mv_xor.c 34.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * offload engine driver for the Marvell XOR engine
 * Copyright (C) 2007, 2008, Marvell International Ltd.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 */

#include <linux/init.h>
#include <linux/module.h>
21
#include <linux/slab.h>
22 23 24 25 26 27
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/memory.h>
28
#include <linux/clk.h>
29
#include <linux/platform_data/dma-mv_xor.h>
30 31

#include "dmaengine.h"
32 33 34 35 36
#include "mv_xor.h"

static void mv_xor_issue_pending(struct dma_chan *chan);

#define to_mv_xor_chan(chan)		\
37
	container_of(chan, struct mv_xor_chan, dmachan)
38 39 40 41

#define to_mv_xor_slot(tx)		\
	container_of(tx, struct mv_xor_desc_slot, async_tx)

42
#define mv_chan_to_devp(chan)           \
43
	((chan)->device->dmadev.dev)
44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
static void mv_desc_init(struct mv_xor_desc_slot *desc, unsigned long flags)
{
	struct mv_xor_desc *hw_desc = desc->hw_desc;

	hw_desc->status = (1 << 31);
	hw_desc->phy_next_desc = 0;
	hw_desc->desc_command = (1 << 31);
}

static u32 mv_desc_get_dest_addr(struct mv_xor_desc_slot *desc)
{
	struct mv_xor_desc *hw_desc = desc->hw_desc;
	return hw_desc->phy_dest_addr;
}

static u32 mv_desc_get_src_addr(struct mv_xor_desc_slot *desc,
				int src_idx)
{
	struct mv_xor_desc *hw_desc = desc->hw_desc;
	return hw_desc->phy_src_addr[src_idx];
}


static void mv_desc_set_byte_count(struct mv_xor_desc_slot *desc,
				   u32 byte_count)
{
	struct mv_xor_desc *hw_desc = desc->hw_desc;
	hw_desc->byte_count = byte_count;
}

static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc,
				  u32 next_desc_addr)
{
	struct mv_xor_desc *hw_desc = desc->hw_desc;
	BUG_ON(hw_desc->phy_next_desc);
	hw_desc->phy_next_desc = next_desc_addr;
}

static void mv_desc_clear_next_desc(struct mv_xor_desc_slot *desc)
{
	struct mv_xor_desc *hw_desc = desc->hw_desc;
	hw_desc->phy_next_desc = 0;
}

static void mv_desc_set_block_fill_val(struct mv_xor_desc_slot *desc, u32 val)
{
	desc->value = val;
}

static void mv_desc_set_dest_addr(struct mv_xor_desc_slot *desc,
				  dma_addr_t addr)
{
	struct mv_xor_desc *hw_desc = desc->hw_desc;
	hw_desc->phy_dest_addr = addr;
}

static int mv_chan_memset_slot_count(size_t len)
{
	return 1;
}

#define mv_chan_memcpy_slot_count(c) mv_chan_memset_slot_count(c)

static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc,
				 int index, dma_addr_t addr)
{
	struct mv_xor_desc *hw_desc = desc->hw_desc;
	hw_desc->phy_src_addr[index] = addr;
	if (desc->type == DMA_XOR)
		hw_desc->desc_command |= (1 << index);
}

static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan)
{
	return __raw_readl(XOR_CURR_DESC(chan));
}

static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan,
					u32 next_desc_addr)
{
	__raw_writel(next_desc_addr, XOR_NEXT_DESC(chan));
}

static void mv_chan_set_dest_pointer(struct mv_xor_chan *chan, u32 desc_addr)
{
	__raw_writel(desc_addr, XOR_DEST_POINTER(chan));
}

static void mv_chan_set_block_size(struct mv_xor_chan *chan, u32 block_size)
{
	__raw_writel(block_size, XOR_BLOCK_SIZE(chan));
}

static void mv_chan_set_value(struct mv_xor_chan *chan, u32 value)
{
	__raw_writel(value, XOR_INIT_VALUE_LOW(chan));
	__raw_writel(value, XOR_INIT_VALUE_HIGH(chan));
}

static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan)
{
	u32 val = __raw_readl(XOR_INTR_MASK(chan));
	val |= XOR_INTR_MASK_VALUE << (chan->idx * 16);
	__raw_writel(val, XOR_INTR_MASK(chan));
}

static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan)
{
	u32 intr_cause = __raw_readl(XOR_INTR_CAUSE(chan));
	intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF;
	return intr_cause;
}

static int mv_is_err_intr(u32 intr_cause)
{
	if (intr_cause & ((1<<4)|(1<<5)|(1<<6)|(1<<7)|(1<<8)|(1<<9)))
		return 1;

	return 0;
}

static void mv_xor_device_clear_eoc_cause(struct mv_xor_chan *chan)
{
168
	u32 val = ~(1 << (chan->idx * 16));
169
	dev_dbg(mv_chan_to_devp(chan), "%s, val 0x%08x\n", __func__, val);
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
	__raw_writel(val, XOR_INTR_CAUSE(chan));
}

static void mv_xor_device_clear_err_status(struct mv_xor_chan *chan)
{
	u32 val = 0xFFFF0000 >> (chan->idx * 16);
	__raw_writel(val, XOR_INTR_CAUSE(chan));
}

static int mv_can_chain(struct mv_xor_desc_slot *desc)
{
	struct mv_xor_desc_slot *chain_old_tail = list_entry(
		desc->chain_node.prev, struct mv_xor_desc_slot, chain_node);

	if (chain_old_tail->type != desc->type)
		return 0;
	if (desc->type == DMA_MEMSET)
		return 0;

	return 1;
}

static void mv_set_mode(struct mv_xor_chan *chan,
			       enum dma_transaction_type type)
{
	u32 op_mode;
	u32 config = __raw_readl(XOR_CONFIG(chan));

	switch (type) {
	case DMA_XOR:
		op_mode = XOR_OPERATION_MODE_XOR;
		break;
	case DMA_MEMCPY:
		op_mode = XOR_OPERATION_MODE_MEMCPY;
		break;
	case DMA_MEMSET:
		op_mode = XOR_OPERATION_MODE_MEMSET;
		break;
	default:
209
		dev_err(mv_chan_to_devp(chan),
210 211
			"error: unsupported operation %d.\n",
			type);
212 213 214 215 216 217 218 219 220 221 222 223 224 225
		BUG();
		return;
	}

	config &= ~0x7;
	config |= op_mode;
	__raw_writel(config, XOR_CONFIG(chan));
	chan->current_type = type;
}

static void mv_chan_activate(struct mv_xor_chan *chan)
{
	u32 activation;

