cxgb4_main.c 97.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
/*
 * This file is part of the Chelsio T4 Ethernet driver for Linux.
 *
 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/bitmap.h>
#include <linux/crc32.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/err.h>
#include <linux/etherdevice.h>
#include <linux/firmware.h>
#include <linux/if_vlan.h>
#include <linux/init.h>
#include <linux/log2.h>
#include <linux/mdio.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/aer.h>
#include <linux/rtnetlink.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/sockios.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
#include <net/neighbour.h>
#include <net/netevent.h>
#include <asm/uaccess.h>

#include "cxgb4.h"
#include "t4_regs.h"
#include "t4_msg.h"
#include "t4fw_api.h"
#include "l2t.h"

70
#define DRV_VERSION "1.3.0-ko"
71 72 73 74 75 76 77 78 79
#define DRV_DESC "Chelsio T4 Network Driver"

/*
 * Max interrupt hold-off timer value in us.  Queues fall back to this value
 * under extreme memory pressure so it's largish to give the system time to
 * recover.
 */
#define MAX_SGE_TIMERVAL 200U

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
#ifdef CONFIG_PCI_IOV
/*
 * Virtual Function provisioning constants.  We need two extra Ingress Queues
 * with Interrupt capability to serve as the VF's Firmware Event Queue and
 * Forwarded Interrupt Queue (when using MSI mode) -- neither will have Free
 * Lists associated with them).  For each Ethernet/Control Egress Queue and
 * for each Free List, we need an Egress Context.
 */
enum {
	VFRES_NPORTS = 1,		/* # of "ports" per VF */
	VFRES_NQSETS = 2,		/* # of "Queue Sets" per VF */

	VFRES_NVI = VFRES_NPORTS,	/* # of Virtual Interfaces */
	VFRES_NETHCTRL = VFRES_NQSETS,	/* # of EQs used for ETH or CTRL Qs */
	VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
	VFRES_NIQ = 0,			/* # of non-fl/int ingress queues */
	VFRES_NEQ = VFRES_NQSETS*2,	/* # of egress queues */
	VFRES_TC = 0,			/* PCI-E traffic class */
	VFRES_NEXACTF = 16,		/* # of exact MPS filters */

	VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
	VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
};

/*
 * Provide a Port Access Rights Mask for the specified PF/VF.  This is very
 * static and likely not to be useful in the long run.  We really need to
 * implement some form of persistent configuration which the firmware
 * controls.
 */
static unsigned int pfvfres_pmask(struct adapter *adapter,
				  unsigned int pf, unsigned int vf)
{
	unsigned int portn, portvec;

	/*
	 * Give PF's access to all of the ports.
	 */
	if (vf == 0)
		return FW_PFVF_CMD_PMASK_MASK;

	/*
	 * For VFs, we'll assign them access to the ports based purely on the
	 * PF.  We assign active ports in order, wrapping around if there are
	 * fewer active ports than PFs: e.g. active port[pf % nports].
	 * Unfortunately the adapter's port_info structs haven't been
	 * initialized yet so we have to compute this.
	 */
	if (adapter->params.nports == 0)
		return 0;

	portn = pf % adapter->params.nports;
	portvec = adapter->params.portvec;
	for (;;) {
		/*
		 * Isolate the lowest set bit in the port vector.  If we're at
		 * the port number that we want, return that as the pmask.
		 * otherwise mask that bit out of the port vector and
		 * decrement our port number ...
		 */
		unsigned int pmask = portvec ^ (portvec & (portvec-1));
		if (portn == 0)
			return pmask;
		portn--;
		portvec &= ~pmask;
	}
	/*NOTREACHED*/
}
#endif

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
enum {
	MEMWIN0_APERTURE = 65536,
	MEMWIN0_BASE     = 0x30000,
	MEMWIN1_APERTURE = 32768,
	MEMWIN1_BASE     = 0x28000,
	MEMWIN2_APERTURE = 2048,
	MEMWIN2_BASE     = 0x1b800,
};

enum {
	MAX_TXQ_ENTRIES      = 16384,
	MAX_CTRL_TXQ_ENTRIES = 1024,
	MAX_RSPQ_ENTRIES     = 16384,
	MAX_RX_BUFFERS       = 16384,
	MIN_TXQ_ENTRIES      = 32,
	MIN_CTRL_TXQ_ENTRIES = 32,
	MIN_RSPQ_ENTRIES     = 128,
	MIN_FL_ENTRIES       = 16
};

#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)

174
#define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
175 176

static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = {
177
	CH_DEVICE(0xa000, 0),  /* PE10K */
D
Dimitris Michailidis 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
	CH_DEVICE(0x4001, -1),
	CH_DEVICE(0x4002, -1),
	CH_DEVICE(0x4003, -1),
	CH_DEVICE(0x4004, -1),
	CH_DEVICE(0x4005, -1),
	CH_DEVICE(0x4006, -1),
	CH_DEVICE(0x4007, -1),
	CH_DEVICE(0x4008, -1),
	CH_DEVICE(0x4009, -1),
	CH_DEVICE(0x400a, -1),
	CH_DEVICE(0x4401, 4),
	CH_DEVICE(0x4402, 4),
	CH_DEVICE(0x4403, 4),
	CH_DEVICE(0x4404, 4),
	CH_DEVICE(0x4405, 4),
	CH_DEVICE(0x4406, 4),
	CH_DEVICE(0x4407, 4),
	CH_DEVICE(0x4408, 4),
	CH_DEVICE(0x4409, 4),
	CH_DEVICE(0x440a, 4),
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
	{ 0, }
};

#define FW_FNAME "cxgb4/t4fw.bin"

MODULE_DESCRIPTION(DRV_DESC);
MODULE_AUTHOR("Chelsio Communications");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION(DRV_VERSION);
MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
MODULE_FIRMWARE(FW_FNAME);

static int dflt_msg_enable = DFLT_MSG_ENABLE;

module_param(dflt_msg_enable, int, 0644);
MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");

/*
 * The driver uses the best interrupt scheme available on a platform in the
 * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
 * of these schemes the driver may consider as follows:
 *
 * msi = 2: choose from among all three options
 * msi = 1: only consider MSI and INTx interrupts
 * msi = 0: force INTx interrupts
 */
static int msi = 2;

module_param(msi, int, 0644);
MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");

/*
 * Queue interrupt hold-off timer values.  Queues default to the first of these
 * upon creation.
 */
static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };

module_param_array(intr_holdoff, uint, NULL, 0644);
MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
		 "0..4 in microseconds");

static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };

module_param_array(intr_cnt, uint, NULL, 0644);
MODULE_PARM_DESC(intr_cnt,
		 "thresholds 1..3 for queue interrupt packet counters");

static int vf_acls;

#ifdef CONFIG_PCI_IOV
module_param(vf_acls, bool, 0644);
MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");

static unsigned int num_vf[4];

module_param_array(num_vf, uint, NULL, 0644);
MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
#endif

static struct dentry *cxgb4_debugfs_root;

static LIST_HEAD(adapter_list);
static DEFINE_MUTEX(uld_mutex);
static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
static const char *uld_str[] = { "RDMA", "iSCSI" };

static void link_report(struct net_device *dev)
{
	if (!netif_carrier_ok(dev))
		netdev_info(dev, "link down\n");
	else {
		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };

		const char *s = "10Mbps";
		const struct port_info *p = netdev_priv(dev);

		switch (p->link_cfg.speed) {
		case SPEED_10000:
			s = "10Gbps";
			break;
		case SPEED_1000:
			s = "1000Mbps";
			break;
		case SPEED_100:
			s = "100Mbps";
			break;
		}

		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
			    fc[p->link_cfg.fc]);
	}
}

void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
{
	struct net_device *dev = adapter->port[port_id];

	/* Skip changes from disabled ports. */
	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
		if (link_stat)
			netif_carrier_on(dev);
		else
			netif_carrier_off(dev);

		link_report(dev);
	}
}

void t4_os_portmod_changed(const struct adapter *adap, int port_id)
{
	static const char *mod_str[] = {
309
		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
310 311 312 313 314 315 316
	};

	const struct net_device *dev = adap->port[port_id];
	const struct port_info *pi = netdev_priv(dev);

	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
		netdev_info(dev, "port module unplugged\n");
317
	else if (pi->mod_type < ARRAY_SIZE(mod_str))
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
}

/*
 * Configure the exact and hash address filters to handle a port's multicast
 * and secondary unicast MAC addresses.
 */
static int set_addr_filters(const struct net_device *dev, bool sleep)
{
	u64 mhash = 0;
	u64 uhash = 0;
	bool free = true;
	u16 filt_idx[7];
	const u8 *addr[7];
	int ret, naddr = 0;
	const struct netdev_hw_addr *ha;
	int uc_cnt = netdev_uc_count(dev);
335
	int mc_cnt = netdev_mc_count(dev);
336
	const struct port_info *pi = netdev_priv(dev);
337
	unsigned int mb = pi->adapter->fn;
338 339 340 341 342

	/* first do the secondary unicast addresses */
	netdev_for_each_uc_addr(ha, dev) {
		addr[naddr++] = ha->addr;
		if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
343
			ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
344 345 346 347 348 349 350 351 352 353
					naddr, addr, filt_idx, &uhash, sleep);
			if (ret < 0)
				return ret;

			free = false;
			naddr = 0;
		}
	}

	/* next set up the multicast addresses */
354 355 356
	netdev_for_each_mc_addr(ha, dev) {
		addr[naddr++] = ha->addr;
		if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
357
			ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
358 359 360 361 362 363 364 365 366
					naddr, addr, filt_idx, &mhash, sleep);
			if (ret < 0)
				return ret;

			free = false;
			naddr = 0;
		}
	}

367
	return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
368 369 370 371 372 373 374 375 376 377 378 379 380 381
				uhash | mhash, sleep);
}

