chip.c 27.0 KB
Newer Older
1
/*
2
 * Copyright (c) 2014 Broadcom Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */
16 17 18
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/list.h>
19
#include <linux/ssb/ssb_regs.h>
20
#include <linux/bcma/bcma.h>
21
#include <linux/bcma/bcma_regs.h>
22

23 24
#include <defs.h>
#include <soc.h>
25 26
#include <brcm_hw_ids.h>
#include <brcmu_utils.h>
27
#include <chipcommon.h>
28
#include "debug.h"
29
#include "chip.h"
30

31 32 33 34
/* SOC Interconnect types (aka chip types) */
#define SOCI_SB		0
#define SOCI_AI		1

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/* PL-368 DMP definitions */
#define DMP_DESC_TYPE_MSK	0x0000000F
#define  DMP_DESC_EMPTY		0x00000000
#define  DMP_DESC_VALID		0x00000001
#define  DMP_DESC_COMPONENT	0x00000001
#define  DMP_DESC_MASTER_PORT	0x00000003
#define  DMP_DESC_ADDRESS	0x00000005
#define  DMP_DESC_ADDRSIZE_GT32	0x00000008
#define  DMP_DESC_EOT		0x0000000F

#define DMP_COMP_DESIGNER	0xFFF00000
#define DMP_COMP_DESIGNER_S	20
#define DMP_COMP_PARTNUM	0x000FFF00
#define DMP_COMP_PARTNUM_S	8
#define DMP_COMP_CLASS		0x000000F0
#define DMP_COMP_CLASS_S	4
#define DMP_COMP_REVISION	0xFF000000
#define DMP_COMP_REVISION_S	24
#define DMP_COMP_NUM_SWRAP	0x00F80000
#define DMP_COMP_NUM_SWRAP_S	19
#define DMP_COMP_NUM_MWRAP	0x0007C000
#define DMP_COMP_NUM_MWRAP_S	14
#define DMP_COMP_NUM_SPORT	0x00003E00
#define DMP_COMP_NUM_SPORT_S	9
#define DMP_COMP_NUM_MPORT	0x000001F0
#define DMP_COMP_NUM_MPORT_S	4

#define DMP_MASTER_PORT_UID	0x0000FF00
#define DMP_MASTER_PORT_UID_S	8
#define DMP_MASTER_PORT_NUM	0x000000F0
#define DMP_MASTER_PORT_NUM_S	4

#define DMP_SLAVE_ADDR_BASE	0xFFFFF000
#define DMP_SLAVE_ADDR_BASE_S	12
#define DMP_SLAVE_PORT_NUM	0x00000F00
#define DMP_SLAVE_PORT_NUM_S	8
#define DMP_SLAVE_TYPE		0x000000C0
#define DMP_SLAVE_TYPE_S	6
#define  DMP_SLAVE_TYPE_SLAVE	0
#define  DMP_SLAVE_TYPE_BRIDGE	1
#define  DMP_SLAVE_TYPE_SWRAP	2
#define  DMP_SLAVE_TYPE_MWRAP	3
#define DMP_SLAVE_SIZE_TYPE	0x00000030
#define DMP_SLAVE_SIZE_TYPE_S	4
#define  DMP_SLAVE_SIZE_4K	0
#define  DMP_SLAVE_SIZE_8K	1
#define  DMP_SLAVE_SIZE_16K	2
#define  DMP_SLAVE_SIZE_DESC	3

84 85 86 87 88 89 90 91 92 93 94
/* EROM CompIdentB */
#define CIB_REV_MASK		0xff000000
#define CIB_REV_SHIFT		24

/* ARM CR4 core specific control flag bits */
#define ARMCR4_BCMA_IOCTL_CPUHALT	0x0020

/* D11 core specific control flag bits */
#define D11_BCMA_IOCTL_PHYCLOCKEN	0x0004
#define D11_BCMA_IOCTL_PHYRESET		0x0008

95 96 97 98 99 100 101 102 103
/* chip core base & ramsize */
/* bcm4329 */
/* SDIO device core, ID 0x829 */
#define BCM4329_CORE_BUS_BASE		0x18011000
/* internal memory core, ID 0x80e */
#define BCM4329_CORE_SOCRAM_BASE	0x18003000
/* ARM Cortex M3 core, ID 0x82a */
#define BCM4329_CORE_ARM_BASE		0x18002000
#define BCM4329_RAMSIZE			0x48000
104 105 106
/* bcm43143 */
#define BCM43143_RAMSIZE		0x70000