226
	dev_dbg(mv_chan_to_devp(chan), " activate chan.\n");
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
	activation = __raw_readl(XOR_ACTIVATION(chan));
	activation |= 0x1;
	__raw_writel(activation, XOR_ACTIVATION(chan));
}

static char mv_chan_is_busy(struct mv_xor_chan *chan)
{
	u32 state = __raw_readl(XOR_ACTIVATION(chan));

	state = (state >> 4) & 0x3;

	return (state == 1) ? 1 : 0;
}

static int mv_chan_xor_slot_count(size_t len, int src_cnt)
{
	return 1;
}

/**
 * mv_xor_free_slots - flags descriptor slots for reuse
 * @slot: Slot to free
 * Caller must hold &mv_chan->lock while calling this function
 */
static void mv_xor_free_slots(struct mv_xor_chan *mv_chan,
			      struct mv_xor_desc_slot *slot)
{
254
	dev_dbg(mv_chan_to_devp(mv_chan), "%s %d slot %p\n",
255 256 257 258 259 260 261 262 263 264 265 266 267 268
		__func__, __LINE__, slot);

	slot->slots_per_op = 0;

}

/*
 * mv_xor_start_new_chain - program the engine to operate on new chain headed by
 * sw_desc
 * Caller must hold &mv_chan->lock while calling this function
 */
static void mv_xor_start_new_chain(struct mv_xor_chan *mv_chan,
				   struct mv_xor_desc_slot *sw_desc)
{
269
	dev_dbg(mv_chan_to_devp(mv_chan), "%s %d: sw_desc %p\n",
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
		__func__, __LINE__, sw_desc);
	if (sw_desc->type != mv_chan->current_type)
		mv_set_mode(mv_chan, sw_desc->type);

	if (sw_desc->type == DMA_MEMSET) {
		/* for memset requests we need to program the engine, no
		 * descriptors used.
		 */
		struct mv_xor_desc *hw_desc = sw_desc->hw_desc;
		mv_chan_set_dest_pointer(mv_chan, hw_desc->phy_dest_addr);
		mv_chan_set_block_size(mv_chan, sw_desc->unmap_len);
		mv_chan_set_value(mv_chan, sw_desc->value);
	} else {
		/* set the hardware chain */
		mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys);
	}
	mv_chan->pending += sw_desc->slot_cnt;
287
	mv_xor_issue_pending(&mv_chan->dmachan);
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
}

static dma_cookie_t
mv_xor_run_tx_complete_actions(struct mv_xor_desc_slot *desc,
	struct mv_xor_chan *mv_chan, dma_cookie_t cookie)
{
	BUG_ON(desc->async_tx.cookie < 0);

	if (desc->async_tx.cookie > 0) {
		cookie = desc->async_tx.cookie;

		/* call the callback (must not sleep or submit new
		 * operations to this channel)
		 */
		if (desc->async_tx.callback)
			desc->async_tx.callback(
				desc->async_tx.callback_param);

		/* unmap dma addresses
		 * (unmap_single vs unmap_page?)
		 */
		if (desc->group_head && desc->unmap_len) {
			struct mv_xor_desc_slot *unmap = desc->group_head;
311
			struct device *dev = mv_chan_to_devp(mv_chan);
312
			u32 len = unmap->unmap_len;
313 314 315
			enum dma_ctrl_flags flags = desc->async_tx.flags;
			u32 src_cnt;
			dma_addr_t addr;
316
			dma_addr_t dest;
317

318 319
			src_cnt = unmap->unmap_src_cnt;
			dest = mv_desc_get_dest_addr(unmap);
320
			if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
321 322 323 324 325 326 327
				enum dma_data_direction dir;

				if (src_cnt > 1) /* is xor ? */
					dir = DMA_BIDIRECTIONAL;
				else
					dir = DMA_FROM_DEVICE;
				dma_unmap_page(dev, dest, len, dir);
328 329 330 331 332 333
			}

			if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
				while (src_cnt--) {
					addr = mv_desc_get_src_addr(unmap,
								    src_cnt);
334 335
					if (addr == dest)
						continue;
336 337 338
					dma_unmap_page(dev, addr, len,
						       DMA_TO_DEVICE);
				}
339 340 341 342 343 344
			}
			desc->group_head = NULL;
		}
	}

	/* run dependent operations */
345
	dma_run_dependencies(&desc->async_tx);
346 347 348 349 350 351 352 353 354

	return cookie;
}

static int
mv_xor_clean_completed_slots(struct mv_xor_chan *mv_chan)
{
	struct mv_xor_desc_slot *iter, *_iter;