/*
 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
 * If @mtu is -1 it is left unchanged.
 */
static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
{
	int ret;
	struct port_info *pi = netdev_priv(dev);

	ret = set_addr_filters(dev, sleep_ok);
	if (ret == 0)
382
		ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
383
				    (dev->flags & IFF_PROMISC) ? 1 : 0,
384
				    (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
385 386 387 388 389 390 391 392 393 394 395 396 397 398
				    sleep_ok);
	return ret;
}

/**
 *	link_start - enable a port
 *	@dev: the port to enable
 *
 *	Performs the MAC and PHY actions needed to enable a port.
 */
static int link_start(struct net_device *dev)
{
	int ret;
	struct port_info *pi = netdev_priv(dev);
399
	unsigned int mb = pi->adapter->fn;
400 401 402 403 404

	/*
	 * We do not set address filters and promiscuity here, the stack does
	 * that step explicitly.
	 */
405
	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
406
			    !!(dev->features & NETIF_F_HW_VLAN_RX), true);
407
	if (ret == 0) {
408
		ret = t4_change_mac(pi->adapter, mb, pi->viid,
409
				    pi->xact_addr_filt, dev->dev_addr, true,
410
				    true);
411 412 413 414 415 416
		if (ret >= 0) {
			pi->xact_addr_filt = ret;
			ret = 0;
		}
	}
	if (ret == 0)
417 418
		ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
				    &pi->link_cfg);
419
	if (ret == 0)
420
		ret = t4_enable_vi(pi->adapter, mb, pi->viid, true, true);
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	return ret;
}

/*
 * Response queue handler for the FW event queue.
 */
static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
			  const struct pkt_gl *gl)
{
	u8 opcode = ((const struct rss_header *)rsp)->opcode;

	rsp++;                                          /* skip RSS header */
	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
		const struct cpl_sge_egr_update *p = (void *)rsp;
		unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
436
		struct sge_txq *txq;
437

438
		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
439
		txq->restarts++;
440
		if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
			struct sge_eth_txq *eq;

			eq = container_of(txq, struct sge_eth_txq, q);
			netif_tx_wake_queue(eq->txq);
		} else {
			struct sge_ofld_txq *oq;

			oq = container_of(txq, struct sge_ofld_txq, q);
			tasklet_schedule(&oq->qresume_tsk);
		}
	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
		const struct cpl_fw6_msg *p = (void *)rsp;

		if (p->type == 0)
			t4_handle_fw_rpl(q->adap, p->data);
	} else if (opcode == CPL_L2T_WRITE_RPL) {
		const struct cpl_l2t_write_rpl *p = (void *)rsp;

		do_l2t_write_rpl(q->adap, p);
	} else
		dev_err(q->adap->pdev_dev,
			"unexpected CPL %#x on FW event queue\n", opcode);
	return 0;
}

/**
 *	uldrx_handler - response queue handler for ULD queues
 *	@q: the response queue that received the packet
 *	@rsp: the response queue descriptor holding the offload message
 *	@gl: the gather list of packet fragments
 *
 *	Deliver an ingress offload packet to a ULD.  All processing is done by
 *	the ULD, we just maintain statistics.
 */
static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
			 const struct pkt_gl *gl)
{
	struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);

	if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
		rxq->stats.nomem++;
		return -1;
	}
	if (gl == NULL)
		rxq->stats.imm++;
	else if (gl == CXGB4_MSG_AN)
		rxq->stats.an++;
	else
		rxq->stats.pkts++;
	return 0;
}

static void disable_msi(struct adapter *adapter)
{
	if (adapter->flags & USING_MSIX) {
		pci_disable_msix(adapter->pdev);
		adapter->flags &= ~USING_MSIX;
	} else if (adapter->flags & USING_MSI) {
		pci_disable_msi(adapter->pdev);
		adapter->flags &= ~USING_MSI;
	}
}

/*
 * Interrupt handler for non-data events used with MSI-X.
 */
static irqreturn_t t4_nondata_intr(int irq, void *cookie)
{
	struct adapter *adap = cookie;

	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
	if (v & PFSW) {
		adap->swintr = 1;
		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
	}
	t4_slow_intr_handler(adap);
	return IRQ_HANDLED;
}

/*
 * Name the MSI-X interrupts.
 */
static void name_msix_vecs(struct adapter *adap)
{
	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc) - 1;

	/* non-data interrupts */
	snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
	adap->msix_info[0].desc[n] = 0;

	/* FW events */
	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", adap->name);
	adap->msix_info[1].desc[n] = 0;

	/* Ethernet queues */
	for_each_port(adap, j) {
		struct net_device *d = adap->port[j];
		const struct port_info *pi = netdev_priv(d);

		for (i = 0; i < pi->nqsets; i++, msi_idx++) {
			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
				 d->name, i);
			adap->msix_info[msi_idx].desc[n] = 0;
		}
	}

	/* offload queues */
	for_each_ofldrxq(&adap->sge, i) {
		snprintf(adap->msix_info[msi_idx].desc, n, "%s-ofld%d",
			 adap->name, i);
		adap->msix_info[msi_idx++].desc[n] = 0;
	}
	for_each_rdmarxq(&adap->sge, i) {
		snprintf(adap->msix_info[msi_idx].desc, n, "%s-rdma%d",
			 adap->name, i);
		adap->msix_info[msi_idx++].desc[n] = 0;
	}
}

static int request_msix_queue_irqs(struct adapter *adap)
{
	struct sge *s = &adap->sge;
	int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, msi = 2;

	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
			  adap->msix_info[1].desc, &s->fw_evtq);
	if (err)
		return err;

	for_each_ethrxq(s, ethqidx) {
		err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0,
				  adap->msix_info[msi].desc,
				  &s->ethrxq[ethqidx].rspq);
		if (err)
			goto unwind;
		msi++;
	}
	for_each_ofldrxq(s, ofldqidx) {
		err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0,
				  adap->msix_info[msi].desc,
				  &s->ofldrxq[ofldqidx].rspq);
		if (err)
			goto unwind;
		msi++;
	}
	for_each_rdmarxq(s, rdmaqidx) {
		err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0,
				  adap->msix_info[msi].desc,
				  &s->rdmarxq[rdmaqidx].rspq);
		if (err)
			goto unwind;
		msi++;
	}
	return 0;

unwind:
	while (--rdmaqidx >= 0)
		free_irq(adap->msix_info[--msi].vec,
			 &s->rdmarxq[rdmaqidx].rspq);
	while (--ofldqidx >= 0)
		free_irq(adap->msix_info[--msi].vec,
			 &s->ofldrxq[ofldqidx].rspq);
	while (--ethqidx >= 0)
		free_irq(adap->msix_info[--msi].vec, &s->ethrxq[ethqidx].rspq);
	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
	return err;
}

static void free_msix_queue_irqs(struct adapter *adap)
{
	int i, msi = 2;
	struct sge *s = &adap->sge;

	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
	for_each_ethrxq(s, i)
		free_irq(adap->msix_info[msi++].vec, &s->ethrxq[i].rspq);
	for_each_ofldrxq(s, i)
		free_irq(adap->msix_info[msi++].vec, &s->ofldrxq[i].rspq);
	for_each_rdmarxq(s, i)
		free_irq(adap->msix_info[msi++].vec, &s->rdmarxq[i].rspq);
}

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
/**
 *	write_rss - write the RSS table for a given port
 *	@pi: the port
 *	@queues: array of queue indices for RSS
 *
 *	Sets up the portion of the HW RSS table for the port's VI to distribute
 *	packets to the Rx queues in @queues.
 */
static int write_rss(const struct port_info *pi, const u16 *queues)
{
	u16 *rss;
	int i, err;
	const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];

	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
	if (!rss)
		return -ENOMEM;

	/* map the queue indices to queue ids */
	for (i = 0; i < pi->rss_size; i++, queues++)
		rss[i] = q[*queues].rspq.abs_id;

645 646
	err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
				  pi->rss_size, rss, pi->rss_size);
647 648 649 650
	kfree(rss);
	return err;
}

651 652 653 654
/**
 *	setup_rss - configure RSS
 *	@adap: the adapter
 *
655
 *	Sets up RSS for each port.
656 657 658
 */
static int setup_rss(struct adapter *adap)
{
659
	int i, err;
660 661 662 663

	for_each_port(adap, i) {
		const struct port_info *pi = adap2pinfo(adap, i);

664
		err = write_rss(pi, pi->rss);
665 666 667 668 669 670
		if (err)
			return err;
	}
	return 0;
}

671 672 673 674 675 676 677 678 679
/*
 * Return the channel of the ingress queue with the given qid.
 */
static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
{
	qid -= p->ingr_start;
	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
}

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
/*
 * Wait until all NAPI handlers are descheduled.
 */
static void quiesce_rx(struct adapter *adap)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
		struct sge_rspq *q = adap->sge.ingr_map[i];

		if (q && q->handler)
			napi_disable(&q->napi);
	}
}

/*
 * Enable NAPI scheduling and interrupt generation for all Rx queues.
 */
static void enable_rx(struct adapter *adap)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
		struct sge_rspq *q = adap->sge.ingr_map[i];

		if (!q)
			continue;
		if (q->handler)
			napi_enable(&q->napi);
		/* 0-increment GTS to start the timer and enable interrupts */
		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
			     SEINTARM(q->intr_params) |
			     INGRESSQID(q->cntxt_id));
	}
}