107 108
#define CORE_SB(base, field) \
		(base + SBCONFIGOFF + offsetof(struct sbconfig, field))
109
#define	SBCOREREV(sbidh) \
110 111
	((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \
	  ((sbidh) & SSB_IDHIGH_RCLO))
112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
struct sbconfig {
	u32 PAD[2];
	u32 sbipsflag;	/* initiator port ocp slave flag */
	u32 PAD[3];
	u32 sbtpsflag;	/* target port ocp slave flag */
	u32 PAD[11];
	u32 sbtmerrloga;	/* (sonics >= 2.3) */
	u32 PAD;
	u32 sbtmerrlog;	/* (sonics >= 2.3) */
	u32 PAD[3];
	u32 sbadmatch3;	/* address match3 */
	u32 PAD;
	u32 sbadmatch2;	/* address match2 */
	u32 PAD;
	u32 sbadmatch1;	/* address match1 */
	u32 PAD[7];
	u32 sbimstate;	/* initiator agent state */
	u32 sbintvec;	/* interrupt mask */
	u32 sbtmstatelow;	/* target state */
	u32 sbtmstatehigh;	/* target state */
	u32 sbbwa0;		/* bandwidth allocation table0 */
	u32 PAD;
	u32 sbimconfiglow;	/* initiator configuration */
	u32 sbimconfighigh;	/* initiator configuration */
	u32 sbadmatch0;	/* address match0 */
	u32 PAD;
	u32 sbtmconfiglow;	/* target configuration */
	u32 sbtmconfighigh;	/* target configuration */
	u32 sbbconfig;	/* broadcast configuration */
	u32 PAD;
	u32 sbbstate;	/* broadcast state */
	u32 PAD[3];
	u32 sbactcnfg;	/* activate configuration */
	u32 PAD[3];
	u32 sbflagst;	/* current sbflags */
	u32 PAD[3];
	u32 sbidlow;		/* identification */
	u32 sbidhigh;	/* identification */
};

struct brcmf_core_priv {
	struct brcmf_core pub;
	u32 wrapbase;
	struct list_head list;
	struct brcmf_chip_priv *chip;
};
159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
struct brcmf_chip_priv {
	struct brcmf_chip pub;
	const struct brcmf_buscore_ops *ops;
	void *ctx;
	/* assured first core is chipcommon, second core is buscore */
	struct list_head cores;
	u16 num_cores;

	bool (*iscoreup)(struct brcmf_core_priv *core);
	void (*coredisable)(struct brcmf_core_priv *core, u32 prereset,
			    u32 reset);
	void (*resetcore)(struct brcmf_core_priv *core, u32 prereset, u32 reset,
			  u32 postreset);
};

static void brcmf_chip_sb_corerev(struct brcmf_chip_priv *ci,
				  struct brcmf_core *core)
177 178
{
	u32 regdata;
179

180 181
	regdata = ci->ops->read32(ci->ctx, CORE_SB(core->base, sbidhigh));
	core->rev = SBCOREREV(regdata);
182 183
}

184
static bool brcmf_chip_sb_iscoreup(struct brcmf_core_priv *core)
185
{
186
	struct brcmf_chip_priv *ci;
187
	u32 regdata;
188
	u32 address;
189

190 191 192
	ci = core->chip;
	address = CORE_SB(core->pub.base, sbtmstatelow);
	regdata = ci->ops->read32(ci->ctx, address);
193 194
	regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT |
		    SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK);
195
	return SSB_TMSLOW_CLOCK == regdata;
196 197
}

198
static bool brcmf_chip_ai_iscoreup(struct brcmf_core_priv *core)
199
{
200
	struct brcmf_chip_priv *ci;
201 202 203
	u32 regdata;
	bool ret;

204 205
	ci = core->chip;
	regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
206 207
	ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK;

208
	regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
209 210 211 212 213
	ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0);

	return ret;
}

214 215
static void brcmf_chip_sb_coredisable(struct brcmf_core_priv *core,
				      u32 prereset, u32 reset)
216
{
217 218
	struct brcmf_chip_priv *ci;
	u32 val, base;
219

220 221 222 223
	ci = core->chip;
	base = core->pub.base;
	val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
	if (val & SSB_TMSLOW_RESET)
224 225
		return;

226 227
	val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
	if ((val & SSB_TMSLOW_CLOCK) != 0) {
228 229 230 231
		/*
		 * set target reject and spin until busy is clear
		 * (preserve core-specific bits)
		 */
232 233 234
		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
		ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
					 val | SSB_TMSLOW_REJECT);
235

236
		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
237
		udelay(1);
238 239 240 241 242
		SPINWAIT((ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh))
			  & SSB_TMSHIGH_BUSY), 100000);