355
	dev_dbg(mv_chan_to_devp(mv_chan), "%s %d\n", __func__, __LINE__);
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
	list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
				 completed_node) {

		if (async_tx_test_ack(&iter->async_tx)) {
			list_del(&iter->completed_node);
			mv_xor_free_slots(mv_chan, iter);
		}
	}
	return 0;
}

static int
mv_xor_clean_slot(struct mv_xor_desc_slot *desc,
	struct mv_xor_chan *mv_chan)
{
371
	dev_dbg(mv_chan_to_devp(mv_chan), "%s %d: desc %p flags %d\n",
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
		__func__, __LINE__, desc, desc->async_tx.flags);
	list_del(&desc->chain_node);
	/* the client is allowed to attach dependent operations
	 * until 'ack' is set
	 */
	if (!async_tx_test_ack(&desc->async_tx)) {
		/* move this slot to the completed_slots */
		list_add_tail(&desc->completed_node, &mv_chan->completed_slots);
		return 0;
	}

	mv_xor_free_slots(mv_chan, desc);
	return 0;
}

static void __mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
{
	struct mv_xor_desc_slot *iter, *_iter;
	dma_cookie_t cookie = 0;
	int busy = mv_chan_is_busy(mv_chan);
	u32 current_desc = mv_chan_get_current_desc(mv_chan);
	int seen_current = 0;

395 396
	dev_dbg(mv_chan_to_devp(mv_chan), "%s %d\n", __func__, __LINE__);
	dev_dbg(mv_chan_to_devp(mv_chan), "current_desc %x\n", current_desc);
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
	mv_xor_clean_completed_slots(mv_chan);

	/* free completed slots from the chain starting with
	 * the oldest descriptor
	 */

	list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
					chain_node) {
		prefetch(_iter);
		prefetch(&_iter->async_tx);

		/* do not advance past the current descriptor loaded into the
		 * hardware channel, subsequent descriptors are either in
		 * process or have not been submitted
		 */
		if (seen_current)
			break;

		/* stop the search if we reach the current descriptor and the
		 * channel is busy
		 */
		if (iter->async_tx.phys == current_desc) {
			seen_current = 1;
			if (busy)
				break;
		}

		cookie = mv_xor_run_tx_complete_actions(iter, mv_chan, cookie);

		if (mv_xor_clean_slot(iter, mv_chan))
			break;
	}

	if ((busy == 0) && !list_empty(&mv_chan->chain)) {
		struct mv_xor_desc_slot *chain_head;
		chain_head = list_entry(mv_chan->chain.next,
					struct mv_xor_desc_slot,
					chain_node);

		mv_xor_start_new_chain(mv_chan, chain_head);
	}

	if (cookie > 0)
440
		mv_chan->dmachan.completed_cookie = cookie;
441 442 443 444 445 446 447 448 449 450 451 452 453
}

static void
mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
{
	spin_lock_bh(&mv_chan->lock);
	__mv_xor_slot_cleanup(mv_chan);
	spin_unlock_bh(&mv_chan->lock);
}

static void mv_xor_tasklet(unsigned long data)
{
	struct mv_xor_chan *chan = (struct mv_xor_chan *) data;
454
	mv_xor_slot_cleanup(chan);
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
}

static struct mv_xor_desc_slot *
mv_xor_alloc_slots(struct mv_xor_chan *mv_chan, int num_slots,
		    int slots_per_op)
{
	struct mv_xor_desc_slot *iter, *_iter, *alloc_start = NULL;
	LIST_HEAD(chain);
	int slots_found, retry = 0;

	/* start search from the last allocated descrtiptor
	 * if a contiguous allocation can not be found start searching
	 * from the beginning of the list
	 */
retry:
	slots_found = 0;
	if (retry == 0)
		iter = mv_chan->last_used;
	else
		iter = list_entry(&mv_chan->all_slots,
			struct mv_xor_desc_slot,
			slot_node);

	list_for_each_entry_safe_continue(
		iter, _iter, &mv_chan->all_slots, slot_node) {
		prefetch(_iter);
		prefetch(&_iter->async_tx);
		if (iter->slots_per_op) {
			/* give up after finding the first busy slot
			 * on the second pass through the list
			 */
			if (retry)
				break;

			slots_found = 0;
			continue;
		}

		/* start the allocation if the slot is correctly aligned */
		if (!slots_found++)
			alloc_start = iter;

		if (slots_found == num_slots) {
			struct mv_xor_desc_slot *alloc_tail = NULL;
			struct mv_xor_desc_slot *last_used = NULL;
			iter = alloc_start;
			while (num_slots) {
				int i;

				/* pre-ack all but the last descriptor */
				async_tx_ack(&iter->async_tx);

				list_add_tail(&iter->chain_node, &chain);
				alloc_tail = iter;
				iter->async_tx.cookie = 0;
				iter->slot_cnt = num_slots;
				iter->xor_check_result = NULL;
				for (i = 0; i < slots_per_op; i++) {
					iter->slots_per_op = slots_per_op - i;
					last_used = iter;
					iter = list_entry(iter->slot_node.next,
						struct mv_xor_desc_slot,
						slot_node);
				}
				num_slots -= slots_per_op;
			}
			alloc_tail->group_head = alloc_start;
			alloc_tail->async_tx.cookie = -EBUSY;
523
			list_splice(&chain, &alloc_tail->tx_list);
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
			mv_chan->last_used = last_used;
			mv_desc_clear_next_desc(alloc_start);
			mv_desc_clear_next_desc(alloc_tail);
			return alloc_tail;
		}
	}
	if (!retry++)
		goto retry;

	/* try to free some slots if the allocation fails */
	tasklet_schedule(&mv_chan->irq_tasklet);

	return NULL;
}

/************************ DMA engine API functions ****************************/
static dma_cookie_t
mv_xor_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx);
	struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan);
	struct mv_xor_desc_slot *grp_start, *old_chain_tail;
	dma_cookie_t cookie;
	int new_hw_chain = 1;

