY_MODEL
	def_bool y
1440
	depends on ARCH_SPARSEMEM_ENABLE
1441 1442

config ARCH_MEMORY_PROBE
1443
	bool "Enable sysfs memory/probe interface"
1444
	depends on X86_64 && MEMORY_HOTPLUG
1445 1446 1447 1448
	help
	  This option enables a sysfs memory/probe interface for testing.
	  See Documentation/memory-hotplug.txt for more information.
	  If you are unsure how to answer this question, answer N.
1449

1450 1451 1452 1453
config ARCH_PROC_KCORE_TEXT
	def_bool y
	depends on X86_64 && PROC_KCORE

1454 1455 1456 1457 1458
config ILLEGAL_POINTER_VALUE
       hex
       default 0 if X86_32
       default 0xdead000000000000 if X86_64

1459 1460
source "mm/Kconfig"

1461 1462 1463
config X86_PMEM_LEGACY_DEVICE
	bool

1464
config X86_PMEM_LEGACY
1465
	tristate "Support non-standard NVDIMMs and ADR protected memory"
1466 1467
	depends on PHYS_ADDR_T_64BIT
	depends on BLK_DEV
1468
	select X86_PMEM_LEGACY_DEVICE
1469
	select LIBNVDIMM
1470 1471 1472 1473 1474 1475 1476 1477
	help
	  Treat memory marked using the non-standard e820 type of 12 as used
	  by the Intel Sandy Bridge-EP reference BIOS as protected memory.
	  The kernel will offer these regions to the 'pmem' driver so
	  they can be used for persistent storage.

	  Say Y if unsure.

1478 1479
config HIGHPTE
	bool "Allocate 3rd-level pagetables from highmem"
J
Jan Beulich 已提交
1480
	depends on HIGHMEM
I
Ingo Molnar 已提交
1481
	---help---
1482 1483 1484 1485 1486
	  The VM uses one page table entry for each page of physical memory.
	  For systems with a lot of RAM, this can be wasteful of precious
	  low memory.  Setting this option will put user-space page table
	  entries in high memory.

1487
config X86_CHECK_BIOS_CORRUPTION
I
Ingo Molnar 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	bool "Check for low memory corruption"
	---help---
	  Periodically check for memory corruption in low memory, which
	  is suspected to be caused by BIOS.  Even when enabled in the
	  configuration, it is disabled at runtime.  Enable it by
	  setting "memory_corruption_check=1" on the kernel command
	  line.  By default it scans the low 64k of memory every 60
	  seconds; see the memory_corruption_check_size and
	  memory_corruption_check_period parameters in
	  Documentation/kernel-parameters.txt to adjust this.

	  When enabled with the default parameters, this option has
	  almost no overhead, as it reserves a relatively small amount
	  of memory and scans it infrequently.  It both detects corruption
	  and prevents it from affecting the running system.

	  It is, however, intended as a diagnostic tool; if repeatable
	  BIOS-originated corruption always affects the same memory,
	  you can use memmap= to prevent the kernel from using that
	  memory.
1508

1509
config X86_BOOTPARAM_MEMORY_CORRUPTION_CHECK
I
Ingo Molnar 已提交
1510
	bool "Set the default setting of memory_corruption_check"
1511 1512
	depends on X86_CHECK_BIOS_CORRUPTION
	default y
I
Ingo Molnar 已提交
1513 1514 1515
	---help---
	  Set whether the default state of memory_corruption_check is
	  on or off.
1516

1517
config X86_RESERVE_LOW
1518 1519 1520
	int "Amount of low memory, in kilobytes, to reserve for the BIOS"
	default 64
	range 4 640
I
Ingo Molnar 已提交
1521
	---help---
1522 1523 1524 1525 1526 1527 1528 1529 1530
	  Specify the amount of low memory to reserve for the BIOS.

	  The first page contains BIOS data structures that the kernel
	  must not use, so that page must always be reserved.

	  By default we reserve the first 64K of physical RAM, as a
	  number of BIOSes are known to corrupt that memory range
	  during events such as suspend/resume or monitor cable
	  insertion, so it must not be used by the kernel.
I
Ingo Molnar 已提交
1531

1532 1533 1534 1535 1536
	  You can set this to 4 if you are absolutely sure that you
	  trust the BIOS to get all its memory reservations and usages
	  right.  If you know your BIOS have problems beyond the
	  default 64K area, you can set this to 640 to avoid using the
	  entire low memory range.
I
Ingo Molnar 已提交
1537

1538 1539 1540 1541 1542
	  If you have doubts about the BIOS (e.g. suspend/resume does
	  not work or there's kernel crashes after certain hardware
	  hotplug events) then you might want to enable
	  X86_CHECK_BIOS_CORRUPTION=y to allow the kernel to check
	  typical corruption patterns.
I
Ingo Molnar 已提交
1543

1544
	  Leave this to the default value of 64 if you are unsure.
I
Ingo Molnar 已提交
1545

1546 1547
config MATH_EMULATION
	bool
1548
	depends on MODIFY_LDT_SYSCALL
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
	prompt "Math emulation" if X86_32
	---help---
	  Linux can emulate a math coprocessor (used for floating point
	  operations) if you don't have one. 486DX and Pentium processors have
	  a math coprocessor built in, 486SX and 386 do not, unless you added
	  a 487DX or 387, respectively. (The messages during boot time can
	  give you some hints here ["man dmesg"].) Everyone needs either a
	  coprocessor or this emulation.

	  If you don't have a math coprocessor, you need to say Y here; if you
	  say Y here even though you have a coprocessor, the coprocessor will
	  be used nevertheless. (This behavior can be changed with the kernel
	  command line option "no387", which comes handy if your coprocessor
	  is broken. Try "man bootparam" or see the documentation of your boot
	  loader (lilo or loadlin) about how to pass options to the kernel at
	  boot time.) This means that it is a good idea to say Y here if you
	  intend to use this kernel on different machines.

	  More information about the internals of the Linux math coprocessor
	  emulation can be found in <file:arch/x86/math-emu/README>.

	  If you are not sure, say Y; apart from resulting in a 66 KB bigger
	  kernel, it won't hurt.

config MTRR
J
Jan Beulich 已提交
1574
	def_bool y
1575
	prompt "MTRR (Memory Type Range Register) support" if EXPERT
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
	---help---
	  On Intel P6 family processors (Pentium Pro, Pentium II and later)
	  the Memory Type Range Registers (MTRRs) may be used to control
	  processor access to memory ranges. This is most useful if you have
	  a video (VGA) card on a PCI or AGP bus. Enabling write-combining
	  allows bus write transfers to be combined into a larger transfer
	  before bursting over the PCI/AGP bus. This can increase performance
	  of image write operations 2.5 times or more. Saying Y here creates a
	  /proc/mtrr file which may be used to manipulate your processor's
	  MTRRs. Typically the X server should use this.