/**
 *	setup_sge_queues - configure SGE Tx/Rx/response queues
 *	@adap: the adapter
 *
 *	Determines how many sets of SGE queues to use and initializes them.
 *	We support multiple queue sets per port if we have MSI-X, otherwise
 *	just one queue set per port.
 */
static int setup_sge_queues(struct adapter *adap)
{
	int err, msi_idx, i, j;
	struct sge *s = &adap->sge;

	bitmap_zero(s->starving_fl, MAX_EGRQ);
	bitmap_zero(s->txq_maperr, MAX_EGRQ);

	if (adap->flags & USING_MSIX)
		msi_idx = 1;         /* vector 0 is for non-queue interrupts */
	else {
		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
				       NULL, NULL);
		if (err)
			return err;
		msi_idx = -((int)s->intrq.abs_id + 1);
	}

	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
			       msi_idx, NULL, fwevtq_handler);
	if (err) {
freeout:	t4_free_sge_resources(adap);
		return err;
	}

	for_each_port(adap, i) {
		struct net_device *dev = adap->port[i];
		struct port_info *pi = netdev_priv(dev);
		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];

		for (j = 0; j < pi->nqsets; j++, q++) {
			if (msi_idx > 0)
				msi_idx++;
			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
					       msi_idx, &q->fl,
					       t4_ethrx_handler);
			if (err)
				goto freeout;
			q->rspq.idx = j;
			memset(&q->stats, 0, sizeof(q->stats));
		}
		for (j = 0; j < pi->nqsets; j++, t++) {
			err = t4_sge_alloc_eth_txq(adap, t, dev,
					netdev_get_tx_queue(dev, j),
					s->fw_evtq.cntxt_id);
			if (err)
				goto freeout;
		}
	}

	j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
	for_each_ofldrxq(s, i) {
		struct sge_ofld_rxq *q = &s->ofldrxq[i];
		struct net_device *dev = adap->port[i / j];

		if (msi_idx > 0)
			msi_idx++;
		err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
				       &q->fl, uldrx_handler);
		if (err)
			goto freeout;
		memset(&q->stats, 0, sizeof(q->stats));
		s->ofld_rxq[i] = q->rspq.abs_id;
		err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
					    s->fw_evtq.cntxt_id);
		if (err)
			goto freeout;
	}

	for_each_rdmarxq(s, i) {
		struct sge_ofld_rxq *q = &s->rdmarxq[i];

		if (msi_idx > 0)
			msi_idx++;
		err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
				       msi_idx, &q->fl, uldrx_handler);
		if (err)
			goto freeout;
		memset(&q->stats, 0, sizeof(q->stats));
		s->rdma_rxq[i] = q->rspq.abs_id;
	}

	for_each_port(adap, i) {
		/*
		 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
		 * have RDMA queues, and that's the right value.
		 */
		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
					    s->fw_evtq.cntxt_id,
					    s->rdmarxq[i].rspq.cntxt_id);
		if (err)
			goto freeout;
	}

	t4_write_reg(adap, MPS_TRC_RSS_CONTROL,
		     RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
		     QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
	return 0;
}

/*
 * Returns 0 if new FW was successfully loaded, a positive errno if a load was
 * started but failed, and a negative errno if flash load couldn't start.
 */
static int upgrade_fw(struct adapter *adap)
{
	int ret;
	u32 vers;
	const struct fw_hdr *hdr;
	const struct firmware *fw;
	struct device *dev = adap->pdev_dev;

	ret = request_firmware(&fw, FW_FNAME, dev);
	if (ret < 0) {
		dev_err(dev, "unable to load firmware image " FW_FNAME
			", error %d\n", ret);
		return ret;
	}

	hdr = (const struct fw_hdr *)fw->data;
	vers = ntohl(hdr->fw_ver);
	if (FW_HDR_FW_VER_MAJOR_GET(vers) != FW_VERSION_MAJOR) {
		ret = -EINVAL;              /* wrong major version, won't do */
		goto out;
	}

	/*
	 * If the flash FW is unusable or we found something newer, load it.
	 */
	if (FW_HDR_FW_VER_MAJOR_GET(adap->params.fw_vers) != FW_VERSION_MAJOR ||
	    vers > adap->params.fw_vers) {
		ret = -t4_load_fw(adap, fw->data, fw->size);
		if (!ret)
			dev_info(dev, "firmware upgraded to version %pI4 from "
				 FW_FNAME "\n", &hdr->fw_ver);
	}
out:	release_firmware(fw);
	return ret;
}

/*
 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
 * The allocated memory is cleared.
 */
void *t4_alloc_mem(size_t size)
{
E
Eric Dumazet 已提交
871
	void *p = kzalloc(size, GFP_KERNEL);
872 873

	if (!p)
E
Eric Dumazet 已提交
874
		p = vzalloc(size);
875 876 877 878 879 880
	return p;
}

/*
 * Free memory allocated through alloc_mem().
 */
881
static void t4_free_mem(void *addr)
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
{
	if (is_vmalloc_addr(addr))
		vfree(addr);
	else
		kfree(addr);
}

static inline int is_offload(const struct adapter *adap)
{
	return adap->params.offload;
}

/*
 * Implementation of ethtool operations.
 */

static u32 get_msglevel(struct net_device *dev)
{
	return netdev2adap(dev)->msg_enable;
}

static void set_msglevel(struct net_device *dev, u32 val)
{
	netdev2adap(dev)->msg_enable = val;
}

static char stats_strings[][ETH_GSTRING_LEN] = {
	"TxOctetsOK         ",
	"TxFramesOK         ",
	"TxBroadcastFrames  ",
	"TxMulticastFrames  ",
	"TxUnicastFrames    ",
	"TxErrorFrames      ",

	"TxFrames64         ",
	"TxFrames65To127    ",
	"TxFrames128To255   ",
	"TxFrames256To511   ",
	"TxFrames512To1023  ",
	"TxFrames1024To1518 ",
	"TxFrames1519ToMax  ",

	"TxFramesDropped    ",
	"TxPauseFrames      ",
	"TxPPP0Frames       ",
	"TxPPP1Frames       ",
	"TxPPP2Frames       ",
	"TxPPP3Frames       ",
	"TxPPP4Frames       ",
	"TxPPP5Frames       ",
	"TxPPP6Frames       ",
	"TxPPP7Frames       ",

	"RxOctetsOK         ",
	"RxFramesOK         ",
	"RxBroadcastFrames  ",
	"RxMulticastFrames  ",
	"RxUnicastFrames    ",

	"RxFramesTooLong    ",
	"RxJabberErrors     ",
	"RxFCSErrors        ",
	"RxLengthErrors     ",
	"RxSymbolErrors     ",
	"RxRuntFrames       ",

	"RxFrames64         ",
	"RxFrames65To127    ",
	"RxFrames128To255   ",
	"RxFrames256To511   ",
	"RxFrames512To1023  ",
	"RxFrames1024To1518 ",
	"RxFrames1519ToMax  ",

	"RxPauseFrames      ",
	"RxPPP0Frames       ",
	"RxPPP1Frames       ",
	"RxPPP2Frames       ",
	"RxPPP3Frames       ",
	"RxPPP4Frames       ",
	"RxPPP5Frames       ",
	"RxPPP6Frames       ",
	"RxPPP7Frames       ",

	"RxBG0FramesDropped ",
	"RxBG1FramesDropped ",
	"RxBG2FramesDropped ",
	"RxBG3FramesDropped ",
	"RxBG0FramesTrunc   ",
	"RxBG1FramesTrunc   ",
	"RxBG2FramesTrunc   ",
	"RxBG3FramesTrunc   ",

	"TSO                ",
	"TxCsumOffload      ",
	"RxCsumGood         ",
	"VLANextractions    ",
	"VLANinsertions     ",
980 981
	"GROpackets         ",
	"GROmerged          ",
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
};

static int get_sset_count(struct net_device *dev, int sset)
{
	switch (sset) {
	case ETH_SS_STATS:
		return ARRAY_SIZE(stats_strings);
	default:
		return -EOPNOTSUPP;
	}
}

#define T4_REGMAP_SIZE (160 * 1024)

static int get_regs_len(struct net_device *dev)
{
	return T4_REGMAP_SIZE;
}

static int get_eeprom_len(struct net_device *dev)
{
	return EEPROMSIZE;
}

static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
	struct adapter *adapter = netdev2adap(dev);

	strcpy(info->driver, KBUILD_MODNAME);
	strcpy(info->version, DRV_VERSION);
	strcpy(info->bus_info, pci_name(adapter->pdev));

	if (!adapter->params.fw_vers)
		strcpy(info->fw_version, "N/A");
	else
		snprintf(info->fw_version, sizeof(info->fw_version),
			"%u.%u.%u.%u, TP %u.%u.%u.%u",
			FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
			FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
			FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
			FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
			FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
			FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
			FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
			FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
}

static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
	if (stringset == ETH_SS_STATS)
		memcpy(data, stats_strings, sizeof(stats_strings));
}

/*
 * port stats maintained per queue of the port.  They should be in the same
 * order as in stats_strings above.
 */
struct queue_port_stats {
	u64 tso;
	u64 tx_csum;
	u64 rx_csum;
	u64 vlan_ex;
	u64 vlan_ins;
1045 1046
	u64 gro_pkts;
	u64 gro_merged;
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
};

static void collect_sge_port_stats(const struct adapter *adap,
		const struct port_info *p, struct queue_port_stats *s)
{
	int i;
	const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
	const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];

	memset(s, 0, sizeof(*s));
	for (i = 0; i < p->nqsets; i++, rx++, tx++) {
		s->tso += tx->tso;
		s->tx_csum += tx->tx_cso;
		s->rx_csum += rx->stats.rx_cso;
		s->vlan_ex += rx->stats.vlan_ex;
		s->vlan_ins += tx->vlan_ins;
1063 1064
		s->gro_pkts += rx->stats.lro_pkts;
		s->gro_merged += rx->stats.lro_merged;
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	}
}

static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
		      u64 *data)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adapter = pi->adapter;

	t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);

	data += sizeof(struct port_stats) / sizeof(u64);
	collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
}