549
	dev_dbg(mv_chan_to_devp(mv_chan),
550 551 552 553 554 555
		"%s sw_desc %p: async_tx %p\n",
		__func__, sw_desc, &sw_desc->async_tx);

	grp_start = sw_desc->group_head;

	spin_lock_bh(&mv_chan->lock);
556
	cookie = dma_cookie_assign(tx);
557 558

	if (list_empty(&mv_chan->chain))
559
		list_splice_init(&sw_desc->tx_list, &mv_chan->chain);
560 561 562 563 564 565
	else {
		new_hw_chain = 0;

		old_chain_tail = list_entry(mv_chan->chain.prev,
					    struct mv_xor_desc_slot,
					    chain_node);
566
		list_splice_init(&grp_start->tx_list,
567 568 569 570 571
				 &old_chain_tail->chain_node);

		if (!mv_can_chain(grp_start))
			goto submit_done;

572
		dev_dbg(mv_chan_to_devp(mv_chan), "Append to last desc %x\n",
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
			old_chain_tail->async_tx.phys);

		/* fix up the hardware chain */
		mv_desc_set_next_desc(old_chain_tail, grp_start->async_tx.phys);

		/* if the channel is not busy */
		if (!mv_chan_is_busy(mv_chan)) {
			u32 current_desc = mv_chan_get_current_desc(mv_chan);
			/*
			 * and the curren desc is the end of the chain before
			 * the append, then we need to start the channel
			 */
			if (current_desc == old_chain_tail->async_tx.phys)
				new_hw_chain = 1;
		}
	}

	if (new_hw_chain)
		mv_xor_start_new_chain(mv_chan, grp_start);

submit_done:
	spin_unlock_bh(&mv_chan->lock);

	return cookie;
}

/* returns the number of allocated descriptors */
600
static int mv_xor_alloc_chan_resources(struct dma_chan *chan)
601 602 603 604 605
{
	char *hw_desc;
	int idx;
	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
	struct mv_xor_desc_slot *slot = NULL;
606
	int num_descs_in_pool = mv_chan->device->pool_size/MV_XOR_SLOT_SIZE;
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623

	/* Allocate descriptor slots */
	idx = mv_chan->slots_allocated;
	while (idx < num_descs_in_pool) {
		slot = kzalloc(sizeof(*slot), GFP_KERNEL);
		if (!slot) {
			printk(KERN_INFO "MV XOR Channel only initialized"
				" %d descriptor slots", idx);
			break;
		}
		hw_desc = (char *) mv_chan->device->dma_desc_pool_virt;
		slot->hw_desc = (void *) &hw_desc[idx * MV_XOR_SLOT_SIZE];

		dma_async_tx_descriptor_init(&slot->async_tx, chan);
		slot->async_tx.tx_submit = mv_xor_tx_submit;
		INIT_LIST_HEAD(&slot->chain_node);
		INIT_LIST_HEAD(&slot->slot_node);
624
		INIT_LIST_HEAD(&slot->tx_list);
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
		hw_desc = (char *) mv_chan->device->dma_desc_pool;
		slot->async_tx.phys =
			(dma_addr_t) &hw_desc[idx * MV_XOR_SLOT_SIZE];
		slot->idx = idx++;

		spin_lock_bh(&mv_chan->lock);
		mv_chan->slots_allocated = idx;
		list_add_tail(&slot->slot_node, &mv_chan->all_slots);
		spin_unlock_bh(&mv_chan->lock);
	}

	if (mv_chan->slots_allocated && !mv_chan->last_used)
		mv_chan->last_used = list_entry(mv_chan->all_slots.next,
					struct mv_xor_desc_slot,
					slot_node);

641
	dev_dbg(mv_chan_to_devp(mv_chan),
642 643 644 645 646 647 648 649 650 651 652 653 654 655
		"allocated %d descriptor slots last_used: %p\n",
		mv_chan->slots_allocated, mv_chan->last_used);

	return mv_chan->slots_allocated ? : -ENOMEM;
}

static struct dma_async_tx_descriptor *
mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
		size_t len, unsigned long flags)
{
	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
	struct mv_xor_desc_slot *sw_desc, *grp_start;
	int slot_cnt;

656
	dev_dbg(mv_chan_to_devp(mv_chan),
657 658 659 660 661
		"%s dest: %x src %x len: %u flags: %ld\n",
		__func__, dest, src, len, flags);
	if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
		return NULL;

662
	BUG_ON(len > MV_XOR_MAX_BYTE_COUNT);
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679

	spin_lock_bh(&mv_chan->lock);
	slot_cnt = mv_chan_memcpy_slot_count(len);
	sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
	if (sw_desc) {
		sw_desc->type = DMA_MEMCPY;
		sw_desc->async_tx.flags = flags;
		grp_start = sw_desc->group_head;
		mv_desc_init(grp_start, flags);
		mv_desc_set_byte_count(grp_start, len);
		mv_desc_set_dest_addr(sw_desc->group_head, dest);
		mv_desc_set_src_addr(grp_start, 0, src);
		sw_desc->unmap_src_cnt = 1;
		sw_desc->unmap_len = len;
	}
	spin_unlock_bh(&mv_chan->lock);

680
	dev_dbg(mv_chan_to_devp(mv_chan),
681 682 683 684 685 686 687 688 689 690 691 692 693 694
		"%s sw_desc %p async_tx %p\n",
		__func__, sw_desc, sw_desc ? &sw_desc->async_tx : 0);

	return sw_desc ? &sw_desc->async_tx : NULL;
}

static struct dma_async_tx_descriptor *
mv_xor_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
		       size_t len, unsigned long flags)
{
	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
	struct mv_xor_desc_slot *sw_desc, *grp_start;
	int slot_cnt;

695
	dev_dbg(mv_chan_to_devp(mv_chan),
696 697 698 699 700
		"%s dest: %x len: %u flags: %ld\n",
		__func__, dest, len, flags);
	if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
		return NULL;