	  This code has a reasonably generic interface so that similar
	  control registers on other processors can be easily supported
	  as well:

	  The Cyrix 6x86, 6x86MX and M II processors have Address Range
	  Registers (ARRs) which provide a similar functionality to MTRRs. For
	  these, the ARRs are used to emulate the MTRRs.
	  The AMD K6-2 (stepping 8 and above) and K6-3 processors have two
	  MTRRs. The Centaur C6 (WinChip) has 8 MCRs, allowing
	  write-combining. All of these processors are supported by this code
	  and it makes sense to say Y here if you have one of them.

	  Saying Y here also fixes a problem with buggy SMP BIOSes which only
	  set the MTRRs for the boot CPU and not for the secondary CPUs. This
	  can lead to all sorts of problems, so it's good to say Y here.

	  You can safely say Y even if your machine doesn't have MTRRs, you'll
	  just add about 9 KB to your kernel.

1606
	  See <file:Documentation/x86/mtrr.txt> for more information.
1607

1608
config MTRR_SANITIZER
1609
	def_bool y
1610 1611
	prompt "MTRR cleanup support"
	depends on MTRR
I
Ingo Molnar 已提交
1612
	---help---
T
Thomas Gleixner 已提交
1613 1614
	  Convert MTRR layout from continuous to discrete, so X drivers can
	  add writeback entries.
1615

T
Thomas Gleixner 已提交
1616
	  Can be disabled with disable_mtrr_cleanup on the kernel command line.
1617
	  The largest mtrr entry size for a continuous block can be set with
T
Thomas Gleixner 已提交
1618
	  mtrr_chunk_size.
1619

1620
	  If unsure, say Y.
1621 1622

config MTRR_SANITIZER_ENABLE_DEFAULT
1623 1624 1625
	int "MTRR cleanup enable value (0-1)"
	range 0 1
	default "0"
1626
	depends on MTRR_SANITIZER
I
Ingo Molnar 已提交
1627
	---help---
1628
	  Enable mtrr cleanup default value
1629

1630 1631 1632 1633 1634
config MTRR_SANITIZER_SPARE_REG_NR_DEFAULT
	int "MTRR cleanup spare reg num (0-7)"
	range 0 7
	default "1"
	depends on MTRR_SANITIZER
I
Ingo Molnar 已提交
1635
	---help---
1636
	  mtrr cleanup spare entries default, it can be changed via
T
Thomas Gleixner 已提交
1637
	  mtrr_spare_reg_nr=N on the kernel command line.
1638

1639
config X86_PAT
J
Jan Beulich 已提交
1640
	def_bool y
1641
	prompt "x86 PAT support" if EXPERT
1642
	depends on MTRR
I
Ingo Molnar 已提交
1643
	---help---
1644
	  Use PAT attributes to setup page level cache control.
1645

1646 1647 1648 1649
	  PATs are the modern equivalents of MTRRs and are much more
	  flexible than MTRRs.

	  Say N here if you see bootup problems (boot crash, boot hang,
1650
	  spontaneous reboots) or a non-working video driver.
1651 1652 1653

	  If unsure, say Y.

1654 1655 1656 1657
config ARCH_USES_PG_UNCACHED
	def_bool y
	depends on X86_PAT

1658 1659 1660 1661 1662 1663 1664 1665 1666
config ARCH_RANDOM
	def_bool y
	prompt "x86 architectural random number generator" if EXPERT
	---help---
	  Enable the x86 architectural RDRAND instruction
	  (Intel Bull Mountain technology) to generate random numbers.
	  If supported, this is a high bandwidth, cryptographically
	  secure hardware random number generator.

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
config X86_SMAP
	def_bool y
	prompt "Supervisor Mode Access Prevention" if EXPERT
	---help---
	  Supervisor Mode Access Prevention (SMAP) is a security
	  feature in newer Intel processors.  There is a small
	  performance cost if this enabled and turned on; there is
	  also a small increase in the kernel size if this is enabled.

	  If unsure, say Y.

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
config X86_INTEL_MPX
	prompt "Intel MPX (Memory Protection Extensions)"
	def_bool n
	depends on CPU_SUP_INTEL
	---help---
	  MPX provides hardware features that can be used in
	  conjunction with compiler-instrumented code to check
	  memory references.  It is designed to detect buffer
	  overflow or underflow bugs.

	  This option enables running applications which are
	  instrumented or otherwise use MPX.  It does not use MPX
	  itself inside the kernel or to protect the kernel
	  against bad memory references.

	  Enabling this option will make the kernel larger:
	  ~8k of kernel text and 36 bytes of data on a 64-bit
	  defconfig.  It adds a long to the 'mm_struct' which
	  will increase the kernel memory overhead of each
	  process and adds some branches to paths used during
	  exec() and munmap().

	  For details, see Documentation/x86/intel_mpx.txt

	  If unsure, say N.

1704
config EFI
1705
	bool "EFI runtime service support"
H
Huang, Ying 已提交
1706
	depends on ACPI
1707
	select UCS2_STRING
1708
	select EFI_RUNTIME_WRAPPERS
1709
	---help---
I
Ingo Molnar 已提交
1710 1711
	  This enables the kernel to use EFI runtime services that are
	  available (such as the EFI variable services).
1712

I
Ingo Molnar 已提交
1713 1714 1715 1716 1717 1718
	  This option is only useful on systems that have EFI firmware.
	  In addition, you should use the latest ELILO loader available
	  at <http://elilo.sourceforge.net> in order to take advantage
	  of EFI runtime services. However, even with this option, the
	  resultant kernel should continue to boot on existing non-EFI
	  platforms.
1719

M
Matt Fleming 已提交
1720 1721
config EFI_STUB
       bool "EFI stub support"
1722
       depends on EFI && !X86_USE_3DNOW
1723
       select RELOCATABLE
M
Matt Fleming 已提交
1724 1725 1726 1727
       ---help---
          This kernel feature allows a bzImage to be loaded directly
	  by EFI firmware without the use of a bootloader.

R
Roy Franz 已提交
1728
	  See Documentation/efi-stub.txt for more information.
1729

M
Matt Fleming 已提交
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
config EFI_MIXED
	bool "EFI mixed-mode support"
	depends on EFI_STUB && X86_64
	---help---
	   Enabling this feature allows a 64-bit kernel to be booted
	   on a 32-bit firmware, provided that your CPU supports 64-bit
	   mode.