/*
 * Return a version number to identify the type of adapter.  The scheme is:
 * - bits 0..9: chip version
 * - bits 10..15: chip revision
1084
 * - bits 16..23: register dump version
1085 1086 1087
 */
static inline unsigned int mk_adap_vers(const struct adapter *ap)
{
1088
	return 4 | (ap->params.rev << 10) | (1 << 16);
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
}

static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
			   unsigned int end)
{
	u32 *p = buf + start;

	for ( ; start <= end; start += sizeof(u32))
		*p++ = t4_read_reg(ap, start);
}

static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
		     void *buf)
{
	static const unsigned int reg_ranges[] = {
		0x1008, 0x1108,
		0x1180, 0x11b4,
		0x11fc, 0x123c,
		0x1300, 0x173c,
		0x1800, 0x18fc,
		0x3000, 0x30d8,
		0x30e0, 0x5924,
		0x5960, 0x59d4,
		0x5a00, 0x5af8,
		0x6000, 0x6098,
		0x6100, 0x6150,
		0x6200, 0x6208,
		0x6240, 0x6248,
		0x6280, 0x6338,
		0x6370, 0x638c,
		0x6400, 0x643c,
		0x6500, 0x6524,
		0x6a00, 0x6a38,
		0x6a60, 0x6a78,
		0x6b00, 0x6b84,
		0x6bf0, 0x6c84,
		0x6cf0, 0x6d84,
		0x6df0, 0x6e84,
		0x6ef0, 0x6f84,
		0x6ff0, 0x7084,
		0x70f0, 0x7184,
		0x71f0, 0x7284,
		0x72f0, 0x7384,
		0x73f0, 0x7450,
		0x7500, 0x7530,
		0x7600, 0x761c,
		0x7680, 0x76cc,
		0x7700, 0x7798,
		0x77c0, 0x77fc,
		0x7900, 0x79fc,
		0x7b00, 0x7c38,
		0x7d00, 0x7efc,
		0x8dc0, 0x8e1c,
		0x8e30, 0x8e78,
		0x8ea0, 0x8f6c,
		0x8fc0, 0x9074,
		0x90fc, 0x90fc,
		0x9400, 0x9458,
		0x9600, 0x96bc,
		0x9800, 0x9808,
		0x9820, 0x983c,
		0x9850, 0x9864,
		0x9c00, 0x9c6c,
		0x9c80, 0x9cec,
		0x9d00, 0x9d6c,
		0x9d80, 0x9dec,
		0x9e00, 0x9e6c,
		0x9e80, 0x9eec,
		0x9f00, 0x9f6c,
		0x9f80, 0x9fec,
		0xd004, 0xd03c,
		0xdfc0, 0xdfe0,
		0xe000, 0xea7c,
		0xf000, 0x11190,
1163 1164 1165
		0x19040, 0x1906c,
		0x19078, 0x19080,
		0x1908c, 0x19124,
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
		0x19150, 0x191b0,
		0x191d0, 0x191e8,
		0x19238, 0x1924c,
		0x193f8, 0x19474,
		0x19490, 0x194f8,
		0x19800, 0x19f30,
		0x1a000, 0x1a06c,
		0x1a0b0, 0x1a120,
		0x1a128, 0x1a138,
		0x1a190, 0x1a1c4,
		0x1a1fc, 0x1a1fc,
		0x1e040, 0x1e04c,
1178
		0x1e284, 0x1e28c,
1179 1180 1181 1182 1183
		0x1e2c0, 0x1e2c0,
		0x1e2e0, 0x1e2e0,
		0x1e300, 0x1e384,
		0x1e3c0, 0x1e3c8,
		0x1e440, 0x1e44c,
1184
		0x1e684, 0x1e68c,
1185 1186 1187 1188 1189
		0x1e6c0, 0x1e6c0,
		0x1e6e0, 0x1e6e0,
		0x1e700, 0x1e784,
		0x1e7c0, 0x1e7c8,
		0x1e840, 0x1e84c,
1190
		0x1ea84, 0x1ea8c,
1191 1192 1193 1194 1195
		0x1eac0, 0x1eac0,
		0x1eae0, 0x1eae0,
		0x1eb00, 0x1eb84,
		0x1ebc0, 0x1ebc8,
		0x1ec40, 0x1ec4c,
1196
		0x1ee84, 0x1ee8c,
1197 1198 1199 1200 1201
		0x1eec0, 0x1eec0,
		0x1eee0, 0x1eee0,
		0x1ef00, 0x1ef84,
		0x1efc0, 0x1efc8,
		0x1f040, 0x1f04c,
1202
		0x1f284, 0x1f28c,
1203 1204 1205 1206 1207
		0x1f2c0, 0x1f2c0,
		0x1f2e0, 0x1f2e0,
		0x1f300, 0x1f384,
		0x1f3c0, 0x1f3c8,
		0x1f440, 0x1f44c,
1208
		0x1f684, 0x1f68c,
1209 1210 1211 1212 1213
		0x1f6c0, 0x1f6c0,
		0x1f6e0, 0x1f6e0,
		0x1f700, 0x1f784,
		0x1f7c0, 0x1f7c8,
		0x1f840, 0x1f84c,
1214
		0x1fa84, 0x1fa8c,
1215 1216 1217 1218 1219
		0x1fac0, 0x1fac0,
		0x1fae0, 0x1fae0,
		0x1fb00, 0x1fb84,
		0x1fbc0, 0x1fbc8,
		0x1fc40, 0x1fc4c,
1220
		0x1fe84, 0x1fe8c,
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		0x1fec0, 0x1fec0,
		0x1fee0, 0x1fee0,
		0x1ff00, 0x1ff84,
		0x1ffc0, 0x1ffc8,
		0x20000, 0x2002c,
		0x20100, 0x2013c,
		0x20190, 0x201c8,
		0x20200, 0x20318,
		0x20400, 0x20528,
		0x20540, 0x20614,
		0x21000, 0x21040,
		0x2104c, 0x21060,
		0x210c0, 0x210ec,
		0x21200, 0x21268,
		0x21270, 0x21284,
		0x212fc, 0x21388,
		0x21400, 0x21404,
		0x21500, 0x21518,
		0x2152c, 0x2153c,
		0x21550, 0x21554,
		0x21600, 0x21600,
		0x21608, 0x21628,
		0x21630, 0x2163c,
		0x21700, 0x2171c,
		0x21780, 0x2178c,
		0x21800, 0x21c38,
		0x21c80, 0x21d7c,
		0x21e00, 0x21e04,
		0x22000, 0x2202c,
		0x22100, 0x2213c,
		0x22190, 0x221c8,
		0x22200, 0x22318,
		0x22400, 0x22528,
		0x22540, 0x22614,
		0x23000, 0x23040,
		0x2304c, 0x23060,
		0x230c0, 0x230ec,
		0x23200, 0x23268,
		0x23270, 0x23284,
		0x232fc, 0x23388,
		0x23400, 0x23404,
		0x23500, 0x23518,
		0x2352c, 0x2353c,
		0x23550, 0x23554,
		0x23600, 0x23600,
		0x23608, 0x23628,
		0x23630, 0x2363c,
		0x23700, 0x2371c,
		0x23780, 0x2378c,
		0x23800, 0x23c38,
		0x23c80, 0x23d7c,
		0x23e00, 0x23e04,
		0x24000, 0x2402c,
		0x24100, 0x2413c,
		0x24190, 0x241c8,
		0x24200, 0x24318,
		0x24400, 0x24528,
		0x24540, 0x24614,
		0x25000, 0x25040,
		0x2504c, 0x25060,
		0x250c0, 0x250ec,
		0x25200, 0x25268,
		0x25270, 0x25284,
		0x252fc, 0x25388,
		0x25400, 0x25404,
		0x25500, 0x25518,
		0x2552c, 0x2553c,
		0x25550, 0x25554,
		0x25600, 0x25600,
		0x25608, 0x25628,
		0x25630, 0x2563c,
		0x25700, 0x2571c,
		0x25780, 0x2578c,
		0x25800, 0x25c38,
		0x25c80, 0x25d7c,
		0x25e00, 0x25e04,
		0x26000, 0x2602c,
		0x26100, 0x2613c,
		0x26190, 0x261c8,
		0x26200, 0x26318,
		0x26400, 0x26528,
		0x26540, 0x26614,
		0x27000, 0x27040,
		0x2704c, 0x27060,
		0x270c0, 0x270ec,
		0x27200, 0x27268,
		0x27270, 0x27284,
		0x272fc, 0x27388,
		0x27400, 0x27404,
		0x27500, 0x27518,
		0x2752c, 0x2753c,
		0x27550, 0x27554,
		0x27600, 0x27600,
		0x27608, 0x27628,
		0x27630, 0x2763c,
		0x27700, 0x2771c,
		0x27780, 0x2778c,
		0x27800, 0x27c38,
		0x27c80, 0x27d7c,
		0x27e00, 0x27e04
	};

	int i;
	struct adapter *ap = netdev2adap(dev);

	regs->version = mk_adap_vers(ap);

	memset(buf, 0, T4_REGMAP_SIZE);
	for (i = 0; i < ARRAY_SIZE(reg_ranges); i += 2)
		reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
}

static int restart_autoneg(struct net_device *dev)
{
	struct port_info *p = netdev_priv(dev);

	if (!netif_running(dev))
		return -EAGAIN;
	if (p->link_cfg.autoneg != AUTONEG_ENABLE)
		return -EINVAL;
1341
	t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
1342 1343 1344 1345 1346
	return 0;
}

static int identify_port(struct net_device *dev, u32 data)
{
1347 1348
	struct adapter *adap = netdev2adap(dev);