		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
		if (val & SSB_TMSHIGH_BUSY)
243
			brcmf_err("core state still busy\n");
244

245 246 247 248 249 250 251 252 253
		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
		if (val & SSB_IDLOW_INITIATOR) {
			val = ci->ops->read32(ci->ctx,
					      CORE_SB(base, sbimstate));
			val |= SSB_IMSTATE_REJECT;
			ci->ops->write32(ci->ctx,
					 CORE_SB(base, sbimstate), val);
			val = ci->ops->read32(ci->ctx,
					      CORE_SB(base, sbimstate));
254
			udelay(1);
255 256
			SPINWAIT((ci->ops->read32(ci->ctx,
						  CORE_SB(base, sbimstate)) &
257
				  SSB_IMSTATE_BUSY), 100000);
258 259 260
		}

		/* set reset and reject while enabling the clocks */
261 262 263 264
		val = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
		      SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET;
		ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), val);
		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
265 266 267
		udelay(10);

		/* clear the initiator reject bit */
268 269 270 271 272 273 274
		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
		if (val & SSB_IDLOW_INITIATOR) {
			val = ci->ops->read32(ci->ctx,
					      CORE_SB(base, sbimstate));
			val &= ~SSB_IMSTATE_REJECT;
			ci->ops->write32(ci->ctx,
					 CORE_SB(base, sbimstate), val);
275 276 277 278
		}
	}

	/* leave reset and reject asserted */
279 280
	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
			 (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET));
281 282 283
	udelay(1);
}

284 285
static void brcmf_chip_ai_coredisable(struct brcmf_core_priv *core,
				      u32 prereset, u32 reset)
286
{
287
	struct brcmf_chip_priv *ci;
288 289
	u32 regdata;

290
	ci = core->chip;
291

292
	/* if core is already in reset, skip reset */
293
	regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
294
	if ((regdata & BCMA_RESET_CTL_RESET) != 0)
295
		goto in_reset_configure;
296

297
	/* configure reset */
298 299 300
	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
			 prereset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
	ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
301

302
	/* put in reset */
303 304
	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL,
			 BCMA_RESET_CTL_RESET);
305 306
	usleep_range(10, 20);

307
	/* wait till reset is 1 */
308
	SPINWAIT(ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) !=
309 310
		 BCMA_RESET_CTL_RESET, 300);

311
in_reset_configure:
312 313 314 315
	/* in-reset configure */
	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
			 reset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
	ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
316 317
}

318 319
static void brcmf_chip_sb_resetcore(struct brcmf_core_priv *core, u32 prereset,
				    u32 reset, u32 postreset)
320
{
321
	struct brcmf_chip_priv *ci;
322
	u32 regdata;
323
	u32 base;
324

325 326
	ci = core->chip;
	base = core->pub.base;
327 328 329 330
	/*
	 * Must do the disable sequence first to work for
	 * arbitrary current core state.
	 */
331
	brcmf_chip_sb_coredisable(core, 0, 0);
332 333 334 335 336 337

	/*
	 * Now do the initialization sequence.
	 * set reset while enabling the clock and
	 * forcing them on throughout the core
	 */
338 339 340 341
	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
			 SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
			 SSB_TMSLOW_RESET);
	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
342 343
	udelay(1);

344
	/* clear any serror */
345
	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
346
	if (regdata & SSB_TMSHIGH_SERR)
347 348 349 350 351 352 353
		ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatehigh), 0);

	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate));
	if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
		regdata &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
		ci->ops->write32(ci->ctx, CORE_SB(base, sbimstate), regdata);
	}
354 355

	/* clear reset and allow it to propagate throughout the core */
356 357 358
	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
			 SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK);
	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
359 360 361
	udelay(1);

	/* leave clock enabled */
362 363 364
	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
			 SSB_TMSLOW_CLOCK);
	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
365 366 367
	udelay(1);
}

368 369
static void brcmf_chip_ai_resetcore(struct brcmf_core_priv *core, u32 prereset,
				    u32 reset, u32 postreset)
370
{
371 372
	struct brcmf_chip_priv *ci;
	int count;
373

374
	ci = core->chip;
375

376
	/* must disable first to work for arbitrary current core state */
377
	brcmf_chip_ai_coredisable(core, prereset, reset);
378

379 380
	count = 0;
	while (ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) &
381
	       BCMA_RESET_CTL_RESET) {
382 383 384 385
		ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL, 0);
		count++;
		if (count > 50)
			break;
386 387
		usleep_range(40, 60);
	}
388