	   Note that it is not possible to boot a mixed-mode enabled
	   kernel via the EFI boot stub - a bootloader that supports
	   the EFI handover protocol must be used.

	   If unsure, say N.

1744
config SECCOMP
1745 1746
	def_bool y
	prompt "Enable seccomp to safely compute untrusted bytecode"
I
Ingo Molnar 已提交
1747
	---help---
1748 1749 1750 1751 1752 1753
	  This kernel feature is useful for number crunching applications
	  that may need to compute untrusted bytecode during their
	  execution. By using pipes or other transports made available to
	  the process as file descriptors supporting the read/write
	  syscalls, it's possible to isolate those applications in
	  their own address space using seccomp. Once seccomp is
1754
	  enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
1755 1756 1757 1758 1759 1760 1761 1762 1763
	  and the task is only allowed to execute a few safe syscalls
	  defined by each seccomp mode.

	  If unsure, say Y. Only embedded should say N here.

source kernel/Kconfig.hz

config KEXEC
	bool "kexec system call"
1764
	select KEXEC_CORE
I
Ingo Molnar 已提交
1765
	---help---
1766 1767 1768 1769 1770 1771 1772 1773 1774
	  kexec is a system call that implements the ability to shutdown your
	  current kernel, and to start another kernel.  It is like a reboot
	  but it is independent of the system firmware.   And like a reboot
	  you can start any kernel with it, not just Linux.

	  The name comes from the similarity to the exec system call.

	  It is an ongoing process to be certain the hardware in a machine
	  is properly shutdown, so do not be surprised if this code does not
1775 1776 1777
	  initially work for you.  As of this writing the exact hardware
	  interface is strongly in flux, so no good recommendation can be
	  made.
1778

1779 1780
config KEXEC_FILE
	bool "kexec file based system call"
1781
	select KEXEC_CORE
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
	select BUILD_BIN2C
	depends on X86_64
	depends on CRYPTO=y
	depends on CRYPTO_SHA256=y
	---help---
	  This is new version of kexec system call. This system call is
	  file based and takes file descriptors as system call argument
	  for kernel and initramfs as opposed to list of segments as
	  accepted by previous system call.

1792 1793
config KEXEC_VERIFY_SIG
	bool "Verify kernel signature during kexec_file_load() syscall"
1794
	depends on KEXEC_FILE
1795 1796
	---help---
	  This option makes kernel signature verification mandatory for
1797 1798 1799 1800 1801
	  the kexec_file_load() syscall.

	  In addition to that option, you need to enable signature
	  verification for the corresponding kernel image type being
	  loaded in order for this to work.
1802 1803 1804 1805 1806 1807 1808 1809 1810

config KEXEC_BZIMAGE_VERIFY_SIG
	bool "Enable bzImage signature verification support"
	depends on KEXEC_VERIFY_SIG
	depends on SIGNED_PE_FILE_VERIFICATION
	select SYSTEM_TRUSTED_KEYRING
	---help---
	  Enable bzImage signature verification support.

1811
config CRASH_DUMP
1812
	bool "kernel crash dumps"
1813
	depends on X86_64 || (X86_32 && HIGHMEM)
I
Ingo Molnar 已提交
1814
	---help---
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
	  Generate crash dump after being started by kexec.
	  This should be normally only set in special crash dump kernels
	  which are loaded in the main kernel with kexec-tools into
	  a specially reserved region and then later executed after
	  a crash by kdump/kexec. The crash dump kernel must be compiled
	  to a memory address not used by the main kernel or BIOS using
	  PHYSICAL_START, or it must be built as a relocatable image
	  (CONFIG_RELOCATABLE=y).
	  For more details see Documentation/kdump/kdump.txt

H
Huang Ying 已提交
1825
config KEXEC_JUMP
1826
	bool "kexec jump"
1827
	depends on KEXEC && HIBERNATION
I
Ingo Molnar 已提交
1828
	---help---
1829 1830
	  Jump between original kernel and kexeced kernel and invoke
	  code in physical address mode via KEXEC
H
Huang Ying 已提交
1831

1832
config PHYSICAL_START
1833
	hex "Physical address where the kernel is loaded" if (EXPERT || CRASH_DUMP)
1834
	default "0x1000000"
I
Ingo Molnar 已提交
1835
	---help---
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
	  This gives the physical address where the kernel is loaded.

	  If kernel is a not relocatable (CONFIG_RELOCATABLE=n) then
	  bzImage will decompress itself to above physical address and
	  run from there. Otherwise, bzImage will run from the address where
	  it has been loaded by the boot loader and will ignore above physical
	  address.

	  In normal kdump cases one does not have to set/change this option
	  as now bzImage can be compiled as a completely relocatable image
	  (CONFIG_RELOCATABLE=y) and be used to load and run from a different
	  address. This option is mainly useful for the folks who don't want
	  to use a bzImage for capturing the crash dump and want to use a
	  vmlinux instead. vmlinux is not relocatable hence a kernel needs
	  to be specifically compiled to run from a specific memory area
	  (normally a reserved region) and this option comes handy.

1853 1854 1855 1856 1857 1858 1859 1860 1861
	  So if you are using bzImage for capturing the crash dump,
	  leave the value here unchanged to 0x1000000 and set
	  CONFIG_RELOCATABLE=y.  Otherwise if you plan to use vmlinux
	  for capturing the crash dump change this value to start of
	  the reserved region.  In other words, it can be set based on
	  the "X" value as specified in the "crashkernel=YM@XM"
	  command line boot parameter passed to the panic-ed
	  kernel. Please take a look at Documentation/kdump/kdump.txt
	  for more details about crash dumps.
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873

	  Usage of bzImage for capturing the crash dump is recommended as
	  one does not have to build two kernels. Same kernel can be used
	  as production kernel and capture kernel. Above option should have
	  gone away after relocatable bzImage support is introduced. But it
	  is present because there are users out there who continue to use
	  vmlinux for dump capture. This option should go away down the
	  line.

	  Don't change this unless you know what you are doing.

config RELOCATABLE
1874 1875
	bool "Build a relocatable kernel"
	default y
I
Ingo Molnar 已提交
1876
	---help---
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
	  This builds a kernel image that retains relocation information
	  so it can be loaded someplace besides the default 1MB.
	  The relocations tend to make the kernel binary about 10% larger,
	  but are discarded at runtime.

	  One use is for the kexec on panic case where the recovery kernel
	  must live at a different physical address than the primary
	  kernel.

	  Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address
	  it has been loaded at and the compile time physical address
1888
	  (CONFIG_PHYSICAL_START) is used as the minimum location.
1889

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
config RANDOMIZE_BASE
	bool "Randomize the address of the kernel image"
	depends on RELOCATABLE
	default n
	---help---
	   Randomizes the physical and virtual address at which the
	   kernel image is decompressed, as a security feature that
	   deters exploit attempts relying on knowledge of the location
	   of kernel internals.