1349 1350 1351
	if (data == 0)
		data = 2;     /* default to 2 seconds */

1352
	return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid,
1353 1354 1355 1356 1357 1358 1359
				data * 5);
}

static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
{
	unsigned int v = 0;

1360 1361
	if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
	    type == FW_PORT_TYPE_BT_XAUI) {
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
		v |= SUPPORTED_TP;
		if (caps & FW_PORT_CAP_SPEED_100M)
			v |= SUPPORTED_100baseT_Full;
		if (caps & FW_PORT_CAP_SPEED_1G)
			v |= SUPPORTED_1000baseT_Full;
		if (caps & FW_PORT_CAP_SPEED_10G)
			v |= SUPPORTED_10000baseT_Full;
	} else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
		v |= SUPPORTED_Backplane;
		if (caps & FW_PORT_CAP_SPEED_1G)
			v |= SUPPORTED_1000baseKX_Full;
		if (caps & FW_PORT_CAP_SPEED_10G)
			v |= SUPPORTED_10000baseKX4_Full;
	} else if (type == FW_PORT_TYPE_KR)
		v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
1377 1378 1379 1380
	else if (type == FW_PORT_TYPE_BP_AP)
		v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC;
	else if (type == FW_PORT_TYPE_FIBER_XFI ||
		 type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
		v |= SUPPORTED_FIBRE;

	if (caps & FW_PORT_CAP_ANEG)
		v |= SUPPORTED_Autoneg;
	return v;
}

static unsigned int to_fw_linkcaps(unsigned int caps)
{
	unsigned int v = 0;

	if (caps & ADVERTISED_100baseT_Full)
		v |= FW_PORT_CAP_SPEED_100M;
	if (caps & ADVERTISED_1000baseT_Full)
		v |= FW_PORT_CAP_SPEED_1G;
	if (caps & ADVERTISED_10000baseT_Full)
		v |= FW_PORT_CAP_SPEED_10G;
	return v;
}

static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	const struct port_info *p = netdev_priv(dev);

	if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
1406
	    p->port_type == FW_PORT_TYPE_BT_XFI ||
1407 1408
	    p->port_type == FW_PORT_TYPE_BT_XAUI)
		cmd->port = PORT_TP;
1409 1410
	else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
		 p->port_type == FW_PORT_TYPE_FIBER_XAUI)
1411
		cmd->port = PORT_FIBRE;
1412 1413 1414 1415 1416 1417 1418
	else if (p->port_type == FW_PORT_TYPE_SFP) {
		if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
		    p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
			cmd->port = PORT_DA;
		else
			cmd->port = PORT_FIBRE;
	} else
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
		cmd->port = PORT_OTHER;

	if (p->mdio_addr >= 0) {
		cmd->phy_address = p->mdio_addr;
		cmd->transceiver = XCVR_EXTERNAL;
		cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
			MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
	} else {
		cmd->phy_address = 0;  /* not really, but no better option */
		cmd->transceiver = XCVR_INTERNAL;
		cmd->mdio_support = 0;
	}

	cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
	cmd->advertising = from_fw_linkcaps(p->port_type,
					    p->link_cfg.advertising);
	cmd->speed = netif_carrier_ok(dev) ? p->link_cfg.speed : 0;
	cmd->duplex = DUPLEX_FULL;
	cmd->autoneg = p->link_cfg.autoneg;
	cmd->maxtxpkt = 0;
	cmd->maxrxpkt = 0;
	return 0;
}

static unsigned int speed_to_caps(int speed)
{
	if (speed == SPEED_100)
		return FW_PORT_CAP_SPEED_100M;
	if (speed == SPEED_1000)
		return FW_PORT_CAP_SPEED_1G;
	if (speed == SPEED_10000)
		return FW_PORT_CAP_SPEED_10G;
	return 0;
}

static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	unsigned int cap;
	struct port_info *p = netdev_priv(dev);
	struct link_config *lc = &p->link_cfg;

	if (cmd->duplex != DUPLEX_FULL)     /* only full-duplex supported */
		return -EINVAL;

	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
		/*
		 * PHY offers a single speed.  See if that's what's
		 * being requested.
		 */
		if (cmd->autoneg == AUTONEG_DISABLE &&
		    (lc->supported & speed_to_caps(cmd->speed)))
				return 0;
		return -EINVAL;
	}

	if (cmd->autoneg == AUTONEG_DISABLE) {
		cap = speed_to_caps(cmd->speed);

		if (!(lc->supported & cap) || cmd->speed == SPEED_1000 ||
		    cmd->speed == SPEED_10000)
			return -EINVAL;
		lc->requested_speed = cap;
		lc->advertising = 0;
	} else {
		cap = to_fw_linkcaps(cmd->advertising);
		if (!(lc->supported & cap))
			return -EINVAL;
		lc->requested_speed = 0;
		lc->advertising = cap | FW_PORT_CAP_ANEG;
	}
	lc->autoneg = cmd->autoneg;

	if (netif_running(dev))
1492 1493
		return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
				     lc);
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	return 0;
}

static void get_pauseparam(struct net_device *dev,
			   struct ethtool_pauseparam *epause)
{
	struct port_info *p = netdev_priv(dev);

	epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
	epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
	epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
}

static int set_pauseparam(struct net_device *dev,
			  struct ethtool_pauseparam *epause)
{
	struct port_info *p = netdev_priv(dev);
	struct link_config *lc = &p->link_cfg;

	if (epause->autoneg == AUTONEG_DISABLE)
		lc->requested_fc = 0;
	else if (lc->supported & FW_PORT_CAP_ANEG)
		lc->requested_fc = PAUSE_AUTONEG;
	else
		return -EINVAL;

	if (epause->rx_pause)
		lc->requested_fc |= PAUSE_RX;
	if (epause->tx_pause)
		lc->requested_fc |= PAUSE_TX;
	if (netif_running(dev))
1525 1526
		return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
				     lc);
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	return 0;
}

static u32 get_rx_csum(struct net_device *dev)
{
	struct port_info *p = netdev_priv(dev);

	return p->rx_offload & RX_CSO;
}

static int set_rx_csum(struct net_device *dev, u32 data)
{
	struct port_info *p = netdev_priv(dev);

	if (data)
		p->rx_offload |= RX_CSO;
	else
		p->rx_offload &= ~RX_CSO;
	return 0;
}

static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
{
	const struct port_info *pi = netdev_priv(dev);
	const struct sge *s = &pi->adapter->sge;

	e->rx_max_pending = MAX_RX_BUFFERS;
	e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
	e->rx_jumbo_max_pending = 0;
	e->tx_max_pending = MAX_TXQ_ENTRIES;

	e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
	e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
	e->rx_jumbo_pending = 0;
	e->tx_pending = s->ethtxq[pi->first_qset].q.size;
}

static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
{
	int i;
	const struct port_info *pi = netdev_priv(dev);
	struct adapter *adapter = pi->adapter;
	struct sge *s = &adapter->sge;

	if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
	    e->tx_pending > MAX_TXQ_ENTRIES ||
	    e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
	    e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
	    e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
		return -EINVAL;

	if (adapter->flags & FULL_INIT_DONE)
		return -EBUSY;

	for (i = 0; i < pi->nqsets; ++i) {
		s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
		s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
		s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
	}
	return 0;
}

static int closest_timer(const struct sge *s, int time)
{
	int i, delta, match = 0, min_delta = INT_MAX;

	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
		delta = time - s->timer_val[i];
		if (delta < 0)
			delta = -delta;
		if (delta < min_delta) {
			min_delta = delta;
			match = i;
		}
	}
	return match;
}

static int closest_thres(const struct sge *s, int thres)
{
	int i, delta, match = 0, min_delta = INT_MAX;

	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
		delta = thres - s->counter_val[i];
		if (delta < 0)
			delta = -delta;
		if (delta < min_delta) {
			min_delta = delta;
			match = i;
		}
	}
	return match;
}

/*
 * Return a queue's interrupt hold-off time in us.  0 means no timer.
 */
static unsigned int qtimer_val(const struct adapter *adap,
			       const struct sge_rspq *q)
{
	unsigned int idx = q->intr_params >> 1;

	return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
}

/**
 *	set_rxq_intr_params - set a queue's interrupt holdoff parameters
 *	@adap: the adapter
 *	@q: the Rx queue
 *	@us: the hold-off time in us, or 0 to disable timer
 *	@cnt: the hold-off packet count, or 0 to disable counter
 *
 *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
 *	one of the two needs to be enabled for the queue to generate interrupts.
 */
static int set_rxq_intr_params(struct adapter *adap, struct sge_rspq *q,
			       unsigned int us, unsigned int cnt)
{
	if ((us | cnt) == 0)
		cnt = 1;

	if (cnt) {
		int err;
		u32 v, new_idx;

		new_idx = closest_thres(&adap->sge, cnt);
		if (q->desc && q->pktcnt_idx != new_idx) {
			/* the queue has already been created, update it */
			v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
			    FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
			    FW_PARAMS_PARAM_YZ(q->cntxt_id);
1658 1659
			err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
					    &new_idx);
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
			if (err)
				return err;
		}
		q->pktcnt_idx = new_idx;
	}

	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
	q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
	return 0;
}

static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
{
	const struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;

	return set_rxq_intr_params(adap, &adap->sge.ethrxq[pi->first_qset].rspq,
			c->rx_coalesce_usecs, c->rx_max_coalesced_frames);
}

static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
{
	const struct port_info *pi = netdev_priv(dev);
	const struct adapter *adap = pi->adapter;
	const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;

	c->rx_coalesce_usecs = qtimer_val(adap, rq);
	c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
		adap->sge.counter_val[rq->pktcnt_idx] : 0;
	return 0;
}