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
			 postreset | BCMA_IOCTL_CLK);
	ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
}

static char *brcmf_chip_name(uint chipid, char *buf, uint len)
{
	const char *fmt;

	fmt = ((chipid > 0xa000) || (chipid < 0x4000)) ? "%d" : "%x";
	snprintf(buf, len, fmt, chipid);
	return buf;
}

static struct brcmf_core *brcmf_chip_add_core(struct brcmf_chip_priv *ci,
					      u16 coreid, u32 base,
					      u32 wrapbase)
{
	struct brcmf_core_priv *core;

	core = kzalloc(sizeof(*core), GFP_KERNEL);
	if (!core)
		return ERR_PTR(-ENOMEM);

	core->pub.id = coreid;
	core->pub.base = base;
	core->chip = ci;
	core->wrapbase = wrapbase;

	list_add_tail(&core->list, &ci->cores);
	return &core->pub;
420 421
}

422 423
#ifdef DEBUG
/* safety check for chipinfo */
424
static int brcmf_chip_cores_check(struct brcmf_chip_priv *ci)
425
{
426 427 428 429 430 431
	struct brcmf_core_priv *core;
	bool need_socram = false;
	bool has_socram = false;
	int idx = 1;

	list_for_each_entry(core, &ci->cores, list) {
432 433 434
		brcmf_dbg(INFO, " [%-2d] core 0x%x:%-2d base 0x%08x wrap 0x%08x\n",
			  idx++, core->pub.id, core->pub.rev, core->pub.base,
			  core->wrapbase);
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450

		switch (core->pub.id) {
		case BCMA_CORE_ARM_CM3:
			need_socram = true;
			break;
		case BCMA_CORE_INTERNAL_MEM:
			has_socram = true;
			break;
		case BCMA_CORE_ARM_CR4:
			if (ci->pub.rambase == 0) {
				brcmf_err("RAM base not provided with ARM CR4 core\n");
				return -ENOMEM;
			}
			break;
		default:
			break;
451 452 453
		}
	}

454 455 456 457
	/* check RAM core presence for ARM CM3 core */
	if (need_socram && !has_socram) {
		brcmf_err("RAM core not provided with ARM CM3 core\n");
		return -ENODEV;
458 459 460 461
	}
	return 0;
}
#else	/* DEBUG */
462
static inline int brcmf_chip_cores_check(struct brcmf_chip_priv *ci)
463 464 465 466 467
{
	return 0;
}
#endif

468
static void brcmf_chip_get_raminfo(struct brcmf_chip_priv *ci)
469
{
470
	switch (ci->pub.chip) {
471
	case BRCM_CC_4329_CHIP_ID:
472 473
		ci->pub.ramsize = BCM4329_RAMSIZE;
		break;
474
	case BRCM_CC_43143_CHIP_ID:
475 476
		ci->pub.ramsize = BCM43143_RAMSIZE;
		break;
477
	case BRCM_CC_43241_CHIP_ID:
478 479
		ci->pub.ramsize = 0x90000;
		break;
480
	case BRCM_CC_4330_CHIP_ID:
481 482
		ci->pub.ramsize = 0x48000;
		break;
483
	case BRCM_CC_4334_CHIP_ID:
484
	case BRCM_CC_43340_CHIP_ID:
485 486
		ci->pub.ramsize = 0x80000;
		break;
487
	case BRCM_CC_4335_CHIP_ID:
488 489 490
		ci->pub.ramsize = 0xc0000;
		ci->pub.rambase = 0x180000;
		break;
491
	case BRCM_CC_43362_CHIP_ID:
492 493
		ci->pub.ramsize = 0x3c000;
		break;
494 495
	case BRCM_CC_4339_CHIP_ID:
	case BRCM_CC_4354_CHIP_ID:
496 497 498 499
	case BRCM_CC_4356_CHIP_ID:
	case BRCM_CC_43567_CHIP_ID:
	case BRCM_CC_43569_CHIP_ID:
	case BRCM_CC_43570_CHIP_ID:
500 501 502
		ci->pub.ramsize = 0xc0000;
		ci->pub.rambase = 0x180000;
		break;
503 504 505 506
	case BRCM_CC_43602_CHIP_ID:
		ci->pub.ramsize = 0xf0000;
		ci->pub.rambase = 0x180000;
		break;
507 508 509 510 511 512
	default:
		brcmf_err("unknown chip: %s\n", ci->pub.name);
		break;
	}
}

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
static u32 brcmf_chip_dmp_get_desc(struct brcmf_chip_priv *ci, u32 *eromaddr,
				   u8 *type)
{
	u32 val;

	/* read next descriptor */
	val = ci->ops->read32(ci->ctx, *eromaddr);
	*eromaddr += 4;

	if (!type)
		return val;