1900 1901 1902 1903
	   Entropy is generated using the RDRAND instruction if it is
	   supported. If RDTSC is supported, it is used as well. If
	   neither RDRAND nor RDTSC are supported, then randomness is
	   read from the i8254 timer.
1904 1905

	   The kernel will be offset by up to RANDOMIZE_BASE_MAX_OFFSET,
1906 1907 1908 1909 1910
	   and aligned according to PHYSICAL_ALIGN. Since the kernel is
	   built using 2GiB addressing, and PHYSICAL_ALGIN must be at a
	   minimum of 2MiB, only 10 bits of entropy is theoretically
	   possible. At best, due to page table layouts, 64-bit can use
	   9 bits of entropy and 32-bit uses 8 bits.
1911

1912 1913
	   If unsure, say N.

1914
config RANDOMIZE_BASE_MAX_OFFSET
1915
	hex "Maximum kASLR offset allowed" if EXPERT
1916
	depends on RANDOMIZE_BASE
1917 1918 1919 1920
	range 0x0 0x20000000 if X86_32
	default "0x20000000" if X86_32
	range 0x0 0x40000000 if X86_64
	default "0x40000000" if X86_64
1921
	---help---
1922 1923 1924 1925 1926 1927 1928 1929
	  The lesser of RANDOMIZE_BASE_MAX_OFFSET and available physical
	  memory is used to determine the maximal offset in bytes that will
	  be applied to the kernel when kernel Address Space Layout
	  Randomization (kASLR) is active. This must be a multiple of
	  PHYSICAL_ALIGN.

	  On 32-bit this is limited to 512MiB by page table layouts. The
	  default is 512MiB.
1930

1931 1932 1933 1934 1935 1936
	  On 64-bit this is limited by how the kernel fixmap page table is
	  positioned, so this cannot be larger than 1GiB currently. Without
	  RANDOMIZE_BASE, there is a 512MiB to 1.5GiB split between kernel
	  and modules. When RANDOMIZE_BASE_MAX_OFFSET is above 512MiB, the
	  modules area will shrink to compensate, up to the current maximum
	  1GiB to 1GiB split. The default is 1GiB.
1937

1938
	  If unsure, leave at the default value.
1939 1940

# Relocation on x86 needs some additional build support
1941 1942
config X86_NEED_RELOCS
	def_bool y
1943
	depends on RANDOMIZE_BASE || (X86_32 && RELOCATABLE)
1944

1945
config PHYSICAL_ALIGN
1946
	hex "Alignment value to which kernel should be aligned"
1947
	default "0x200000"
1948 1949
	range 0x2000 0x1000000 if X86_32
	range 0x200000 0x1000000 if X86_64
I
Ingo Molnar 已提交
1950
	---help---
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
	  This value puts the alignment restrictions on physical address
	  where kernel is loaded and run from. Kernel is compiled for an
	  address which meets above alignment restriction.

	  If bootloader loads the kernel at a non-aligned address and
	  CONFIG_RELOCATABLE is set, kernel will move itself to nearest
	  address aligned to above value and run from there.

	  If bootloader loads the kernel at a non-aligned address and
	  CONFIG_RELOCATABLE is not set, kernel will ignore the run time
	  load address and decompress itself to the address it has been
	  compiled for and run from there. The address for which kernel is
	  compiled already meets above alignment restrictions. Hence the
	  end result is that kernel runs from a physical address meeting
	  above alignment restrictions.

1967 1968 1969
	  On 32-bit this value must be a multiple of 0x2000. On 64-bit
	  this value must be a multiple of 0x200000.

1970 1971 1972
	  Don't change this unless you know what you are doing.

config HOTPLUG_CPU
1973
	bool "Support for hot-pluggable CPUs"
1974
	depends on SMP
1975
	---help---
1976 1977 1978 1979 1980
	  Say Y here to allow turning CPUs off and on. CPUs can be
	  controlled through /sys/devices/system/cpu.
	  ( Note: power management support will enable this option
	    automatically on SMP systems. )
	  Say N if you want to disable CPU hotplug.
1981

1982 1983 1984
config BOOTPARAM_HOTPLUG_CPU0
	bool "Set default setting of cpu0_hotpluggable"
	default n
1985
	depends on HOTPLUG_CPU
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	---help---
	  Set whether default state of cpu0_hotpluggable is on or off.

	  Say Y here to enable CPU0 hotplug by default. If this switch
	  is turned on, there is no need to give cpu0_hotplug kernel
	  parameter and the CPU0 hotplug feature is enabled by default.

	  Please note: there are two known CPU0 dependencies if you want
	  to enable the CPU0 hotplug feature either by this switch or by
	  cpu0_hotplug kernel parameter.

	  First, resume from hibernate or suspend always starts from CPU0.
	  So hibernate and suspend are prevented if CPU0 is offline.

	  Second dependency is PIC interrupts always go to CPU0. CPU0 can not
	  offline if any interrupt can not migrate out of CPU0. There may
	  be other CPU0 dependencies.

	  Please make sure the dependencies are under your control before
	  you enable this feature.

	  Say N if you don't want to enable CPU0 hotplug feature by default.
	  You still can enable the CPU0 hotplug feature at boot by kernel
	  parameter cpu0_hotplug.

F
Fenghua Yu 已提交
2011 2012 2013
config DEBUG_HOTPLUG_CPU0
	def_bool n
	prompt "Debug CPU0 hotplug"
2014
	depends on HOTPLUG_CPU
F
Fenghua Yu 已提交
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
	---help---
	  Enabling this option offlines CPU0 (if CPU0 can be offlined) as
	  soon as possible and boots up userspace with CPU0 offlined. User
	  can online CPU0 back after boot time.

	  To debug CPU0 hotplug, you need to enable CPU0 offline/online
	  feature by either turning on CONFIG_BOOTPARAM_HOTPLUG_CPU0 during
	  compilation or giving cpu0_hotplug kernel parameter at boot.

	  If unsure, say N.