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
/**
 *	eeprom_ptov - translate a physical EEPROM address to virtual
 *	@phys_addr: the physical EEPROM address
 *	@fn: the PCI function number
 *	@sz: size of function-specific area
 *
 *	Translate a physical EEPROM address to virtual.  The first 1K is
 *	accessed through virtual addresses starting at 31K, the rest is
 *	accessed through virtual addresses starting at 0.
 *
 *	The mapping is as follows:
 *	[0..1K) -> [31K..32K)
 *	[1K..1K+A) -> [31K-A..31K)
 *	[1K+A..ES) -> [0..ES-A-1K)
 *
 *	where A = @fn * @sz, and ES = EEPROM size.
1708
 */
1709
static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
1710
{
1711
	fn *= sz;
1712 1713
	if (phys_addr < 1024)
		return phys_addr + (31 << 10);
1714 1715
	if (phys_addr < 1024 + fn)
		return 31744 - fn + phys_addr - 1024;
1716
	if (phys_addr < EEPROMSIZE)
1717
		return phys_addr - 1024 - fn;
1718 1719 1720 1721 1722 1723 1724 1725
	return -EINVAL;
}

/*
 * The next two routines implement eeprom read/write from physical addresses.
 */
static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
{
1726
	int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
1727 1728 1729 1730 1731 1732 1733 1734

	if (vaddr >= 0)
		vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
	return vaddr < 0 ? vaddr : 0;
}

static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
{
1735
	int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777

	if (vaddr >= 0)
		vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
	return vaddr < 0 ? vaddr : 0;
}

#define EEPROM_MAGIC 0x38E2F10C

static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
		      u8 *data)
{
	int i, err = 0;
	struct adapter *adapter = netdev2adap(dev);

	u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	e->magic = EEPROM_MAGIC;
	for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
		err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);

	if (!err)
		memcpy(data, buf + e->offset, e->len);
	kfree(buf);
	return err;
}

static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
		      u8 *data)
{
	u8 *buf;
	int err = 0;
	u32 aligned_offset, aligned_len, *p;
	struct adapter *adapter = netdev2adap(dev);

	if (eeprom->magic != EEPROM_MAGIC)
		return -EINVAL;

	aligned_offset = eeprom->offset & ~3;
	aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;

1778 1779 1780 1781 1782 1783 1784 1785
	if (adapter->fn > 0) {
		u32 start = 1024 + adapter->fn * EEPROMPFSIZE;

		if (aligned_offset < start ||
		    aligned_offset + aligned_len > start + EEPROMPFSIZE)
			return -EPERM;
	}

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
	if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
		/*
		 * RMW possibly needed for first or last words.
		 */
		buf = kmalloc(aligned_len, GFP_KERNEL);
		if (!buf)
			return -ENOMEM;
		err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
		if (!err && aligned_len > 4)
			err = eeprom_rd_phys(adapter,
					     aligned_offset + aligned_len - 4,
					     (u32 *)&buf[aligned_len - 4]);
		if (err)
			goto out;
		memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
	} else
		buf = data;

	err = t4_seeprom_wp(adapter, false);
	if (err)
		goto out;

	for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
		err = eeprom_wr_phys(adapter, aligned_offset, *p);
		aligned_offset += 4;
	}

	if (!err)
		err = t4_seeprom_wp(adapter, true);
out:
	if (buf != data)
		kfree(buf);
	return err;
}

static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
{
	int ret;
	const struct firmware *fw;
	struct adapter *adap = netdev2adap(netdev);

	ef->data[sizeof(ef->data) - 1] = '\0';
	ret = request_firmware(&fw, ef->data, adap->pdev_dev);
	if (ret < 0)
		return ret;

	ret = t4_load_fw(adap, fw->data, fw->size);
	release_firmware(fw);
	if (!ret)
		dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
	return ret;
}

#define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
#define BCAST_CRC 0xa0ccc1a6

static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
	wol->supported = WAKE_BCAST | WAKE_MAGIC;
	wol->wolopts = netdev2adap(dev)->wol;
	memset(&wol->sopass, 0, sizeof(wol->sopass));
}

static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
	int err = 0;
	struct port_info *pi = netdev_priv(dev);

	if (wol->wolopts & ~WOL_SUPPORTED)
		return -EINVAL;
	t4_wol_magic_enable(pi->adapter, pi->tx_chan,
			    (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
	if (wol->wolopts & WAKE_BCAST) {
		err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
					~0ULL, 0, false);
		if (!err)
			err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
						~6ULL, ~0ULL, BCAST_CRC, true);
	} else
		t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
	return err;
}

1869 1870
#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)

1871 1872 1873
static int set_tso(struct net_device *dev, u32 value)
{
	if (value)
1874
		dev->features |= TSO_FLAGS;
1875
	else
1876
		dev->features &= ~TSO_FLAGS;
1877 1878 1879
	return 0;
}

D
Dimitris Michailidis 已提交
1880 1881
static int set_flags(struct net_device *dev, u32 flags)
{
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
	int err;
	unsigned long old_feat = dev->features;

	err = ethtool_op_set_flags(dev, flags, ETH_FLAG_RXHASH |
				   ETH_FLAG_RXVLAN | ETH_FLAG_TXVLAN);
	if (err)
		return err;

	if ((old_feat ^ dev->features) & NETIF_F_HW_VLAN_RX) {
		const struct port_info *pi = netdev_priv(dev);

		err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
				    -1, -1, -1, !!(flags & ETH_FLAG_RXVLAN),
				    true);
		if (err)
			dev->features = old_feat;
	}
	return err;
D
Dimitris Michailidis 已提交
1900 1901
}

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
static int get_rss_table(struct net_device *dev, struct ethtool_rxfh_indir *p)
{
	const struct port_info *pi = netdev_priv(dev);
	unsigned int n = min_t(unsigned int, p->size, pi->rss_size);

	p->size = pi->rss_size;
	while (n--)
		p->ring_index[n] = pi->rss[n];
	return 0;
}

static int set_rss_table(struct net_device *dev,
			 const struct ethtool_rxfh_indir *p)
{
	unsigned int i;
	struct port_info *pi = netdev_priv(dev);

	if (p->size != pi->rss_size)
		return -EINVAL;
	for (i = 0; i < p->size; i++)
		if (p->ring_index[i] >= pi->nqsets)
			return -EINVAL;
	for (i = 0; i < p->size; i++)
		pi->rss[i] = p->ring_index[i];
	if (pi->adapter->flags & FULL_INIT_DONE)
		return write_rss(pi, pi->rss);
	return 0;
}

static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
		     void *rules)
{
1934 1935
	const struct port_info *pi = netdev_priv(dev);

1936
	switch (info->cmd) {
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
	case ETHTOOL_GRXFH: {
		unsigned int v = pi->rss_mode;

		info->data = 0;
		switch (info->flow_type) {
		case TCP_V4_FLOW:
			if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
				info->data = RXH_IP_SRC | RXH_IP_DST |
					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
			else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
				info->data = RXH_IP_SRC | RXH_IP_DST;
			break;
		case UDP_V4_FLOW:
			if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
			    (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
				info->data = RXH_IP_SRC | RXH_IP_DST |
					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
			else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
				info->data = RXH_IP_SRC | RXH_IP_DST;
			break;
		case SCTP_V4_FLOW:
		case AH_ESP_V4_FLOW:
		case IPV4_FLOW:
			if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
				info->data = RXH_IP_SRC | RXH_IP_DST;
			break;
		case TCP_V6_FLOW:
			if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
				info->data = RXH_IP_SRC | RXH_IP_DST |
					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
			else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
				info->data = RXH_IP_SRC | RXH_IP_DST;
			break;
		case UDP_V6_FLOW:
			if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
			    (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
				info->data = RXH_IP_SRC | RXH_IP_DST |
					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
			else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
				info->data = RXH_IP_SRC | RXH_IP_DST;
			break;
		case SCTP_V6_FLOW:
		case AH_ESP_V6_FLOW:
		case IPV6_FLOW:
			if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
				info->data = RXH_IP_SRC | RXH_IP_DST;
			break;
		}
		return 0;
	}
1987
	case ETHTOOL_GRXRINGS:
1988
		info->data = pi->nqsets;
1989 1990 1991 1992 1993
		return 0;
	}
	return -EOPNOTSUPP;
}

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
static struct ethtool_ops cxgb_ethtool_ops = {
	.get_settings      = get_settings,
	.set_settings      = set_settings,
	.get_drvinfo       = get_drvinfo,
	.get_msglevel      = get_msglevel,
	.set_msglevel      = set_msglevel,
	.get_ringparam     = get_sge_param,
	.set_ringparam     = set_sge_param,
	.get_coalesce      = get_coalesce,
	.set_coalesce      = set_coalesce,
	.get_eeprom_len    = get_eeprom_len,
	.get_eeprom        = get_eeprom,
	.set_eeprom        = set_eeprom,
	.get_pauseparam    = get_pauseparam,
	.set_pauseparam    = set_pauseparam,
	.get_rx_csum       = get_rx_csum,
	.set_rx_csum       = set_rx_csum,
	.set_tx_csum       = ethtool_op_set_tx_ipv6_csum,
	.set_sg            = ethtool_op_set_sg,
	.get_link          = ethtool_op_get_link,
	.get_strings       = get_strings,
	.phys_id           = identify_port,
	.nway_reset        = restart_autoneg,
	.get_sset_count    = get_sset_count,
	.get_ethtool_stats = get_stats,
	.get_regs_len      = get_regs_len,
	.get_regs          = get_regs,
	.get_wol           = get_wol,
	.set_wol           = set_wol,
	.set_tso           = set_tso,
D
Dimitris Michailidis 已提交
2024
	.set_flags         = set_flags,
2025 2026 2027
	.get_rxnfc         = get_rxnfc,
	.get_rxfh_indir    = get_rss_table,
	.set_rxfh_indir    = set_rss_table,
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
	.flash_device      = set_flash,
};

