fsl_ssi.c 22.2 KB
Newer Older
1 2 3 4 5
/*
 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
 *
 * Author: Timur Tabi <timur@freescale.com>
 *
6 7 8 9 10
 * Copyright 2007-2010 Freescale Semiconductor, Inc.
 *
 * This file is licensed under the terms of the GNU General Public License
 * version 2.  This program is licensed "as is" without any warranty of any
 * kind, whether express or implied.
11 12 13 14 15 16 17
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/delay.h>
18
#include <linux/slab.h>
19
#include <linux/of_platform.h>
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>

#include "fsl_ssi.h"

/**
 * FSLSSI_I2S_RATES: sample rates supported by the I2S
 *
 * This driver currently only supports the SSI running in I2S slave mode,
 * which means the codec determines the sample rate.  Therefore, we tell
 * ALSA that we support all rates and let the codec driver decide what rates
 * are really supported.
 */
#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
			  SNDRV_PCM_RATE_CONTINUOUS)

/**
 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
 *
 * This driver currently only supports the SSI running in I2S slave mode.
 *
 * The SSI has a limitation in that the samples must be in the same byte
 * order as the host CPU.  This is because when multiple bytes are written
 * to the STX register, the bytes and bits must be written in the same
 * order.  The STX is a shift register, so all the bits need to be aligned
 * (bit-endianness must match byte-endianness).  Processors typically write
 * the bits within a byte in the same order that the bytes of a word are
 * written in.  So if the host CPU is big-endian, then only big-endian
 * samples will be written to STX properly.
 */
#ifdef __BIG_ENDIAN
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
	 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
	 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
#else
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
#endif

64 65 66 67 68 69 70
/* SIER bitflag of interrupts to enable */
#define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
		    CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
		    CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
		    CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
		    CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)

71 72 73 74 75 76
/**
 * fsl_ssi_private: per-SSI private data
 *
 * @ssi: pointer to the SSI's registers
 * @ssi_phys: physical address of the SSI registers
 * @irq: IRQ of this SSI
77 78
 * @first_stream: pointer to the stream that was opened first
 * @second_stream: pointer to second stream
79 80
 * @playback: the number of playback streams opened
 * @capture: the number of capture streams opened
81
 * @asynchronous: 0=synchronous mode, 1=asynchronous mode
82 83 84
 * @cpu_dai: the CPU DAI for this device
 * @dev_attr: the sysfs device attribute structure
 * @stats: SSI statistics
85
 * @name: name for this device
86 87 88 89 90
 */
struct fsl_ssi_private {
	struct ccsr_ssi __iomem *ssi;
	dma_addr_t ssi_phys;
	unsigned int irq;
91 92
	struct snd_pcm_substream *first_stream;
	struct snd_pcm_substream *second_stream;
93 94
	unsigned int playback;
	unsigned int capture;
95
	int asynchronous;
96
	unsigned int fifo_depth;
97
	struct snd_soc_dai_driver cpu_dai_drv;
98
	struct device_attribute dev_attr;
99
	struct platform_device *pdev;
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

	struct {
		unsigned int rfrc;
		unsigned int tfrc;
		unsigned int cmdau;
		unsigned int cmddu;
		unsigned int rxt;
		unsigned int rdr1;
		unsigned int rdr0;
		unsigned int tde1;
		unsigned int tde0;
		unsigned int roe1;
		unsigned int roe0;
		unsigned int tue1;
		unsigned int tue0;
		unsigned int tfs;
		unsigned int rfs;
		unsigned int tls;
		unsigned int rls;
		unsigned int rff1;
		unsigned int rff0;
		unsigned int tfe1;
		unsigned int tfe0;
	} stats;
124 125

	char name[1];
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
};

/**
 * fsl_ssi_isr: SSI interrupt handler
 *
 * Although it's possible to use the interrupt handler to send and receive
 * data to/from the SSI, we use the DMA instead.  Programming is more
 * complicated, but the performance is much better.
 *
 * This interrupt handler is used only to gather statistics.
 *
 * @irq: IRQ of the SSI device
 * @dev_id: pointer to the ssi_private structure for this SSI device
 */
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
{
	struct fsl_ssi_private *ssi_private = dev_id;
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
	irqreturn_t ret = IRQ_NONE;
	__be32 sisr;
	__be32 sisr2 = 0;