2026
config COMPAT_VDSO
2027 2028
	def_bool n
	prompt "Disable the 32-bit vDSO (needed for glibc 2.3.3)"
R
Roland McGrath 已提交
2029
	depends on X86_32 || IA32_EMULATION
I
Ingo Molnar 已提交
2030
	---help---
2031 2032 2033
	  Certain buggy versions of glibc will crash if they are
	  presented with a 32-bit vDSO that is not mapped at the address
	  indicated in its segment table.
R
Randy Dunlap 已提交
2034

2035 2036 2037 2038 2039
	  The bug was introduced by f866314b89d56845f55e6f365e18b31ec978ec3a
	  and fixed by 3b3ddb4f7db98ec9e912ccdf54d35df4aa30e04a and
	  49ad572a70b8aeb91e57483a11dd1b77e31c4468.  Glibc 2.3.3 is
	  the only released version with the bug, but OpenSUSE 9
	  contains a buggy "glibc 2.3.2".
2040

2041 2042 2043 2044 2045 2046 2047 2048 2049
	  The symptom of the bug is that everything crashes on startup, saying:
	  dl_main: Assertion `(void *) ph->p_vaddr == _rtld_local._dl_sysinfo_dso' failed!

	  Saying Y here changes the default value of the vdso32 boot
	  option from 1 to 0, which turns off the 32-bit vDSO entirely.
	  This works around the glibc bug but hurts performance.

	  If unsure, say N: if you are compiling your own kernel, you
	  are unlikely to be using a buggy version of glibc.
2050

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
choice
	prompt "vsyscall table for legacy applications"
	depends on X86_64
	default LEGACY_VSYSCALL_EMULATE
	help
	  Legacy user code that does not know how to find the vDSO expects
	  to be able to issue three syscalls by calling fixed addresses in
	  kernel space. Since this location is not randomized with ASLR,
	  it can be used to assist security vulnerability exploitation.

	  This setting can be changed at boot time via the kernel command
	  line parameter vsyscall=[native|emulate|none].

	  On a system with recent enough glibc (2.14 or newer) and no
	  static binaries, you can say None without a performance penalty
	  to improve security.

	  If unsure, select "Emulate".

	config LEGACY_VSYSCALL_NATIVE
		bool "Native"
		help
		  Actual executable code is located in the fixed vsyscall
		  address mapping, implementing time() efficiently. Since
		  this makes the mapping executable, it can be used during
		  security vulnerability exploitation (traditionally as
		  ROP gadgets). This configuration is not recommended.

	config LEGACY_VSYSCALL_EMULATE
		bool "Emulate"
		help
		  The kernel traps and emulates calls into the fixed
		  vsyscall address mapping. This makes the mapping
		  non-executable, but it still contains known contents,
		  which could be used in certain rare security vulnerability
		  exploits. This configuration is recommended when userspace
		  still uses the vsyscall area.

	config LEGACY_VSYSCALL_NONE
		bool "None"
		help
		  There will be no vsyscall mapping at all. This will
		  eliminate any risk of ASLR bypass due to the vsyscall
		  fixed address mapping. Attempts to use the vsyscalls
		  will be reported to dmesg, so that either old or
		  malicious userspace programs can be identified.

endchoice

2100 2101
config CMDLINE_BOOL
	bool "Built-in kernel command line"
I
Ingo Molnar 已提交
2102
	---help---
2103 2104 2105 2106 2107 2108 2109 2110
	  Allow for specifying boot arguments to the kernel at
	  build time.  On some systems (e.g. embedded ones), it is
	  necessary or convenient to provide some or all of the
	  kernel boot arguments with the kernel itself (that is,
	  to not rely on the boot loader to provide them.)

	  To compile command line arguments into the kernel,
	  set this option to 'Y', then fill in the
2111
	  boot arguments in CONFIG_CMDLINE.
2112 2113 2114 2115 2116 2117 2118 2119

	  Systems with fully functional boot loaders (i.e. non-embedded)
	  should leave this option set to 'N'.

config CMDLINE
	string "Built-in kernel command string"
	depends on CMDLINE_BOOL
	default ""
I
Ingo Molnar 已提交
2120
	---help---
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
	  Enter arguments here that should be compiled into the kernel
	  image and used at boot time.  If the boot loader provides a
	  command line at boot time, it is appended to this string to
	  form the full kernel command line, when the system boots.

	  However, you can use the CONFIG_CMDLINE_OVERRIDE option to
	  change this behavior.

	  In most cases, the command line (whether built-in or provided
	  by the boot loader) should specify the device for the root
	  file system.

config CMDLINE_OVERRIDE
	bool "Built-in command line overrides boot loader arguments"
	depends on CMDLINE_BOOL
I
Ingo Molnar 已提交
2136
	---help---
2137 2138 2139 2140 2141 2142
	  Set this option to 'Y' to have the kernel ignore the boot loader
	  command line, and use ONLY the built-in command line.

	  This is used to work around broken boot loaders.  This should
	  be set to 'N' under normal conditions.

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
config MODIFY_LDT_SYSCALL
	bool "Enable the LDT (local descriptor table)" if EXPERT
	default y
	---help---
	  Linux can allow user programs to install a per-process x86
	  Local Descriptor Table (LDT) using the modify_ldt(2) system
	  call.  This is required to run 16-bit or segmented code such as
	  DOSEMU or some Wine programs.  It is also used by some very old
	  threading libraries.

	  Enabling this feature adds a small amount of overhead to
	  context switches and increases the low-level kernel attack
	  surface.  Disabling it removes the modify_ldt(2) system call.

	  Saying 'N' here may make sense for embedded or server kernels.

2159 2160
source "kernel/livepatch/Kconfig"

2161 2162 2163 2164 2165 2166
endmenu

config ARCH_ENABLE_MEMORY_HOTPLUG
	def_bool y
	depends on X86_64 || (X86_32 && HIGHMEM)

2167 2168 2169 2170
config ARCH_ENABLE_MEMORY_HOTREMOVE
	def_bool y
	depends on MEMORY_HOTPLUG

2171
config USE_PERCPU_NUMA_NODE_ID
2172
	def_bool y
2173 2174
	depends on NUMA

2175 2176 2177 2178
config ARCH_ENABLE_SPLIT_PMD_PTLOCK
	def_bool y
	depends on X86_64 || X86_PAE

2179 2180 2181 2182
config ARCH_ENABLE_HUGEPAGE_MIGRATION
	def_bool y
	depends on X86_64 && HUGETLB_PAGE && MIGRATION

2183
menu "Power management and ACPI options"
2184 2185

config ARCH_HIBERNATION_HEADER
2186
	def_bool y
2187 2188 2189 2190 2191 2192
	depends on X86_64 && HIBERNATION

source "kernel/power/Kconfig"

source "drivers/acpi/Kconfig"

F
Feng Tang 已提交
2193 2194
source "drivers/sfi/Kconfig"

2195
config X86_APM_BOOT
J
Jan Beulich 已提交
2196
	def_bool y
2197
	depends on APM
2198

2199 2200
menuconfig APM
	tristate "APM (Advanced Power Management) BIOS support"
2201
	depends on X86_32 && PM_SLEEP
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
	---help---
	  APM is a BIOS specification for saving power using several different
	  techniques. This is mostly useful for battery powered laptops with
	  APM compliant BIOSes. If you say Y here, the system time will be
	  reset after a RESUME operation, the /proc/apm device will provide
	  battery status information, and user-space programs will receive
	  notification of APM "events" (e.g. battery status change).