701
	BUG_ON(len > MV_XOR_MAX_BYTE_COUNT);
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717

	spin_lock_bh(&mv_chan->lock);
	slot_cnt = mv_chan_memset_slot_count(len);
	sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
	if (sw_desc) {
		sw_desc->type = DMA_MEMSET;
		sw_desc->async_tx.flags = flags;
		grp_start = sw_desc->group_head;
		mv_desc_init(grp_start, flags);
		mv_desc_set_byte_count(grp_start, len);
		mv_desc_set_dest_addr(sw_desc->group_head, dest);
		mv_desc_set_block_fill_val(grp_start, value);
		sw_desc->unmap_src_cnt = 1;
		sw_desc->unmap_len = len;
	}
	spin_unlock_bh(&mv_chan->lock);
718
	dev_dbg(mv_chan_to_devp(mv_chan),
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
		"%s sw_desc %p async_tx %p \n",
		__func__, sw_desc, &sw_desc->async_tx);
	return sw_desc ? &sw_desc->async_tx : NULL;
}

static struct dma_async_tx_descriptor *
mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
		    unsigned int src_cnt, size_t len, unsigned long flags)
{
	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
	struct mv_xor_desc_slot *sw_desc, *grp_start;
	int slot_cnt;

	if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
		return NULL;

735
	BUG_ON(len > MV_XOR_MAX_BYTE_COUNT);
736

737
	dev_dbg(mv_chan_to_devp(mv_chan),
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
		"%s src_cnt: %d len: dest %x %u flags: %ld\n",
		__func__, src_cnt, len, dest, flags);

	spin_lock_bh(&mv_chan->lock);
	slot_cnt = mv_chan_xor_slot_count(len, src_cnt);
	sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
	if (sw_desc) {
		sw_desc->type = DMA_XOR;
		sw_desc->async_tx.flags = flags;
		grp_start = sw_desc->group_head;
		mv_desc_init(grp_start, flags);
		/* the byte count field is the same as in memcpy desc*/
		mv_desc_set_byte_count(grp_start, len);
		mv_desc_set_dest_addr(sw_desc->group_head, dest);
		sw_desc->unmap_src_cnt = src_cnt;
		sw_desc->unmap_len = len;
		while (src_cnt--)
			mv_desc_set_src_addr(grp_start, src_cnt, src[src_cnt]);
	}
	spin_unlock_bh(&mv_chan->lock);
758
	dev_dbg(mv_chan_to_devp(mv_chan),
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
		"%s sw_desc %p async_tx %p \n",
		__func__, sw_desc, &sw_desc->async_tx);
	return sw_desc ? &sw_desc->async_tx : NULL;
}

static void mv_xor_free_chan_resources(struct dma_chan *chan)
{
	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
	struct mv_xor_desc_slot *iter, *_iter;
	int in_use_descs = 0;

	mv_xor_slot_cleanup(mv_chan);

	spin_lock_bh(&mv_chan->lock);
	list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
					chain_node) {
		in_use_descs++;
		list_del(&iter->chain_node);
	}
	list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
				 completed_node) {
		in_use_descs++;
		list_del(&iter->completed_node);
	}
	list_for_each_entry_safe_reverse(
		iter, _iter, &mv_chan->all_slots, slot_node) {
		list_del(&iter->slot_node);
		kfree(iter);
		mv_chan->slots_allocated--;
	}
	mv_chan->last_used = NULL;

791
	dev_dbg(mv_chan_to_devp(mv_chan), "%s slots_allocated %d\n",
792 793 794 795
		__func__, mv_chan->slots_allocated);
	spin_unlock_bh(&mv_chan->lock);

	if (in_use_descs)
796
		dev_err(mv_chan_to_devp(mv_chan),
797 798 799 800
			"freeing %d in use descriptors!\n", in_use_descs);
}

/**
801
 * mv_xor_status - poll the status of an XOR transaction
802 803
 * @chan: XOR channel handle
 * @cookie: XOR transaction identifier
804
 * @txstate: XOR transactions state holder (or NULL)
805
 */
806
static enum dma_status mv_xor_status(struct dma_chan *chan,
807
					  dma_cookie_t cookie,
808
					  struct dma_tx_state *txstate)
809 810 811 812
{
	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
	enum dma_status ret;

813
	ret = dma_cookie_status(chan, cookie, txstate);
814 815 816 817 818 819
	if (ret == DMA_SUCCESS) {
		mv_xor_clean_completed_slots(mv_chan);
		return ret;
	}
	mv_xor_slot_cleanup(mv_chan);

820
	return dma_cookie_status(chan, cookie, txstate);
821 822 823 824 825 826 827
}

static void mv_dump_xor_regs(struct mv_xor_chan *chan)
{
	u32 val;

	val = __raw_readl(XOR_CONFIG(chan));
828
	dev_err(mv_chan_to_devp(chan),
829
		"config       0x%08x.\n", val);
830 831

	val = __raw_readl(XOR_ACTIVATION(chan));
832
	dev_err(mv_chan_to_devp(chan),
833
		"activation   0x%08x.\n", val);
834 835

	val = __raw_readl(XOR_INTR_CAUSE(chan));
836
	dev_err(mv_chan_to_devp(chan),
837
		"intr cause   0x%08x.\n", val);
838 839

	val = __raw_readl(XOR_INTR_MASK(chan));
840
	dev_err(mv_chan_to_devp(chan),
841
		"intr mask    0x%08x.\n", val);
842 843

	val = __raw_readl(XOR_ERROR_CAUSE(chan));
844
	dev_err(mv_chan_to_devp(chan),
845
		"error cause  0x%08x.\n", val);
846 847

	val = __raw_readl(XOR_ERROR_ADDR(chan));
848
	dev_err(mv_chan_to_devp(chan),
849
		"error addr   0x%08x.\n", val);
850 851 852 853 854 855
}

static void mv_xor_err_interrupt_handler(struct mv_xor_chan *chan,
					 u32 intr_cause)
{
	if (intr_cause & (1 << 4)) {
856
	     dev_dbg(mv_chan_to_devp(chan),
857 858 859 860
		     "ignore this error\n");
	     return;
	}