	/* We got an interrupt, so read the status register to see what we
	   were interrupted for.  We mask it with the Interrupt Enable register
	   so that we only check for events that we're interested in.
	 */
152
	sisr = in_be32(&ssi->sisr) & SIER_FLAGS;
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

	if (sisr & CCSR_SSI_SISR_RFRC) {
		ssi_private->stats.rfrc++;
		sisr2 |= CCSR_SSI_SISR_RFRC;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFRC) {
		ssi_private->stats.tfrc++;
		sisr2 |= CCSR_SSI_SISR_TFRC;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDAU) {
		ssi_private->stats.cmdau++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_CMDDU) {
		ssi_private->stats.cmddu++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RXT) {
		ssi_private->stats.rxt++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR1) {
		ssi_private->stats.rdr1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RDR0) {
		ssi_private->stats.rdr0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE1) {
		ssi_private->stats.tde1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TDE0) {
		ssi_private->stats.tde0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE1) {
		ssi_private->stats.roe1++;
		sisr2 |= CCSR_SSI_SISR_ROE1;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_ROE0) {
		ssi_private->stats.roe0++;
		sisr2 |= CCSR_SSI_SISR_ROE0;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE1) {
		ssi_private->stats.tue1++;
		sisr2 |= CCSR_SSI_SISR_TUE1;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TUE0) {
		ssi_private->stats.tue0++;
		sisr2 |= CCSR_SSI_SISR_TUE0;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFS) {
		ssi_private->stats.tfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFS) {
		ssi_private->stats.rfs++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TLS) {
		ssi_private->stats.tls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RLS) {
		ssi_private->stats.rls++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF1) {
		ssi_private->stats.rff1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_RFF0) {
		ssi_private->stats.rff0++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE1) {
		ssi_private->stats.tfe1++;
		ret = IRQ_HANDLED;
	}

	if (sisr & CCSR_SSI_SISR_TFE0) {
		ssi_private->stats.tfe0++;
		ret = IRQ_HANDLED;
	}

	/* Clear the bits that we set */
	if (sisr2)
		out_be32(&ssi->sisr, sisr2);

	return ret;
}

/**
 * fsl_ssi_startup: create a new substream
 *
 * This is the first function called when a stream is opened.
 *
 * If this is the first stream open, then grab the IRQ and program most of
 * the SSI registers.
 */
280 281
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
282 283
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
284
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
285 286 287 288 289 290 291 292 293

	/*
	 * If this is the first stream opened, then request the IRQ
	 * and initialize the SSI registers.
	 */
	if (!ssi_private->playback && !ssi_private->capture) {
		struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
		int ret;

294
		/* The 'name' should not have any slashes in it. */
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
		ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0,
				  ssi_private->name, ssi_private);
		if (ret < 0) {
			dev_err(substream->pcm->card->dev,
				"could not claim irq %u\n", ssi_private->irq);
			return ret;
		}

		/*
		 * Section 16.5 of the MPC8610 reference manual says that the
		 * SSI needs to be disabled before updating the registers we set
		 * here.
		 */
		clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);

		/*
		 * Program the SSI into I2S Slave Non-Network Synchronous mode.
		 * Also enable the transmit and receive FIFO.
		 *
		 * FIXME: Little-endian samples require a different shift dir
		 */
316 317 318 319
		clrsetbits_be32(&ssi->scr,
			CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
			CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE
			| (ssi_private->asynchronous ? 0 : CCSR_SSI_SCR_SYN));
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

		out_be32(&ssi->stcr,
			 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
			 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
			 CCSR_SSI_STCR_TSCKP);

		out_be32(&ssi->srcr,
			 CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
			 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
			 CCSR_SSI_SRCR_RSCKP);

		/*
		 * The DC and PM bits are only used if the SSI is the clock
		 * master.
		 */

		/* 4. Enable the interrupts and DMA requests */
337
		out_be32(&ssi->sier, SIER_FLAGS);
338 339 340