	  If you select "Y" here, you can disable actual use of the APM
	  BIOS by passing the "apm=off" option to the kernel at boot time.

	  Note that the APM support is almost completely disabled for
	  machines with more than one CPU.

	  In order to use APM, you will need supporting software. For location
2217 2218
	  and more information, read <file:Documentation/power/apm-acpi.txt>
	  and the Battery Powered Linux mini-HOWTO, available from
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
	  <http://www.tldp.org/docs.html#howto>.

	  This driver does not spin down disk drives (see the hdparm(8)
	  manpage ("man 8 hdparm") for that), and it doesn't turn off
	  VESA-compliant "green" monitors.

	  This driver does not support the TI 4000M TravelMate and the ACER
	  486/DX4/75 because they don't have compliant BIOSes. Many "green"
	  desktop machines also don't have compliant BIOSes, and this driver
	  may cause those machines to panic during the boot phase.

	  Generally, if you don't have a battery in your machine, there isn't
	  much point in using this driver and you should say N. If you get
	  random kernel OOPSes or reboots that don't seem to be related to
	  anything, try disabling/enabling this option (or disabling/enabling
	  APM in your BIOS).

	  Some other things you should try when experiencing seemingly random,
	  "weird" problems:

	  1) make sure that you have enough swap space and that it is
	  enabled.
	  2) pass the "no-hlt" option to the kernel
	  3) switch on floating point emulation in the kernel and pass
	  the "no387" option to the kernel
	  4) pass the "floppy=nodma" option to the kernel
	  5) pass the "mem=4M" option to the kernel (thereby disabling
	  all but the first 4 MB of RAM)
	  6) make sure that the CPU is not over clocked.
	  7) read the sig11 FAQ at <http://www.bitwizard.nl/sig11/>
	  8) disable the cache from your BIOS settings
	  9) install a fan for the video card or exchange video RAM
	  10) install a better fan for the CPU
	  11) exchange RAM chips
	  12) exchange the motherboard.

	  To compile this driver as a module, choose M here: the
	  module will be called apm.

if APM

config APM_IGNORE_USER_SUSPEND
	bool "Ignore USER SUSPEND"
I
Ingo Molnar 已提交
2262
	---help---
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
	  This option will ignore USER SUSPEND requests. On machines with a
	  compliant APM BIOS, you want to say N. However, on the NEC Versa M
	  series notebooks, it is necessary to say Y because of a BIOS bug.

config APM_DO_ENABLE
	bool "Enable PM at boot time"
	---help---
	  Enable APM features at boot time. From page 36 of the APM BIOS
	  specification: "When disabled, the APM BIOS does not automatically
	  power manage devices, enter the Standby State, enter the Suspend
	  State, or take power saving steps in response to CPU Idle calls."
	  This driver will make CPU Idle calls when Linux is idle (unless this
	  feature is turned off -- see "Do CPU IDLE calls", below). This
	  should always save battery power, but more complicated APM features
	  will be dependent on your BIOS implementation. You may need to turn
	  this option off if your computer hangs at boot time when using APM
	  support, or if it beeps continuously instead of suspending. Turn
	  this off if you have a NEC UltraLite Versa 33/C or a Toshiba
	  T400CDT. This is off by default since most machines do fine without
	  this feature.

config APM_CPU_IDLE
2285
	depends on CPU_IDLE
2286
	bool "Make CPU Idle calls when idle"
I
Ingo Molnar 已提交
2287
	---help---
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
	  Enable calls to APM CPU Idle/CPU Busy inside the kernel's idle loop.
	  On some machines, this can activate improved power savings, such as
	  a slowed CPU clock rate, when the machine is idle. These idle calls
	  are made after the idle loop has run for some length of time (e.g.,
	  333 mS). On some machines, this will cause a hang at boot time or
	  whenever the CPU becomes idle. (On machines with more than one CPU,
	  this option does nothing.)

config APM_DISPLAY_BLANK
	bool "Enable console blanking using APM"
I
Ingo Molnar 已提交
2298
	---help---
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
	  Enable console blanking using the APM. Some laptops can use this to
	  turn off the LCD backlight when the screen blanker of the Linux
	  virtual console blanks the screen. Note that this is only used by
	  the virtual console screen blanker, and won't turn off the backlight
	  when using the X Window system. This also doesn't have anything to
	  do with your VESA-compliant power-saving monitor. Further, this
	  option doesn't work for all laptops -- it might not turn off your
	  backlight at all, or it might print a lot of errors to the console,
	  especially if you are using gpm.

config APM_ALLOW_INTS
	bool "Allow interrupts during APM BIOS calls"
I
Ingo Molnar 已提交
2311
	---help---
2312 2313 2314 2315 2316 2317 2318 2319 2320
	  Normally we disable external interrupts while we are making calls to
	  the APM BIOS as a measure to lessen the effects of a badly behaving
	  BIOS implementation.  The BIOS should reenable interrupts if it
	  needs to.  Unfortunately, some BIOSes do not -- especially those in
	  many of the newer IBM Thinkpads.  If you experience hangs when you
	  suspend, try setting this to Y.  Otherwise, say N.

endif # APM

2321
source "drivers/cpufreq/Kconfig"
2322 2323 2324

source "drivers/cpuidle/Kconfig"

A
Andy Henroid 已提交
2325 2326
source "drivers/idle/Kconfig"

2327 2328 2329 2330 2331 2332
endmenu


menu "Bus options (PCI etc.)"

config PCI
I
Ingo Molnar 已提交
2333
	bool "PCI support"
A
Adrian Bunk 已提交
2334
	default y
I
Ingo Molnar 已提交
2335
	---help---
2336 2337 2338 2339 2340 2341 2342
	  Find out whether you have a PCI motherboard. PCI is the name of a
	  bus system, i.e. the way the CPU talks to the other stuff inside
	  your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
	  VESA. If you have PCI, say Y, otherwise N.

choice
	prompt "PCI access mode"
2343
	depends on X86_32 && PCI
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
	default PCI_GOANY
	---help---
	  On PCI systems, the BIOS can be used to detect the PCI devices and
	  determine their configuration. However, some old PCI motherboards
	  have BIOS bugs and may crash if this is done. Also, some embedded
	  PCI-based systems don't have any BIOS at all. Linux can also try to
	  detect the PCI hardware directly without using the BIOS.