	/* determine descriptor type */
	*type = (val & DMP_DESC_TYPE_MSK);
	if ((*type & ~DMP_DESC_ADDRSIZE_GT32) == DMP_DESC_ADDRESS)
		*type = DMP_DESC_ADDRESS;

	return val;
}

static int brcmf_chip_dmp_get_regaddr(struct brcmf_chip_priv *ci, u32 *eromaddr,
				      u32 *regbase, u32 *wrapbase)
{
	u8 desc;
	u32 val;
	u8 mpnum = 0;
	u8 stype, sztype, wraptype;

	*regbase = 0;
	*wrapbase = 0;

	val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
	if (desc == DMP_DESC_MASTER_PORT) {
		mpnum = (val & DMP_MASTER_PORT_NUM) >> DMP_MASTER_PORT_NUM_S;
		wraptype = DMP_SLAVE_TYPE_MWRAP;
	} else if (desc == DMP_DESC_ADDRESS) {
		/* revert erom address */
		*eromaddr -= 4;
		wraptype = DMP_SLAVE_TYPE_SWRAP;
	} else {
		*eromaddr -= 4;
		return -EILSEQ;
	}

	do {
		/* locate address descriptor */
		do {
			val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
			/* unexpected table end */
			if (desc == DMP_DESC_EOT) {
				*eromaddr -= 4;
				return -EFAULT;
			}
		} while (desc != DMP_DESC_ADDRESS);

		/* skip upper 32-bit address descriptor */
		if (val & DMP_DESC_ADDRSIZE_GT32)
			brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);

		sztype = (val & DMP_SLAVE_SIZE_TYPE) >> DMP_SLAVE_SIZE_TYPE_S;

		/* next size descriptor can be skipped */
		if (sztype == DMP_SLAVE_SIZE_DESC) {
			val = brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
			/* skip upper size descriptor if present */
			if (val & DMP_DESC_ADDRSIZE_GT32)
				brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
		}

		/* only look for 4K register regions */
		if (sztype != DMP_SLAVE_SIZE_4K)
			continue;

		stype = (val & DMP_SLAVE_TYPE) >> DMP_SLAVE_TYPE_S;

		/* only regular slave and wrapper */
		if (*regbase == 0 && stype == DMP_SLAVE_TYPE_SLAVE)
			*regbase = val & DMP_SLAVE_ADDR_BASE;
		if (*wrapbase == 0 && stype == wraptype)
			*wrapbase = val & DMP_SLAVE_ADDR_BASE;
	} while (*regbase == 0 || *wrapbase == 0);

	return 0;
}

static
int brcmf_chip_dmp_erom_scan(struct brcmf_chip_priv *ci)
{
	struct brcmf_core *core;
	u32 eromaddr;
	u8 desc_type = 0;
	u32 val;
	u16 id;
	u8 nmp, nsp, nmw, nsw, rev;
	u32 base, wrap;
	int err;

	eromaddr = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, eromptr));

	while (desc_type != DMP_DESC_EOT) {
		val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
		if (!(val & DMP_DESC_VALID))
			continue;

		if (desc_type == DMP_DESC_EMPTY)
			continue;

		/* need a component descriptor */
		if (desc_type != DMP_DESC_COMPONENT)
			continue;

		id = (val & DMP_COMP_PARTNUM) >> DMP_COMP_PARTNUM_S;

		/* next descriptor must be component as well */
		val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
		if (WARN_ON((val & DMP_DESC_TYPE_MSK) != DMP_DESC_COMPONENT))
			return -EFAULT;

		/* only look at cores with master port(s) */
		nmp = (val & DMP_COMP_NUM_MPORT) >> DMP_COMP_NUM_MPORT_S;
		nsp = (val & DMP_COMP_NUM_SPORT) >> DMP_COMP_NUM_SPORT_S;
		nmw = (val & DMP_COMP_NUM_MWRAP) >> DMP_COMP_NUM_MWRAP_S;
		nsw = (val & DMP_COMP_NUM_SWRAP) >> DMP_COMP_NUM_SWRAP_S;
		rev = (val & DMP_COMP_REVISION) >> DMP_COMP_REVISION_S;

		/* need core with ports */
		if (nmw + nsw == 0)
			continue;

		/* try to obtain register address info */
		err = brcmf_chip_dmp_get_regaddr(ci, &eromaddr, &base, &wrap);
		if (err)
			continue;

		/* finally a core to be added */
		core = brcmf_chip_add_core(ci, id, base, wrap);
		if (IS_ERR(core))
			return PTR_ERR(core);

		core->rev = rev;
	}

	return 0;
}

658 659 660
static int brcmf_chip_recognition(struct brcmf_chip_priv *ci)
{
	struct brcmf_core *core;
661
	u32 regdata;
662
	u32 socitype;
663