		/*
		 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
341 342 343 344 345 346 347 348 349 350
		 * don't use FIFO 1.  We program the transmit water to signal a
		 * DMA transfer if there are only two (or fewer) elements left
		 * in the FIFO.  Two elements equals one frame (left channel,
		 * right channel).  This value, however, depends on the depth of
		 * the transmit buffer.
		 *
		 * We program the receive FIFO to notify us if at least two
		 * elements (one frame) have been written to the FIFO.  We could
		 * make this value larger (and maybe we should), but this way
		 * data will be written to memory as soon as it's available.
351 352
		 */
		out_be32(&ssi->sfcsr,
353 354
			CCSR_SSI_SFCSR_TFWM0(ssi_private->fifo_depth - 2) |
			CCSR_SSI_SFCSR_RFWM0(ssi_private->fifo_depth - 2));
355 356 357 358 359 360 361 362 363 364 365 366

		/*
		 * We keep the SSI disabled because if we enable it, then the
		 * DMA controller will start.  It's not supposed to start until
		 * the SCR.TE (or SCR.RE) bit is set, but it does anyway.  The
		 * DMA controller will transfer one "BWC" of data (i.e. the
		 * amount of data that the MR.BWC bits are set to).  The reason
		 * this is bad is because at this point, the PCM driver has not
		 * finished initializing the DMA controller.
		 */
	}

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
	if (!ssi_private->first_stream)
		ssi_private->first_stream = substream;
	else {
		/* This is the second stream open, so we need to impose sample
		 * rate and maybe sample size constraints.  Note that this can
		 * cause a race condition if the second stream is opened before
		 * the first stream is fully initialized.
		 *
		 * We provide some protection by checking to make sure the first
		 * stream is initialized, but it's not perfect.  ALSA sometimes
		 * re-initializes the driver with a different sample rate or
		 * size.  If the second stream is opened before the first stream
		 * has received its final parameters, then the second stream may
		 * be constrained to the wrong sample rate or size.
		 *
		 * FIXME: This code does not handle opening and closing streams
		 * repeatedly.  If you open two streams and then close the first
		 * one, you may not be able to open another stream until you
		 * close the second one as well.
		 */
		struct snd_pcm_runtime *first_runtime =
			ssi_private->first_stream->runtime;

390
		if (!first_runtime->sample_bits) {
391
			dev_err(substream->pcm->card->dev,
392
				"set sample size in %s stream first\n",
393 394 395 396 397
				substream->stream == SNDRV_PCM_STREAM_PLAYBACK
				? "capture" : "playback");
			return -EAGAIN;
		}

398 399 400 401 402 403 404 405 406
		/* If we're in synchronous mode, then we need to constrain
		 * the sample size as well.  We don't support independent sample
		 * rates in asynchronous mode.
		 */
		if (!ssi_private->asynchronous)
			snd_pcm_hw_constraint_minmax(substream->runtime,
				SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
				first_runtime->sample_bits,
				first_runtime->sample_bits);
407 408 409 410

		ssi_private->second_stream = substream;
	}

411 412 413 414 415 416 417 418 419 420
	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
		ssi_private->playback++;

	if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
		ssi_private->capture++;

	return 0;
}

/**
421
 * fsl_ssi_hw_params - program the sample size
422 423 424 425 426 427 428 429 430 431 432
 *
 * Most of the SSI registers have been programmed in the startup function,
 * but the word length must be programmed here.  Unfortunately, programming
 * the SxCCR.WL bits requires the SSI to be temporarily disabled.  This can
 * cause a problem with supporting simultaneous playback and capture.  If
 * the SSI is already playing a stream, then that stream may be temporarily
 * stopped when you start capture.
 *
 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
 * clock master.
 */
433 434
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
	struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
435
{
436
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
437

438
	if (substream == ssi_private->first_stream) {
439 440 441
		struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
		unsigned int sample_size =
			snd_pcm_format_width(params_format(hw_params));
442
		u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
443