	  With this option, you can specify how Linux should detect the
	  PCI devices. If you choose "BIOS", the BIOS will be used,
	  if you choose "Direct", the BIOS won't be used, and if you
	  choose "MMConfig", then PCI Express MMCONFIG will be used.
	  If you choose "Any", the kernel will try MMCONFIG, then the
	  direct access method and falls back to the BIOS if that doesn't
	  work. If unsure, go with the default, which is "Any".

config PCI_GOBIOS
	bool "BIOS"

config PCI_GOMMCONFIG
	bool "MMConfig"

config PCI_GODIRECT
	bool "Direct"

2369
config PCI_GOOLPC
2370
	bool "OLPC XO-1"
2371 2372
	depends on OLPC

2373 2374 2375
config PCI_GOANY
	bool "Any"

2376 2377 2378
endchoice

config PCI_BIOS
2379
	def_bool y
2380
	depends on X86_32 && PCI && (PCI_GOBIOS || PCI_GOANY)
2381 2382 2383

# x86-64 doesn't support PCI BIOS access from long mode so always go direct.
config PCI_DIRECT
2384
	def_bool y
2385
	depends on PCI && (X86_64 || (PCI_GODIRECT || PCI_GOANY || PCI_GOOLPC || PCI_GOMMCONFIG))
2386 2387

config PCI_MMCONFIG
2388
	def_bool y
F
Feng Tang 已提交
2389
	depends on X86_32 && PCI && (ACPI || SFI) && (PCI_GOMMCONFIG || PCI_GOANY)
2390

2391
config PCI_OLPC
2392 2393
	def_bool y
	depends on PCI && OLPC && (PCI_GOOLPC || PCI_GOANY)
2394

2395 2396 2397 2398 2399
config PCI_XEN
	def_bool y
	depends on PCI && XEN
	select SWIOTLB_XEN

2400
config PCI_DOMAINS
2401
	def_bool y
2402 2403 2404 2405 2406 2407
	depends on PCI

config PCI_MMCONFIG
	bool "Support mmconfig PCI config space access"
	depends on X86_64 && PCI && ACPI

2408
config PCI_CNB20LE_QUIRK
2409
	bool "Read CNB20LE Host Bridge Windows" if EXPERT
2410
	depends on PCI
2411 2412 2413 2414 2415
	help
	  Read the PCI windows out of the CNB20LE host bridge. This allows
	  PCI hotplug to work on systems with the CNB20LE chipset which do
	  not have ACPI.

2416 2417 2418 2419 2420
	  There's no public spec for this chipset, and this functionality
	  is known to be incomplete.

	  You should say N unless you know you need this.

2421 2422 2423 2424
source "drivers/pci/pcie/Kconfig"

source "drivers/pci/Kconfig"

2425
# x86_64 have no ISA slots, but can have ISA-style DMA.
2426
config ISA_DMA_API
2427 2428 2429 2430 2431
	bool "ISA-style DMA support" if (X86_64 && EXPERT)
	default y
	help
	  Enables ISA-style DMA support for devices requiring such controllers.
	  If unsure, say Y.
2432 2433 2434 2435 2436

if X86_32

config ISA
	bool "ISA support"
I
Ingo Molnar 已提交
2437
	---help---
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
	  Find out whether you have ISA slots on your motherboard.  ISA is the
	  name of a bus system, i.e. the way the CPU talks to the other stuff
	  inside your box.  Other bus systems are PCI, EISA, MicroChannel
	  (MCA) or VESA.  ISA is an older system, now being displaced by PCI;
	  newer boards don't support it.  If you have ISA, say Y, otherwise N.

config EISA
	bool "EISA support"
	depends on ISA
	---help---
	  The Extended Industry Standard Architecture (EISA) bus was
	  developed as an open alternative to the IBM MicroChannel bus.

	  The EISA bus provided some of the features of the IBM MicroChannel
	  bus while maintaining backward compatibility with cards made for
	  the older ISA bus.  The EISA bus saw limited use between 1988 and
	  1995 when it was made obsolete by the PCI bus.

	  Say Y here if you are building a kernel for an EISA-based machine.

	  Otherwise, say N.

source "drivers/eisa/Kconfig"

config SCx200
	tristate "NatSemi SCx200 support"
I
Ingo Molnar 已提交
2464
	---help---
2465 2466 2467 2468 2469 2470 2471 2472 2473
	  This provides basic support for National Semiconductor's
	  (now AMD's) Geode processors.  The driver probes for the
	  PCI-IDs of several on-chip devices, so its a good dependency
	  for other scx200_* drivers.

	  If compiled as a module, the driver is named scx200.

config SCx200HR_TIMER
	tristate "NatSemi SCx200 27MHz High-Resolution Timer Support"
J
John Stultz 已提交
2474
	depends on SCx200
2475
	default y
I
Ingo Molnar 已提交
2476
	---help---
2477 2478 2479 2480 2481 2482
	  This driver provides a clocksource built upon the on-chip
	  27MHz high-resolution timer.  Its also a workaround for
	  NSC Geode SC-1100's buggy TSC, which loses time when the
	  processor goes idle (as is done by the scheduler).  The
	  other workaround is idle=poll boot option.

2483 2484
config OLPC
	bool "One Laptop Per Child support"
2485
	depends on !X86_PAE
2486
	select GPIOLIB
2487
	select OF
2488
	select OF_PROMTREE
2489
	select IRQ_DOMAIN
I
Ingo Molnar 已提交
2490
	---help---
2491 2492 2493
	  Add support for detecting the unique features of the OLPC
	  XO hardware.

2494 2495
config OLPC_XO1_PM
	bool "OLPC XO-1 Power Management"
2496
	depends on OLPC && MFD_CS5535 && PM_SLEEP
2497
	select MFD_CORE
2498
	---help---
2499
	  Add support for poweroff and suspend of the OLPC XO-1 laptop.
2500

D
Daniel Drake 已提交
2501 2502 2503 2504 2505 2506 2507
config OLPC_XO1_RTC
	bool "OLPC XO-1 Real Time Clock"
	depends on OLPC_XO1_PM && RTC_DRV_CMOS
	---help---
	  Add support for the XO-1 real time clock, which can be used as a
	  programmable wakeup source.