664
	/* Get CC core rev
665
	 * Chipid is assume to be at offset 0 from SI_ENUM_BASE
666 667 668
	 * For different chiptypes or old sdio hosts w/o chipcommon,
	 * other ways of recognition should be added here.
	 */
669 670 671
	regdata = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, chipid));
	ci->pub.chip = regdata & CID_ID_MASK;
	ci->pub.chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT;
672
	socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
673

674 675 676 677
	brcmf_chip_name(ci->pub.chip, ci->pub.name, sizeof(ci->pub.name));
	brcmf_dbg(INFO, "found %s chip: BCM%s, rev=%d\n",
		  socitype == SOCI_SB ? "SB" : "AXI", ci->pub.name,
		  ci->pub.chiprev);
678

679
	if (socitype == SOCI_SB) {
680
		if (ci->pub.chip != BRCM_CC_4329_CHIP_ID) {
681 682 683
			brcmf_err("SB chip is not supported\n");
			return -ENODEV;
		}
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
		ci->iscoreup = brcmf_chip_sb_iscoreup;
		ci->coredisable = brcmf_chip_sb_coredisable;
		ci->resetcore = brcmf_chip_sb_resetcore;

		core = brcmf_chip_add_core(ci, BCMA_CORE_CHIPCOMMON,
					   SI_ENUM_BASE, 0);
		brcmf_chip_sb_corerev(ci, core);
		core = brcmf_chip_add_core(ci, BCMA_CORE_SDIO_DEV,
					   BCM4329_CORE_BUS_BASE, 0);
		brcmf_chip_sb_corerev(ci, core);
		core = brcmf_chip_add_core(ci, BCMA_CORE_INTERNAL_MEM,
					   BCM4329_CORE_SOCRAM_BASE, 0);
		brcmf_chip_sb_corerev(ci, core);
		core = brcmf_chip_add_core(ci, BCMA_CORE_ARM_CM3,
					   BCM4329_CORE_ARM_BASE, 0);
		brcmf_chip_sb_corerev(ci, core);
700 701 702

		core = brcmf_chip_add_core(ci, BCMA_CORE_80211, 0x18001000, 0);
		brcmf_chip_sb_corerev(ci, core);
703
	} else if (socitype == SOCI_AI) {
704 705 706
		ci->iscoreup = brcmf_chip_ai_iscoreup;
		ci->coredisable = brcmf_chip_ai_coredisable;
		ci->resetcore = brcmf_chip_ai_resetcore;
707

708
		brcmf_chip_dmp_erom_scan(ci);
709 710 711
	} else {
		brcmf_err("chip backplane type %u is not supported\n",
			  socitype);
712 713 714
		return -ENODEV;
	}

715 716 717
	brcmf_chip_get_raminfo(ci);

	return brcmf_chip_cores_check(ci);
718 719
}

720
static void brcmf_chip_disable_arm(struct brcmf_chip_priv *chip, u16 id)
721
{
722 723 724
	struct brcmf_core *core;
	struct brcmf_core_priv *cr4;
	u32 val;
725

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760

	core = brcmf_chip_get_core(&chip->pub, id);
	if (!core)
		return;

	switch (id) {
	case BCMA_CORE_ARM_CM3:
		brcmf_chip_coredisable(core, 0, 0);
		break;
	case BCMA_CORE_ARM_CR4:
		cr4 = container_of(core, struct brcmf_core_priv, pub);

		/* clear all IOCTL bits except HALT bit */
		val = chip->ops->read32(chip->ctx, cr4->wrapbase + BCMA_IOCTL);
		val &= ARMCR4_BCMA_IOCTL_CPUHALT;
		brcmf_chip_resetcore(core, val, ARMCR4_BCMA_IOCTL_CPUHALT,
				     ARMCR4_BCMA_IOCTL_CPUHALT);
		break;
	default:
		brcmf_err("unknown id: %u\n", id);
		break;
	}
}

static int brcmf_chip_setup(struct brcmf_chip_priv *chip)
{
	struct brcmf_chip *pub;
	struct brcmf_core_priv *cc;
	u32 base;
	u32 val;
	int ret = 0;

	pub = &chip->pub;
	cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
	base = cc->pub.base;
761 762

	/* get chipcommon capabilites */
763 764
	pub->cc_caps = chip->ops->read32(chip->ctx,
					 CORE_CC_REG(base, capabilities));
765 766