444
		/* The SSI should always be disabled at this points (SSIEN=0) */
445

446
		/* In synchronous mode, the SSI uses STCCR for capture */
447 448 449 450 451 452 453
		if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
		    !ssi_private->asynchronous)
			clrsetbits_be32(&ssi->stccr,
					CCSR_SSI_SxCCR_WL_MASK, wl);
		else
			clrsetbits_be32(&ssi->srccr,
					CCSR_SSI_SxCCR_WL_MASK, wl);
454
	}
455 456 457 458 459 460 461 462 463 464 465 466 467

	return 0;
}

/**
 * fsl_ssi_trigger: start and stop the DMA transfer.
 *
 * This function is called by ALSA to start, stop, pause, and resume the DMA
 * transfer of data.
 *
 * The DMA channel is in external master start and pause mode, which
 * means the SSI completely controls the flow of data.
 */
468 469
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
470 471
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
472
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
473 474 475 476
	struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
477
		clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
478
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
479
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
480 481
			setbits32(&ssi->scr,
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
482
		else
483 484
			setbits32(&ssi->scr,
				CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
		break;

	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
			clrbits32(&ssi->scr, CCSR_SSI_SCR_TE);
		else
			clrbits32(&ssi->scr, CCSR_SSI_SCR_RE);
		break;

	default:
		return -EINVAL;
	}

	return 0;
}

/**
 * fsl_ssi_shutdown: shutdown the SSI
 *
 * Shutdown the SSI if there are no other substreams open.
 */
507 508
static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
			     struct snd_soc_dai *dai)
509 510
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
511
	struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
512 513 514 515 516 517 518

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
		ssi_private->playback--;

	if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
		ssi_private->capture--;

519 520 521 522 523
	if (ssi_private->first_stream == substream)
		ssi_private->first_stream = ssi_private->second_stream;

	ssi_private->second_stream = NULL;

524 525 526 527 528 529 530 531 532 533 534 535 536
	/*
	 * If this is the last active substream, disable the SSI and release
	 * the IRQ.
	 */
	if (!ssi_private->playback && !ssi_private->capture) {
		struct ccsr_ssi __iomem *ssi = ssi_private->ssi;

		clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);

		free_irq(ssi_private->irq, ssi_private);
	}
}

537 538 539 540 541 542 543
static struct snd_soc_dai_ops fsl_ssi_dai_ops = {
	.startup	= fsl_ssi_startup,
	.hw_params	= fsl_ssi_hw_params,
	.shutdown	= fsl_ssi_shutdown,
	.trigger	= fsl_ssi_trigger,
};

544 545
/* Template for the CPU dai driver structure */
static struct snd_soc_dai_driver fsl_ssi_dai_template = {
546 547 548 549 550 551 552 553 554 555 556 557 558
	.playback = {
		/* The SSI does not support monaural audio. */
		.channels_min = 2,
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
	.capture = {
		.channels_min = 2,
		.channels_max = 2,
		.rates = FSLSSI_I2S_RATES,
		.formats = FSLSSI_I2S_FORMATS,
	},
559
	.ops = &fsl_ssi_dai_ops,
560 561
};

562 563 564 565 566 567 568 569 570 571 572 573
/* Show the statistics of a flag only if its interrupt is enabled.  The
 * compiler will optimze this code to a no-op if the interrupt is not
 * enabled.
 */
#define SIER_SHOW(flag, name) \
	do { \
		if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
			length += sprintf(buf + length, #name "=%u\n", \
				ssi_private->stats.name); \
	} while (0)


574 575 576
/**
 * fsl_sysfs_ssi_show: display SSI statistics
 *
577 578
 * Display the statistics for the current SSI device.  To avoid confusion,
 * we only show those counts that are enabled.
579 580 581 582 583
 */
static ssize_t fsl_sysfs_ssi_show(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct fsl_ssi_private *ssi_private =
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
		container_of(attr, struct fsl_ssi_private, dev_attr);
	ssize_t length = 0;