861
	dev_err(mv_chan_to_devp(chan),
862 863
		"error on chan %d. intr cause 0x%08x.\n",
		chan->idx, intr_cause);
864 865 866 867 868 869 870 871 872 873

	mv_dump_xor_regs(chan);
	BUG();
}

static irqreturn_t mv_xor_interrupt_handler(int irq, void *data)
{
	struct mv_xor_chan *chan = data;
	u32 intr_cause = mv_chan_get_intr_cause(chan);

874
	dev_dbg(mv_chan_to_devp(chan), "intr cause %x\n", intr_cause);
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925

	if (mv_is_err_intr(intr_cause))
		mv_xor_err_interrupt_handler(chan, intr_cause);

	tasklet_schedule(&chan->irq_tasklet);

	mv_xor_device_clear_eoc_cause(chan);

	return IRQ_HANDLED;
}

static void mv_xor_issue_pending(struct dma_chan *chan)
{
	struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);

	if (mv_chan->pending >= MV_XOR_THRESHOLD) {
		mv_chan->pending = 0;
		mv_chan_activate(mv_chan);
	}
}

/*
 * Perform a transaction to verify the HW works.
 */
#define MV_XOR_TEST_SIZE 2000

static int __devinit mv_xor_memcpy_self_test(struct mv_xor_device *device)
{
	int i;
	void *src, *dest;
	dma_addr_t src_dma, dest_dma;
	struct dma_chan *dma_chan;
	dma_cookie_t cookie;
	struct dma_async_tx_descriptor *tx;
	int err = 0;

	src = kmalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
	if (!src)
		return -ENOMEM;

	dest = kzalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
	if (!dest) {
		kfree(src);
		return -ENOMEM;
	}

	/* Fill in src buffer */
	for (i = 0; i < MV_XOR_TEST_SIZE; i++)
		((u8 *) src)[i] = (u8)i;

	/* Start copy, using first DMA channel */
926
	dma_chan = container_of(device->dmadev.channels.next,
927 928
				struct dma_chan,
				device_node);
929
	if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
		err = -ENODEV;
		goto out;
	}

	dest_dma = dma_map_single(dma_chan->device->dev, dest,
				  MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);

	src_dma = dma_map_single(dma_chan->device->dev, src,
				 MV_XOR_TEST_SIZE, DMA_TO_DEVICE);

	tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
				    MV_XOR_TEST_SIZE, 0);
	cookie = mv_xor_tx_submit(tx);
	mv_xor_issue_pending(dma_chan);
	async_tx_ack(tx);
	msleep(1);

947
	if (mv_xor_status(dma_chan, cookie, NULL) !=
948
	    DMA_SUCCESS) {
949 950
		dev_err(dma_chan->device->dev,
			"Self-test copy timed out, disabling\n");
951 952 953 954
		err = -ENODEV;
		goto free_resources;
	}

955
	dma_sync_single_for_cpu(dma_chan->device->dev, dest_dma,
956 957
				MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
	if (memcmp(src, dest, MV_XOR_TEST_SIZE)) {
958 959
		dev_err(dma_chan->device->dev,
			"Self-test copy failed compare, disabling\n");
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
		err = -ENODEV;
		goto free_resources;
	}

free_resources:
	mv_xor_free_chan_resources(dma_chan);
out:
	kfree(src);
	kfree(dest);
	return err;
}

#define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
static int __devinit
mv_xor_xor_self_test(struct mv_xor_device *device)
{
	int i, src_idx;
	struct page *dest;
	struct page *xor_srcs[MV_XOR_NUM_SRC_TEST];
	dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST];
	dma_addr_t dest_dma;
	struct dma_async_tx_descriptor *tx;
	struct dma_chan *dma_chan;
	dma_cookie_t cookie;
	u8 cmp_byte = 0;
	u32 cmp_word;
	int err = 0;

	for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
		xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
990 991
		if (!xor_srcs[src_idx]) {
			while (src_idx--)
992
				__free_page(xor_srcs[src_idx]);
993 994
			return -ENOMEM;
		}
995 996 997
	}

	dest = alloc_page(GFP_KERNEL);
998 999
	if (!dest) {
		while (src_idx--)
1000
			__free_page(xor_srcs[src_idx]);
1001 1002
		return -ENOMEM;
	}
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

	/* Fill in src buffers */
	for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
		u8 *ptr = page_address(xor_srcs[src_idx]);
		for (i = 0; i < PAGE_SIZE; i++)
			ptr[i] = (1 << src_idx);
	}

	for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++)
		cmp_byte ^= (u8) (1 << src_idx);

	cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
		(cmp_byte << 8) | cmp_byte;

	memset(page_address(dest), 0, PAGE_SIZE);

1019
	dma_chan = container_of(device->dmadev.channels.next,
1020 1021
				struct dma_chan,
				device_node);
1022
	if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
		err = -ENODEV;
		goto out;
	}

	/* test xor */
	dest_dma = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE,
				DMA_FROM_DEVICE);

	for (i = 0; i < MV_XOR_NUM_SRC_TEST; i++)
		dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
					   0, PAGE_SIZE, DMA_TO_DEVICE);

	tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
				 MV_XOR_NUM_SRC_TEST, PAGE_SIZE, 0);

	cookie = mv_xor_tx_submit(tx);
	mv_xor_issue_pending(dma_chan);
	async_tx_ack(tx);
	msleep(8);