2508 2509
config OLPC_XO1_SCI
	bool "OLPC XO-1 SCI extras"
2510
	depends on OLPC && OLPC_XO1_PM
2511
	depends on INPUT=y
2512
	select POWER_SUPPLY
2513 2514 2515 2516
	select GPIO_CS5535
	select MFD_CORE
	---help---
	  Add support for SCI-based features of the OLPC XO-1 laptop:
2517
	   - EC-driven system wakeups
2518
	   - Power button
2519
	   - Ebook switch
2520
	   - Lid switch
2521 2522
	   - AC adapter status updates
	   - Battery status updates
2523

D
Daniel Drake 已提交
2524 2525
config OLPC_XO15_SCI
	bool "OLPC XO-1.5 SCI extras"
2526 2527
	depends on OLPC && ACPI
	select POWER_SUPPLY
D
Daniel Drake 已提交
2528 2529 2530 2531 2532
	---help---
	  Add support for SCI-based features of the OLPC XO-1.5 laptop:
	   - EC-driven system wakeups
	   - AC adapter status updates
	   - Battery status updates
2533

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
config ALIX
	bool "PCEngines ALIX System Support (LED setup)"
	select GPIOLIB
	---help---
	  This option enables system support for the PCEngines ALIX.
	  At present this just sets up LEDs for GPIO control on
	  ALIX2/3/6 boards.  However, other system specific setup should
	  get added here.

	  Note: You must still enable the drivers for GPIO and LED support
	  (GPIO_CS5535 & LEDS_GPIO) to actually use the LEDs

	  Note: You have to set alix.force=1 for boards with Award BIOS.

2548 2549 2550 2551 2552 2553
config NET5501
	bool "Soekris Engineering net5501 System Support (LEDS, GPIO, etc)"
	select GPIOLIB
	---help---
	  This option enables system support for the Soekris Engineering net5501.

2554 2555 2556 2557 2558 2559 2560
config GEOS
	bool "Traverse Technologies GEOS System Support (LEDS, GPIO, etc)"
	select GPIOLIB
	depends on DMI
	---help---
	  This option enables system support for the Traverse Technologies GEOS.

2561 2562 2563 2564 2565 2566 2567 2568 2569
config TS5500
	bool "Technologic Systems TS-5500 platform support"
	depends on MELAN
	select CHECK_SIGNATURE
	select NEW_LEDS
	select LEDS_CLASS
	---help---
	  This option enables system support for the Technologic Systems TS-5500.

2570 2571
endif # X86_32

2572
config AMD_NB
2573
	def_bool y
2574
	depends on CPU_SUP_AMD && PCI
2575 2576 2577 2578 2579

source "drivers/pcmcia/Kconfig"

source "drivers/pci/hotplug/Kconfig"

2580
config RAPIDIO
2581
	tristate "RapidIO support"
2582 2583 2584
	depends on PCI
	default n
	help
2585
	  If enabled this option will include drivers and the core
2586 2587 2588 2589
	  infrastructure code to support RapidIO interconnect devices.

source "drivers/rapidio/Kconfig"

2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
config X86_SYSFB
	bool "Mark VGA/VBE/EFI FB as generic system framebuffer"
	help
	  Firmwares often provide initial graphics framebuffers so the BIOS,
	  bootloader or kernel can show basic video-output during boot for
	  user-guidance and debugging. Historically, x86 used the VESA BIOS
	  Extensions and EFI-framebuffers for this, which are mostly limited
	  to x86.
	  This option, if enabled, marks VGA/VBE/EFI framebuffers as generic
	  framebuffers so the new generic system-framebuffer drivers can be
	  used on x86. If the framebuffer is not compatible with the generic
	  modes, it is adverticed as fallback platform framebuffer so legacy
	  drivers like efifb, vesafb and uvesafb can pick it up.
	  If this option is not selected, all system framebuffers are always
	  marked as fallback platform framebuffers as usual.

	  Note: Legacy fbdev drivers, including vesafb, efifb, uvesafb, will
	  not be able to pick up generic system framebuffers if this option
	  is selected. You are highly encouraged to enable simplefb as
	  replacement if you select this option. simplefb can correctly deal
	  with generic system framebuffers. But you should still keep vesafb
	  and others enabled as fallback if a system framebuffer is
	  incompatible with simplefb.

	  If unsure, say Y.

2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
endmenu


menu "Executable file formats / Emulations"

source "fs/Kconfig.binfmt"

config IA32_EMULATION
	bool "IA32 Emulation"
	depends on X86_64
2626
	select BINFMT_ELF
R
Roland McGrath 已提交
2627
	select COMPAT_BINFMT_ELF
2628
	select ARCH_WANT_OLD_COMPAT_IPC
I
Ingo Molnar 已提交
2629
	---help---
H
H. J. Lu 已提交
2630 2631 2632
	  Include code to run legacy 32-bit programs under a
	  64-bit kernel. You should likely turn this on, unless you're
	  100% sure that you don't have any 32-bit programs left.
2633 2634

config IA32_AOUT
I
Ingo Molnar 已提交
2635 2636 2637 2638
	tristate "IA32 a.out support"
	depends on IA32_EMULATION
	---help---
	  Support old a.out binaries in the 32bit emulation.
2639

2640
config X86_X32
2641
	bool "x32 ABI for 64-bit mode"
2642
	depends on X86_64
H
H. J. Lu 已提交
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
	---help---
	  Include code to run binaries for the x32 native 32-bit ABI
	  for 64-bit processors.  An x32 process gets access to the
	  full 64-bit register file and wide data path while leaving
	  pointers at 32 bits for smaller memory footprint.

	  You will need a recent binutils (2.22 or later) with
	  elf32_x86_64 support enabled to compile a kernel with this
	  option set.

2653
config COMPAT
2654
	def_bool y
2655
	depends on IA32_EMULATION || X86_X32
2656

2657
if COMPAT
2658
config COMPAT_FOR_U64_ALIGNMENT
2659
	def_bool y
2660 2661

config SYSVIPC_COMPAT
2662
	def_bool y
2663
	depends on SYSVIPC
2664

2665
config KEYS_COMPAT
2666 2667 2668
	def_bool y
	depends on KEYS
endif
2669

2670 2671 2672
endmenu


K
Keith Packard 已提交
2673 2674 2675 2676
config HAVE_ATOMIC_IOMAP
	def_bool y
	depends on X86_32

2677 2678
config X86_DEV_DMA_OPS
	bool
2679
	depends on X86_64 || STA2X11
2680

2681 2682
config X86_DMA_REMAP
	bool
2683
	depends on STA2X11
2684

2685 2686 2687 2688
config PMC_ATOM
	def_bool y
        depends on PCI

2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
source "net/Kconfig"

source "drivers/Kconfig"

source "drivers/firmware/Kconfig"

source "fs/Kconfig"

source "arch/x86/Kconfig.debug"

source "security/Kconfig"

source "crypto/Kconfig"

2703 2704
source "arch/x86/kvm/Kconfig"

2705
source "lib/Kconfig"