/*
 * debugfs support
 */

static int mem_open(struct inode *inode, struct file *file)
{
	file->private_data = inode->i_private;
	return 0;
}

static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
			loff_t *ppos)
{
	loff_t pos = *ppos;
	loff_t avail = file->f_path.dentry->d_inode->i_size;
	unsigned int mem = (uintptr_t)file->private_data & 3;
	struct adapter *adap = file->private_data - mem;

	if (pos < 0)
		return -EINVAL;
	if (pos >= avail)
		return 0;
	if (count > avail - pos)
		count = avail - pos;

	while (count) {
		size_t len;
		int ret, ofst;
		__be32 data[16];

		if (mem == MEM_MC)
			ret = t4_mc_read(adap, pos, data, NULL);
		else
			ret = t4_edc_read(adap, mem, pos, data, NULL);
		if (ret)
			return ret;

		ofst = pos % sizeof(data);
		len = min(count, sizeof(data) - ofst);
		if (copy_to_user(buf, (u8 *)data + ofst, len))
			return -EFAULT;

		buf += len;
		pos += len;
		count -= len;
	}
	count = pos - *ppos;
	*ppos = pos;
	return count;
}

static const struct file_operations mem_debugfs_fops = {
	.owner   = THIS_MODULE,
	.open    = mem_open,
	.read    = mem_read,
2086
	.llseek  = default_llseek,
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
};

static void __devinit add_debugfs_mem(struct adapter *adap, const char *name,
				      unsigned int idx, unsigned int size_mb)
{
	struct dentry *de;

	de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
				 (void *)adap + idx, &mem_debugfs_fops);
	if (de && de->d_inode)
		de->d_inode->i_size = size_mb << 20;
}

static int __devinit setup_debugfs(struct adapter *adap)
{
	int i;

	if (IS_ERR_OR_NULL(adap->debugfs_root))
		return -1;

	i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
	if (i & EDRAM0_ENABLE)
		add_debugfs_mem(adap, "edc0", MEM_EDC0, 5);
	if (i & EDRAM1_ENABLE)
		add_debugfs_mem(adap, "edc1", MEM_EDC1, 5);
	if (i & EXT_MEM_ENABLE)
		add_debugfs_mem(adap, "mc", MEM_MC,
			EXT_MEM_SIZE_GET(t4_read_reg(adap, MA_EXT_MEMORY_BAR)));
	if (adap->l2t)
		debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
				    &t4_l2t_fops);
	return 0;
}

/*
 * upper-layer driver support
 */

/*
 * Allocate an active-open TID and set it to the supplied value.
 */
int cxgb4_alloc_atid(struct tid_info *t, void *data)
{
	int atid = -1;

	spin_lock_bh(&t->atid_lock);
	if (t->afree) {
		union aopen_entry *p = t->afree;

		atid = p - t->atid_tab;
		t->afree = p->next;
		p->data = data;
		t->atids_in_use++;
	}
	spin_unlock_bh(&t->atid_lock);
	return atid;
}
EXPORT_SYMBOL(cxgb4_alloc_atid);

/*
 * Release an active-open TID.
 */
void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
{
	union aopen_entry *p = &t->atid_tab[atid];

	spin_lock_bh(&t->atid_lock);
	p->next = t->afree;
	t->afree = p;
	t->atids_in_use--;
	spin_unlock_bh(&t->atid_lock);
}
EXPORT_SYMBOL(cxgb4_free_atid);

/*
 * Allocate a server TID and set it to the supplied value.
 */
int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
{
	int stid;

	spin_lock_bh(&t->stid_lock);
	if (family == PF_INET) {
		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
		if (stid < t->nstids)
			__set_bit(stid, t->stid_bmap);
		else
			stid = -1;
	} else {
		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
		if (stid < 0)
			stid = -1;
	}
	if (stid >= 0) {
		t->stid_tab[stid].data = data;
		stid += t->stid_base;
		t->stids_in_use++;
	}
	spin_unlock_bh(&t->stid_lock);
	return stid;
}
EXPORT_SYMBOL(cxgb4_alloc_stid);

/*
 * Release a server TID.
 */
void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
{
	stid -= t->stid_base;
	spin_lock_bh(&t->stid_lock);
	if (family == PF_INET)
		__clear_bit(stid, t->stid_bmap);
	else
		bitmap_release_region(t->stid_bmap, stid, 2);
	t->stid_tab[stid].data = NULL;
	t->stids_in_use--;
	spin_unlock_bh(&t->stid_lock);
}
EXPORT_SYMBOL(cxgb4_free_stid);

/*
 * Populate a TID_RELEASE WR.  Caller must properly size the skb.
 */
static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
			   unsigned int tid)
{
	struct cpl_tid_release *req;

	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
	req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
	INIT_TP_WR(req, tid);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
}

/*
 * Queue a TID release request and if necessary schedule a work queue to
 * process it.
 */
2225 2226
static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
				    unsigned int tid)
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
{
	void **p = &t->tid_tab[tid];
	struct adapter *adap = container_of(t, struct adapter, tids);

	spin_lock_bh(&adap->tid_release_lock);
	*p = adap->tid_release_head;
	/* Low 2 bits encode the Tx channel number */
	adap->tid_release_head = (void **)((uintptr_t)p | chan);
	if (!adap->tid_release_task_busy) {
		adap->tid_release_task_busy = true;
		schedule_work(&adap->tid_release_task);
	}
	spin_unlock_bh(&adap->tid_release_lock);
}

/*
 * Process the list of pending TID release requests.
 */
static void process_tid_release_list(struct work_struct *work)
{
	struct sk_buff *skb;
	struct adapter *adap;

	adap = container_of(work, struct adapter, tid_release_task);

	spin_lock_bh(&adap->tid_release_lock);
	while (adap->tid_release_head) {
		void **p = adap->tid_release_head;
		unsigned int chan = (uintptr_t)p & 3;
		p = (void *)p - chan;

		adap->tid_release_head = *p;
		*p = NULL;
		spin_unlock_bh(&adap->tid_release_lock);

		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
					 GFP_KERNEL)))
			schedule_timeout_uninterruptible(1);

		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
		t4_ofld_send(adap, skb);
		spin_lock_bh(&adap->tid_release_lock);
	}
	adap->tid_release_task_busy = false;
	spin_unlock_bh(&adap->tid_release_lock);
}

/*
 * Release a TID and inform HW.  If we are unable to allocate the release
 * message we defer to a work queue.
 */
void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
{
	void *old;
	struct sk_buff *skb;
	struct adapter *adap = container_of(t, struct adapter, tids);

	old = t->tid_tab[tid];
	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
	if (likely(skb)) {
		t->tid_tab[tid] = NULL;
		mk_tid_release(skb, chan, tid);
		t4_ofld_send(adap, skb);
	} else
		cxgb4_queue_tid_release(t, chan, tid);
	if (old)
		atomic_dec(&t->tids_in_use);
}
EXPORT_SYMBOL(cxgb4_remove_tid);

/*
 * Allocate and initialize the TID tables.  Returns 0 on success.
 */
static int tid_init(struct tid_info *t)
{
	size_t size;
	unsigned int natids = t->natids;

	size = t->ntids * sizeof(*t->tid_tab) + natids * sizeof(*t->atid_tab) +
	       t->nstids * sizeof(*t->stid_tab) +
	       BITS_TO_LONGS(t->nstids) * sizeof(long);
	t->tid_tab = t4_alloc_mem(size);
	if (!t->tid_tab)
		return -ENOMEM;

	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids];
	spin_lock_init(&t->stid_lock);
	spin_lock_init(&t->atid_lock);

	t->stids_in_use = 0;
	t->afree = NULL;
	t->atids_in_use = 0;
	atomic_set(&t->tids_in_use, 0);

	/* Setup the free list for atid_tab and clear the stid bitmap. */
	if (natids) {
		while (--natids)
			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
		t->afree = t->atid_tab;
	}
	bitmap_zero(t->stid_bmap, t->nstids);
	return 0;
}

/**
 *	cxgb4_create_server - create an IP server
 *	@dev: the device
 *	@stid: the server TID
 *	@sip: local IP address to bind server to
 *	@sport: the server's TCP port
 *	@queue: queue to direct messages from this server to
 *
 *	Create an IP server for the given port and address.
 *	Returns <0 on error and one of the %NET_XMIT_* values on success.
 */
int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
			__be32 sip, __be16 sport, unsigned int queue)
{
	unsigned int chan;
	struct sk_buff *skb;
	struct adapter *adap;
	struct cpl_pass_open_req *req;

	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
	if (!skb)
		return -ENOMEM;

	adap = netdev2adap(dev);
	req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
	INIT_TP_WR(req, 0);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
	req->local_port = sport;
	req->peer_port = htons(0);
	req->local_ip = sip;
	req->peer_ip = htonl(0);
2364
	chan = rxq_to_chan(&adap->sge, queue);
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
	req->opt0 = cpu_to_be64(TX_CHAN(chan));
	req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
				SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
	return t4_mgmt_tx(adap, skb);
}
EXPORT_SYMBOL(cxgb4_create_server);

/**
 *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
 *	@mtus: the HW MTU table
 *	@mtu: the target MTU
 *	@idx: index of selected entry in the MTU table
 *
 *	Returns the index and the value in the HW MTU table that is closest to
 *	but does not exceed @mtu, unless @mtu is smaller than any value in the
 *	table, in which case that smallest available value is selected.
 */
unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
			    unsigned int *idx)
{
	unsigned int i = 0;