1043
	if (mv_xor_status(dma_chan, cookie, NULL) !=
1044
	    DMA_SUCCESS) {
1045 1046
		dev_err(dma_chan->device->dev,
			"Self-test xor timed out, disabling\n");
1047 1048 1049 1050
		err = -ENODEV;
		goto free_resources;
	}

1051
	dma_sync_single_for_cpu(dma_chan->device->dev, dest_dma,
1052 1053 1054 1055
				PAGE_SIZE, DMA_FROM_DEVICE);
	for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
		u32 *ptr = page_address(dest);
		if (ptr[i] != cmp_word) {
1056 1057 1058 1059
			dev_err(dma_chan->device->dev,
				"Self-test xor failed compare, disabling."
				" index %d, data %x, expected %x\n", i,
				ptr[i], cmp_word);
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
			err = -ENODEV;
			goto free_resources;
		}
	}

free_resources:
	mv_xor_free_chan_resources(dma_chan);
out:
	src_idx = MV_XOR_NUM_SRC_TEST;
	while (src_idx--)
		__free_page(xor_srcs[src_idx]);
	__free_page(dest);
	return err;
}

1075
static int mv_xor_channel_remove(struct mv_xor_device *device)
1076 1077 1078
{
	struct dma_chan *chan, *_chan;
	struct mv_xor_chan *mv_chan;
1079
	struct device *dev = device->dmadev.dev;
1080

1081
	dma_async_device_unregister(&device->dmadev);
1082

1083
	dma_free_coherent(dev, device->pool_size,
1084
			  device->dma_desc_pool_virt, device->dma_desc_pool);
1085

1086
	list_for_each_entry_safe(chan, _chan, &device->dmadev.channels,
1087
				 device_node) {
1088 1089 1090 1091 1092 1093 1094
		mv_chan = to_mv_xor_chan(chan);
		list_del(&chan->device_node);
	}

	return 0;
}

1095
static struct mv_xor_device *
1096
mv_xor_channel_add(struct mv_xor_private *msp,
1097 1098 1099
		   struct platform_device *pdev,
		   int hw_id, dma_cap_mask_t cap_mask,
		   size_t pool_size, int irq)
1100 1101 1102 1103 1104 1105 1106 1107
{
	int ret = 0;
	struct mv_xor_device *adev;
	struct mv_xor_chan *mv_chan;
	struct dma_device *dma_dev;

	adev = devm_kzalloc(&pdev->dev, sizeof(*adev), GFP_KERNEL);
	if (!adev)
1108
		return ERR_PTR(-ENOMEM);
1109

1110
	dma_dev = &adev->dmadev;
1111 1112 1113 1114 1115

	/* allocate coherent memory for hardware descriptors
	 * note: writecombine gives slightly better performance, but
	 * requires that we explicitly flush the writes
	 */
1116
	adev->pool_size = pool_size;
1117
	adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev,
1118
							  adev->pool_size,
1119 1120 1121
							  &adev->dma_desc_pool,
							  GFP_KERNEL);
	if (!adev->dma_desc_pool_virt)
1122
		return ERR_PTR(-ENOMEM);
1123 1124

	/* discover transaction capabilites from the platform data */
1125 1126
	dma_dev->cap_mask = cap_mask;
	adev->shared = msp;
1127 1128 1129 1130 1131 1132

	INIT_LIST_HEAD(&dma_dev->channels);

	/* set base routines */
	dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources;
	dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
1133
	dma_dev->device_tx_status = mv_xor_status;
1134 1135 1136 1137 1138 1139 1140 1141 1142
	dma_dev->device_issue_pending = mv_xor_issue_pending;
	dma_dev->dev = &pdev->dev;

	/* set prep routines based on capability */
	if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
		dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy;
	if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask))
		dma_dev->device_prep_dma_memset = mv_xor_prep_dma_memset;
	if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1143
		dma_dev->max_xor = 8;
1144 1145 1146 1147 1148 1149 1150 1151 1152
		dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor;
	}

	mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL);
	if (!mv_chan) {
		ret = -ENOMEM;
		goto err_free_dma;
	}
	mv_chan->device = adev;
1153
	mv_chan->idx = hw_id;
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	mv_chan->mmr_base = adev->shared->xor_base;

	if (!mv_chan->mmr_base) {
		ret = -ENOMEM;
		goto err_free_dma;
	}
	tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long)
		     mv_chan);

	/* clear errors before enabling interrupts */
	mv_xor_device_clear_err_status(mv_chan);

	ret = devm_request_irq(&pdev->dev, irq,
			       mv_xor_interrupt_handler,
			       0, dev_name(&pdev->dev), mv_chan);
	if (ret)
		goto err_free_dma;

	mv_chan_unmask_interrupts(mv_chan);

	mv_set_mode(mv_chan, DMA_MEMCPY);

	spin_lock_init(&mv_chan->lock);
	INIT_LIST_HEAD(&mv_chan->chain);
	INIT_LIST_HEAD(&mv_chan->completed_slots);
	INIT_LIST_HEAD(&mv_chan->all_slots);
1180 1181
	mv_chan->dmachan.device = dma_dev;
	dma_cookie_init(&mv_chan->dmachan);
1182

1183
	list_add_tail(&mv_chan->dmachan.device_node, &dma_dev->channels);
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

	if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
		ret = mv_xor_memcpy_self_test(adev);
		dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
		if (ret)
			goto err_free_dma;
	}

	if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
		ret = mv_xor_xor_self_test(adev);
		dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
		if (ret)
			goto err_free_dma;
	}