	/* get pmu caps & rev */
767 768 769 770 771
	if (pub->cc_caps & CC_CAP_PMU) {
		val = chip->ops->read32(chip->ctx,
					CORE_CC_REG(base, pmucapabilities));
		pub->pmurev = val & PCAP_REV_MASK;
		pub->pmucaps = val;
772 773
	}

774 775
	brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, pmucaps=0x%x\n",
		  cc->pub.rev, pub->pmurev, pub->pmucaps);
776 777 778 779

	/* execute bus core specific setup */
	if (chip->ops->setup)
		ret = chip->ops->setup(chip->ctx, pub);
780 781 782 783 784

	/*
	 * Make sure any on-chip ARM is off (in case strapping is wrong),
	 * or downloaded code was already running.
	 */
785 786 787
	brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CM3);
	brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CR4);
	return ret;
788 789
}

790 791
struct brcmf_chip *brcmf_chip_attach(void *ctx,
				     const struct brcmf_buscore_ops *ops)
792
{
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
	struct brcmf_chip_priv *chip;
	int err = 0;

	if (WARN_ON(!ops->read32))
		err = -EINVAL;
	if (WARN_ON(!ops->write32))
		err = -EINVAL;
	if (WARN_ON(!ops->prepare))
		err = -EINVAL;
	if (WARN_ON(!ops->exit_dl))
		err = -EINVAL;
	if (err < 0)
		return ERR_PTR(-EINVAL);

	chip = kzalloc(sizeof(*chip), GFP_KERNEL);
	if (!chip)
		return ERR_PTR(-ENOMEM);

	INIT_LIST_HEAD(&chip->cores);
	chip->num_cores = 0;
	chip->ops = ops;
	chip->ctx = ctx;

	err = ops->prepare(ctx);
	if (err < 0)
		goto fail;

	err = brcmf_chip_recognition(chip);
	if (err < 0)
		goto fail;

	err = brcmf_chip_setup(chip);
	if (err < 0)
		goto fail;

	return &chip->pub;

fail:
	brcmf_chip_detach(&chip->pub);
	return ERR_PTR(err);
}
834

835 836 837 838 839 840 841 842 843 844 845 846 847
void brcmf_chip_detach(struct brcmf_chip *pub)
{
	struct brcmf_chip_priv *chip;
	struct brcmf_core_priv *core;
	struct brcmf_core_priv *tmp;

	chip = container_of(pub, struct brcmf_chip_priv, pub);
	list_for_each_entry_safe(core, tmp, &chip->cores, list) {
		list_del(&core->list);
		kfree(core);
	}
	kfree(chip);
}
848

849 850 851 852
struct brcmf_core *brcmf_chip_get_core(struct brcmf_chip *pub, u16 coreid)
{
	struct brcmf_chip_priv *chip;
	struct brcmf_core_priv *core;
853

854 855 856 857
	chip = container_of(pub, struct brcmf_chip_priv, pub);
	list_for_each_entry(core, &chip->cores, list)
		if (core->pub.id == coreid)
			return &core->pub;
858

859 860
	return NULL;
}
861

862 863 864 865 866 867 868 869 870 871 872
struct brcmf_core *brcmf_chip_get_chipcommon(struct brcmf_chip *pub)
{
	struct brcmf_chip_priv *chip;
	struct brcmf_core_priv *cc;

	chip = container_of(pub, struct brcmf_chip_priv, pub);
	cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
	if (WARN_ON(!cc || cc->pub.id != BCMA_CORE_CHIPCOMMON))
		return brcmf_chip_get_core(pub, BCMA_CORE_CHIPCOMMON);
	return &cc->pub;
}
873

874 875 876
bool brcmf_chip_iscoreup(struct brcmf_core *pub)
{
	struct brcmf_core_priv *core;
877

878 879 880
	core = container_of(pub, struct brcmf_core_priv, pub);
	return core->chip->iscoreup(core);
}
881

882 883 884 885 886 887
void brcmf_chip_coredisable(struct brcmf_core *pub, u32 prereset, u32 reset)
{
	struct brcmf_core_priv *core;

	core = container_of(pub, struct brcmf_core_priv, pub);
	core->chip->coredisable(core, prereset, reset);
888
}
889

890 891
void brcmf_chip_resetcore(struct brcmf_core *pub, u32 prereset, u32 reset,
			  u32 postreset)
892
{
893
	struct brcmf_core_priv *core;
894

895 896
	core = container_of(pub, struct brcmf_core_priv, pub);
	core->chip->resetcore(core, prereset, reset, postreset);
897
}
898