	SIER_SHOW(RFRC_EN, rfrc);
	SIER_SHOW(TFRC_EN, tfrc);
	SIER_SHOW(CMDAU_EN, cmdau);
	SIER_SHOW(CMDDU_EN, cmddu);
	SIER_SHOW(RXT_EN, rxt);
	SIER_SHOW(RDR1_EN, rdr1);
	SIER_SHOW(RDR0_EN, rdr0);
	SIER_SHOW(TDE1_EN, tde1);
	SIER_SHOW(TDE0_EN, tde0);
	SIER_SHOW(ROE1_EN, roe1);
	SIER_SHOW(ROE0_EN, roe0);
	SIER_SHOW(TUE1_EN, tue1);
	SIER_SHOW(TUE0_EN, tue0);
	SIER_SHOW(TFS_EN, tfs);
	SIER_SHOW(RFS_EN, rfs);
	SIER_SHOW(TLS_EN, tls);
	SIER_SHOW(RLS_EN, rls);
	SIER_SHOW(RFF1_EN, rff1);
	SIER_SHOW(RFF0_EN, rff0);
	SIER_SHOW(TFE1_EN, tfe1);
	SIER_SHOW(TFE0_EN, tfe0);
608 609 610 611 612

	return length;
}

/**
613
 * Make every character in a string lower-case
614
 */
615 616 617 618 619 620 621 622 623 624 625 626 627 628
static void make_lowercase(char *s)
{
	char *p = s;
	char c;

	while ((c = *p)) {
		if ((c >= 'A') && (c <= 'Z'))
			*p = c + ('a' - 'A');
		p++;
	}
}

static int __devinit fsl_ssi_probe(struct of_device *of_dev,
				   const struct of_device_id *match)
629 630 631
{
	struct fsl_ssi_private *ssi_private;
	int ret = 0;
632
	struct device_attribute *dev_attr = NULL;
633 634
	struct device_node *np = of_dev->dev.of_node;
	const char *p, *sprop;
635
	const uint32_t *iprop;
636 637
	struct resource res;
	char name[64];
638

639 640 641
	/* SSIs that are not connected on the board should have a
	 *      status = "disabled"
	 * property in their device tree nodes.
642
	 */
643
	if (!of_device_is_available(np))
644 645
		return -ENODEV;

646 647 648 649 650 651
	/* Check for a codec-handle property. */
	if (!of_get_property(np, "codec-handle", NULL)) {
		dev_err(&of_dev->dev, "missing codec-handle property\n");
		return -ENODEV;
	}

652 653 654 655 656 657 658 659 660 661 662
	/* We only support the SSI in "I2S Slave" mode */
	sprop = of_get_property(np, "fsl,mode", NULL);
	if (!sprop || strcmp(sprop, "i2s-slave")) {
		dev_notice(&of_dev->dev, "mode %s is unsupported\n", sprop);
		return -ENODEV;
	}

	/* The DAI name is the last part of the full name of the node. */
	p = strrchr(np->full_name, '/') + 1;
	ssi_private = kzalloc(sizeof(struct fsl_ssi_private) + strlen(p),
			      GFP_KERNEL);
663
	if (!ssi_private) {
664 665
		dev_err(&of_dev->dev, "could not allocate DAI object\n");
		return -ENOMEM;
666 667
	}

668
	strcpy(ssi_private->name, p);
669

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
	/* Initialize this copy of the CPU DAI driver structure */
	memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
	       sizeof(fsl_ssi_dai_template));
	ssi_private->cpu_dai_drv.name = ssi_private->name;

	/* Get the addresses and IRQ */
	ret = of_address_to_resource(np, 0, &res);
	if (ret) {
		dev_err(&of_dev->dev, "could not determine device resources\n");
		kfree(ssi_private);
		return ret;
	}
	ssi_private->ssi = ioremap(res.start, 1 + res.end - res.start);
	ssi_private->ssi_phys = res.start;
	ssi_private->irq = irq_of_parse_and_map(np, 0);
685

686 687 688 689 690
	/* Are the RX and the TX clocks locked? */
	if (of_find_property(np, "fsl,ssi-asynchronous", NULL))
		ssi_private->asynchronous = 1;
	else
		ssi_private->cpu_dai_drv.symmetric_rates = 1;
691

692 693 694 695 696 697 698 699
	/* Determine the FIFO depth. */
	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
	if (iprop)
		ssi_private->fifo_depth = *iprop;
	else
                /* Older 8610 DTs didn't have the fifo-depth property */
		ssi_private->fifo_depth = 8;