1199
	dev_info(&pdev->dev, "Marvell XOR: "
1200 1201 1202 1203 1204 1205 1206
	  "( %s%s%s%s)\n",
	  dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
	  dma_has_cap(DMA_MEMSET, dma_dev->cap_mask)  ? "fill " : "",
	  dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
	  dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");

	dma_async_device_register(dma_dev);
1207
	return adev;
1208 1209

 err_free_dma:
1210
	dma_free_coherent(&pdev->dev, pool_size,
1211
			adev->dma_desc_pool_virt, adev->dma_desc_pool);
1212 1213 1214
	return ERR_PTR(ret);
}

1215
static void
1216
mv_xor_conf_mbus_windows(struct mv_xor_private *msp,
1217
			 const struct mbus_dram_target_info *dram)
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
{
	void __iomem *base = msp->xor_base;
	u32 win_enable = 0;
	int i;

	for (i = 0; i < 8; i++) {
		writel(0, base + WINDOW_BASE(i));
		writel(0, base + WINDOW_SIZE(i));
		if (i < 4)
			writel(0, base + WINDOW_REMAP_HIGH(i));
	}

	for (i = 0; i < dram->num_cs; i++) {
1231
		const struct mbus_dram_window *cs = dram->cs + i;
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245

		writel((cs->base & 0xffff0000) |
		       (cs->mbus_attr << 8) |
		       dram->mbus_dram_target_id, base + WINDOW_BASE(i));
		writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));

		win_enable |= (1 << i);
		win_enable |= 3 << (16 + (2 * i));
	}

	writel(win_enable, base + WINDOW_BAR_ENABLE(0));
	writel(win_enable, base + WINDOW_BAR_ENABLE(1));
}

1246
static int mv_xor_probe(struct platform_device *pdev)
1247
{
1248
	const struct mbus_dram_target_info *dram;
1249
	struct mv_xor_private *msp;
1250
	struct mv_xor_platform_data *pdata = pdev->dev.platform_data;
1251
	struct resource *res;
1252
	int i, ret;
1253

1254
	dev_notice(&pdev->dev, "Marvell XOR driver\n");
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264

	msp = devm_kzalloc(&pdev->dev, sizeof(*msp), GFP_KERNEL);
	if (!msp)
		return -ENOMEM;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res)
		return -ENODEV;

	msp->xor_base = devm_ioremap(&pdev->dev, res->start,
1265
				     resource_size(res));
1266 1267 1268 1269 1270 1271 1272 1273
	if (!msp->xor_base)
		return -EBUSY;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	if (!res)
		return -ENODEV;

	msp->xor_high_base = devm_ioremap(&pdev->dev, res->start,
1274
					  resource_size(res));
1275 1276 1277 1278 1279 1280 1281 1282
	if (!msp->xor_high_base)
		return -EBUSY;

	platform_set_drvdata(pdev, msp);

	/*
	 * (Re-)program MBUS remapping windows if we are asked to.
	 */
1283 1284 1285
	dram = mv_mbus_dram_info();
	if (dram)
		mv_xor_conf_mbus_windows(msp, dram);
1286

1287 1288 1289 1290 1291 1292 1293
	/* Not all platforms can gate the clock, so it is not
	 * an error if the clock does not exists.
	 */
	msp->clk = clk_get(&pdev->dev, NULL);
	if (!IS_ERR(msp->clk))
		clk_prepare_enable(msp->clk);

1294 1295
	if (pdata && pdata->channels) {
		for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) {
1296
			struct mv_xor_channel_data *cd;
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
			int irq;

			cd = &pdata->channels[i];
			if (!cd) {
				ret = -ENODEV;
				goto err_channel_add;
			}

			irq = platform_get_irq(pdev, i);
			if (irq < 0) {
				ret = irq;
				goto err_channel_add;
			}

			msp->channels[i] =
				mv_xor_channel_add(msp, pdev, cd->hw_id,
						   cd->cap_mask,
						   cd->pool_size, irq);
			if (IS_ERR(msp->channels[i])) {
				ret = PTR_ERR(msp->channels[i]);
				goto err_channel_add;
			}
		}
	}

1322
	return 0;
1323 1324 1325 1326 1327 1328 1329 1330 1331

err_channel_add:
	for (i = 0; i < MV_XOR_MAX_CHANNELS; i++)
		if (msp->channels[i])
			mv_xor_channel_remove(msp->channels[i]);

	clk_disable_unprepare(msp->clk);
	clk_put(msp->clk);
	return ret;
1332 1333
}

1334
static int mv_xor_remove(struct platform_device *pdev)
1335
{
1336
	struct mv_xor_private *msp = platform_get_drvdata(pdev);
1337 1338 1339 1340 1341 1342
	int i;

	for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) {
		if (msp->channels[i])
			mv_xor_channel_remove(msp->channels[i]);
	}
1343 1344 1345 1346 1347 1348

	if (!IS_ERR(msp->clk)) {
		clk_disable_unprepare(msp->clk);
		clk_put(msp->clk);
	}

1349 1350 1351
	return 0;
}

1352 1353 1354
static struct platform_driver mv_xor_driver = {
	.probe		= mv_xor_probe,
	.remove		= mv_xor_remove,
1355 1356
	.driver		= {
		.owner	= THIS_MODULE,
1357
		.name	= MV_XOR_NAME,
1358 1359 1360 1361 1362 1363
	},
};


static int __init mv_xor_init(void)
{
1364
	return platform_driver_register(&mv_xor_driver);
1365 1366 1367 1368 1369 1370 1371
}
module_init(mv_xor_init);

/* it's currently unsafe to unload this module */
#if 0
static void __exit mv_xor_exit(void)
{
1372
	platform_driver_unregister(&mv_xor_driver);
1373 1374 1375 1376 1377 1378 1379 1380 1381
	return;
}

module_exit(mv_xor_exit);
#endif

MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
MODULE_LICENSE("GPL");