899
static void
900
brcmf_chip_cm3_enterdl(struct brcmf_chip_priv *chip)
901
{
902 903 904 905 906 907 908 909 910 911
	struct brcmf_core *core;

	brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CM3);
	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
	brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
				   D11_BCMA_IOCTL_PHYCLOCKEN,
			     D11_BCMA_IOCTL_PHYCLOCKEN,
			     D11_BCMA_IOCTL_PHYCLOCKEN);
	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
	brcmf_chip_resetcore(core, 0, 0, 0);
912 913
}

914
static bool brcmf_chip_cm3_exitdl(struct brcmf_chip_priv *chip)
915
{
916
	struct brcmf_core *core;
917

918 919
	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
	if (!brcmf_chip_iscoreup(core)) {
920 921 922 923
		brcmf_err("SOCRAM core is down after reset?\n");
		return false;
	}

924
	chip->ops->exit_dl(chip->ctx, &chip->pub, 0);
925

926 927
	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CM3);
	brcmf_chip_resetcore(core, 0, 0, 0);
928 929 930 931 932

	return true;
}

static inline void
933
brcmf_chip_cr4_enterdl(struct brcmf_chip_priv *chip)
934
{
935
	struct brcmf_core *core;
936

937
	brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CR4);
938

939 940 941 942 943
	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
	brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
				   D11_BCMA_IOCTL_PHYCLOCKEN,
			     D11_BCMA_IOCTL_PHYCLOCKEN,
			     D11_BCMA_IOCTL_PHYCLOCKEN);
944 945
}

946
static bool brcmf_chip_cr4_exitdl(struct brcmf_chip_priv *chip, u32 rstvec)
947
{
948
	struct brcmf_core *core;
949

950
	chip->ops->exit_dl(chip->ctx, &chip->pub, rstvec);
951 952

	/* restore ARM */
953 954
	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CR4);
	brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
955 956 957 958

	return true;
}

959
void brcmf_chip_enter_download(struct brcmf_chip *pub)
960
{
961 962 963 964
	struct brcmf_chip_priv *chip;
	struct brcmf_core *arm;

	brcmf_dbg(TRACE, "Enter\n");
965

966
	chip = container_of(pub, struct brcmf_chip_priv, pub);
967
	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
968
	if (arm) {
969
		brcmf_chip_cr4_enterdl(chip);
970 971 972
		return;
	}

973
	brcmf_chip_cm3_enterdl(chip);
974 975 976 977 978 979 980 981 982 983
}

bool brcmf_chip_exit_download(struct brcmf_chip *pub, u32 rstvec)
{
	struct brcmf_chip_priv *chip;
	struct brcmf_core *arm;

	brcmf_dbg(TRACE, "Enter\n");

	chip = container_of(pub, struct brcmf_chip_priv, pub);
984
	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
985
	if (arm)
986
		return brcmf_chip_cr4_exitdl(chip, rstvec);
987

988
	return brcmf_chip_cm3_exitdl(chip);
989 990
}

991
bool brcmf_chip_sr_capable(struct brcmf_chip *pub)
992
{
993 994
	u32 base, addr, reg, pmu_cc3_mask = ~0;
	struct brcmf_chip_priv *chip;
995

996 997 998 999 1000
	brcmf_dbg(TRACE, "Enter\n");

	/* old chips with PMU version less than 17 don't support save restore */
	if (pub->pmurev < 17)
		return false;
1001

1002 1003 1004 1005
	base = brcmf_chip_get_chipcommon(pub)->base;
	chip = container_of(pub, struct brcmf_chip_priv, pub);

	switch (pub->chip) {
1006
	case BRCM_CC_4354_CHIP_ID:
1007 1008 1009
		/* explicitly check SR engine enable bit */
		pmu_cc3_mask = BIT(2);
		/* fall-through */
1010 1011 1012
	case BRCM_CC_43241_CHIP_ID:
	case BRCM_CC_4335_CHIP_ID:
	case BRCM_CC_4339_CHIP_ID:
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
		/* read PMU chipcontrol register 3 */
		addr = CORE_CC_REG(base, chipcontrol_addr);
		chip->ops->write32(chip->ctx, addr, 3);
		addr = CORE_CC_REG(base, chipcontrol_data);
		reg = chip->ops->read32(chip->ctx, addr);
		return (reg & pmu_cc3_mask) != 0;
	default:
		addr = CORE_CC_REG(base, pmucapabilities_ext);
		reg = chip->ops->read32(chip->ctx, addr);
		if ((reg & PCAPEXT_SR_SUPPORTED_MASK) == 0)
			return false;

		addr = CORE_CC_REG(base, retention_ctl);
		reg = chip->ops->read32(chip->ctx, addr);
		return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK |
			       PMU_RCTL_LOGIC_DISABLE_MASK)) == 0;
	}
1030
}