700
	/* Initialize the the device_attribute structure */
701 702
	dev_attr = &ssi_private->dev_attr;
	dev_attr->attr.name = "statistics";
703 704 705
	dev_attr->attr.mode = S_IRUGO;
	dev_attr->show = fsl_sysfs_ssi_show;

706
	ret = device_create_file(&of_dev->dev, dev_attr);
707
	if (ret) {
708
		dev_err(&of_dev->dev, "could not create sysfs %s file\n",
709
			ssi_private->dev_attr.attr.name);
710
		goto error;
711 712
	}

713 714
	/* Register with ASoC */
	dev_set_drvdata(&of_dev->dev, ssi_private);
M
Mark Brown 已提交
715

716
	ret = snd_soc_register_dai(&of_dev->dev, &ssi_private->cpu_dai_drv);
717
	if (ret) {
718
		dev_err(&of_dev->dev, "failed to register DAI: %d\n", ret);
719
		goto error;
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
	}

	/* Trigger the machine driver's probe function.  The platform driver
	 * name of the machine driver is taken from the /model property of the
	 * device tree.  We also pass the address of the CPU DAI driver
	 * structure.
	 */
	sprop = of_get_property(of_find_node_by_path("/"), "model", NULL);
	/* Sometimes the model name has a "fsl," prefix, so we strip that. */
	p = strrchr(sprop, ',');
	if (p)
		sprop = p + 1;
	snprintf(name, sizeof(name), "snd-soc-%s", sprop);
	make_lowercase(name);

	ssi_private->pdev =
		platform_device_register_data(&of_dev->dev, name, 0, NULL, 0);
	if (IS_ERR(ssi_private->pdev)) {
		ret = PTR_ERR(ssi_private->pdev);
		dev_err(&of_dev->dev, "failed to register platform: %d\n", ret);
740
		goto error;
M
Mark Brown 已提交
741
	}
742

743
	return 0;
744 745 746 747 748 749 750 751 752 753 754

error:
	snd_soc_unregister_dai(&of_dev->dev);
	dev_set_drvdata(&of_dev->dev, NULL);
	if (dev_attr)
		device_remove_file(&of_dev->dev, dev_attr);
	irq_dispose_mapping(ssi_private->irq);
	iounmap(ssi_private->ssi);
	kfree(ssi_private);

	return ret;
755 756
}

757
static int fsl_ssi_remove(struct of_device *of_dev)
758
{
759
	struct fsl_ssi_private *ssi_private = dev_get_drvdata(&of_dev->dev);
760

761 762 763
	platform_device_unregister(ssi_private->pdev);
	snd_soc_unregister_dai(&of_dev->dev);
	device_remove_file(&of_dev->dev, &ssi_private->dev_attr);
M
Mark Brown 已提交
764

765
	kfree(ssi_private);
766 767 768
	dev_set_drvdata(&of_dev->dev, NULL);

	return 0;
769
}
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785

static const struct of_device_id fsl_ssi_ids[] = {
	{ .compatible = "fsl,mpc8610-ssi", },
	{}
};
MODULE_DEVICE_TABLE(of, fsl_ssi_ids);

static struct of_platform_driver fsl_ssi_driver = {
	.driver = {
		.name = "fsl-ssi-dai",
		.owner = THIS_MODULE,
		.of_match_table = fsl_ssi_ids,
	},
	.probe = fsl_ssi_probe,
	.remove = fsl_ssi_remove,
};
786

787 788 789 790
static int __init fsl_ssi_init(void)
{
	printk(KERN_INFO "Freescale Synchronous Serial Interface (SSI) ASoC Driver\n");

791 792 793 794 795 796
	return of_register_platform_driver(&fsl_ssi_driver);
}

static void __exit fsl_ssi_exit(void)
{
	of_unregister_platform_driver(&fsl_ssi_driver);
797
}
798

799
module_init(fsl_ssi_init);
800
module_exit(fsl_ssi_exit);
801

802 803
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
804
MODULE_LICENSE("GPL v2");