	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
		++i;
	if (idx)
		*idx = i;
	return mtus[i];
}
EXPORT_SYMBOL(cxgb4_best_mtu);

/**
 *	cxgb4_port_chan - get the HW channel of a port
 *	@dev: the net device for the port
 *
 *	Return the HW Tx channel of the given port.
 */
unsigned int cxgb4_port_chan(const struct net_device *dev)
{
	return netdev2pinfo(dev)->tx_chan;
}
EXPORT_SYMBOL(cxgb4_port_chan);

/**
 *	cxgb4_port_viid - get the VI id of a port
 *	@dev: the net device for the port
 *
 *	Return the VI id of the given port.
 */
unsigned int cxgb4_port_viid(const struct net_device *dev)
{
	return netdev2pinfo(dev)->viid;
}
EXPORT_SYMBOL(cxgb4_port_viid);

/**
 *	cxgb4_port_idx - get the index of a port
 *	@dev: the net device for the port
 *
 *	Return the index of the given port.
 */
unsigned int cxgb4_port_idx(const struct net_device *dev)
{
	return netdev2pinfo(dev)->port_id;
}
EXPORT_SYMBOL(cxgb4_port_idx);

void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
			 struct tp_tcp_stats *v6)
{
	struct adapter *adap = pci_get_drvdata(pdev);

	spin_lock(&adap->stats_lock);
	t4_tp_get_tcp_stats(adap, v4, v6);
	spin_unlock(&adap->stats_lock);
}
EXPORT_SYMBOL(cxgb4_get_tcp_stats);

void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
		      const unsigned int *pgsz_order)
{
	struct adapter *adap = netdev2adap(dev);

	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
	t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
		     HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
		     HPZ3(pgsz_order[3]));
}
EXPORT_SYMBOL(cxgb4_iscsi_init);

static struct pci_driver cxgb4_driver;

static void check_neigh_update(struct neighbour *neigh)
{
	const struct device *parent;
	const struct net_device *netdev = neigh->dev;

	if (netdev->priv_flags & IFF_802_1Q_VLAN)
		netdev = vlan_dev_real_dev(netdev);
	parent = netdev->dev.parent;
	if (parent && parent->driver == &cxgb4_driver.driver)
		t4_l2t_update(dev_get_drvdata(parent), neigh);
}

static int netevent_cb(struct notifier_block *nb, unsigned long event,
		       void *data)
{
	switch (event) {
	case NETEVENT_NEIGH_UPDATE:
		check_neigh_update(data);
		break;
	case NETEVENT_PMTU_UPDATE:
	case NETEVENT_REDIRECT:
	default:
		break;
	}
	return 0;
}

static bool netevent_registered;
static struct notifier_block cxgb4_netevent_nb = {
	.notifier_call = netevent_cb
};

static void uld_attach(struct adapter *adap, unsigned int uld)
{
	void *handle;
	struct cxgb4_lld_info lli;

	lli.pdev = adap->pdev;
	lli.l2t = adap->l2t;
	lli.tids = &adap->tids;
	lli.ports = adap->port;
	lli.vr = &adap->vres;
	lli.mtus = adap->params.mtus;
	if (uld == CXGB4_ULD_RDMA) {
		lli.rxq_ids = adap->sge.rdma_rxq;
		lli.nrxq = adap->sge.rdmaqs;
	} else if (uld == CXGB4_ULD_ISCSI) {
		lli.rxq_ids = adap->sge.ofld_rxq;
		lli.nrxq = adap->sge.ofldqsets;
	}
	lli.ntxq = adap->sge.ofldqsets;
	lli.nchan = adap->params.nports;
	lli.nports = adap->params.nports;
	lli.wr_cred = adap->params.ofldq_wr_cred;
	lli.adapter_type = adap->params.rev;
	lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
	lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
2513 2514
			t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
			(adap->fn * 4));
2515
	lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
2516 2517
			t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
			(adap->fn * 4));
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
	lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
	lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
	lli.fw_vers = adap->params.fw_vers;

	handle = ulds[uld].add(&lli);
	if (IS_ERR(handle)) {
		dev_warn(adap->pdev_dev,
			 "could not attach to the %s driver, error %ld\n",
			 uld_str[uld], PTR_ERR(handle));
		return;
	}

	adap->uld_handle[uld] = handle;

	if (!netevent_registered) {
		register_netevent_notifier(&cxgb4_netevent_nb);
		netevent_registered = true;
	}
2536 2537 2538

	if (adap->flags & FULL_INIT_DONE)
		ulds[uld].state_change(handle, CXGB4_STATE_UP);
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
}

static void attach_ulds(struct adapter *adap)
{
	unsigned int i;

	mutex_lock(&uld_mutex);
	list_add_tail(&adap->list_node, &adapter_list);
	for (i = 0; i < CXGB4_ULD_MAX; i++)
		if (ulds[i].add)
			uld_attach(adap, i);
	mutex_unlock(&uld_mutex);
}

static void detach_ulds(struct adapter *adap)
{
	unsigned int i;

	mutex_lock(&uld_mutex);
	list_del(&adap->list_node);
	for (i = 0; i < CXGB4_ULD_MAX; i++)
		if (adap->uld_handle[i]) {
			ulds[i].state_change(adap->uld_handle[i],
					     CXGB4_STATE_DETACH);
			adap->uld_handle[i] = NULL;
		}
	if (netevent_registered && list_empty(&adapter_list)) {
		unregister_netevent_notifier(&cxgb4_netevent_nb);
		netevent_registered = false;
	}
	mutex_unlock(&uld_mutex);
}

static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
{
	unsigned int i;

	mutex_lock(&uld_mutex);
	for (i = 0; i < CXGB4_ULD_MAX; i++)
		if (adap->uld_handle[i])
			ulds[i].state_change(adap->uld_handle[i], new_state);
	mutex_unlock(&uld_mutex);
}

/**
 *	cxgb4_register_uld - register an upper-layer driver
 *	@type: the ULD type
 *	@p: the ULD methods
 *
 *	Registers an upper-layer driver with this driver and notifies the ULD
 *	about any presently available devices that support its type.  Returns
 *	%-EBUSY if a ULD of the same type is already registered.
 */
int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
{
	int ret = 0;
	struct adapter *adap;

	if (type >= CXGB4_ULD_MAX)
		return -EINVAL;
	mutex_lock(&uld_mutex);
	if (ulds[type].add) {
		ret = -EBUSY;
		goto out;
	}
	ulds[type] = *p;
	list_for_each_entry(adap, &adapter_list, list_node)
		uld_attach(adap, type);
out:	mutex_unlock(&uld_mutex);
	return ret;
}
EXPORT_SYMBOL(cxgb4_register_uld);

/**
 *	cxgb4_unregister_uld - unregister an upper-layer driver
 *	@type: the ULD type
 *
 *	Unregisters an existing upper-layer driver.
 */
int cxgb4_unregister_uld(enum cxgb4_uld type)
{
	struct adapter *adap;

	if (type >= CXGB4_ULD_MAX)
		return -EINVAL;
	mutex_lock(&uld_mutex);
	list_for_each_entry(adap, &adapter_list, list_node)
		adap->uld_handle[type] = NULL;
	ulds[type].add = NULL;
	mutex_unlock(&uld_mutex);
	return 0;
}
EXPORT_SYMBOL(cxgb4_unregister_uld);

/**
 *	cxgb_up - enable the adapter
 *	@adap: adapter being enabled
 *
 *	Called when the first port is enabled, this function performs the
 *	actions necessary to make an adapter operational, such as completing
 *	the initialization of HW modules, and enabling interrupts.
 *
 *	Must be called with the rtnl lock held.
 */
static int cxgb_up(struct adapter *adap)
{
2645
	int err;
2646

2647 2648 2649 2650 2651 2652
	err = setup_sge_queues(adap);
	if (err)
		goto out;
	err = setup_rss(adap);
	if (err)
		goto freeq;
2653 2654

	if (adap->flags & USING_MSIX) {
2655
		name_msix_vecs(adap);
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
				  adap->msix_info[0].desc, adap);
		if (err)
			goto irq_err;

		err = request_msix_queue_irqs(adap);
		if (err) {
			free_irq(adap->msix_info[0].vec, adap);
			goto irq_err;
		}
	} else {
		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
				  adap->name, adap);
		if (err)
			goto irq_err;
	}
	enable_rx(adap);
	t4_sge_start(adap);
	t4_intr_enable(adap);
2676
	adap->flags |= FULL_INIT_DONE;
2677 2678 2679 2680 2681
	notify_ulds(adap, CXGB4_STATE_UP);
 out:
	return err;
 irq_err:
	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2682 2683
 freeq:
	t4_free_sge_resources(adap);
2684 2685 2686 2687 2688 2689 2690 2691
	goto out;
}

static void cxgb_down(struct adapter *adapter)
{
	t4_intr_disable(adapter);
	cancel_work_sync(&adapter->tid_release_task);
	adapter->tid_release_task_busy = false;
D
Dimitris Michailidis 已提交
2692
	adapter->tid_release_head = NULL;
2693 2694 2695 2696 2697 2698 2699

	if (adapter->flags & USING_MSIX) {
		free_msix_queue_irqs(adapter);
		free_irq(adapter->msix_info[0].vec, adapter);
	} else
		free_irq(adapter->pdev->irq, adapter);
	quiesce_rx(adapter);
2700 2701 2702
	t4_sge_stop(adapter);
	t4_free_sge_resources(adapter);
	adapter->flags &= ~FULL_INIT_DONE;
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
}

/*
 * net_device operations
 */
static int cxgb_open(struct net_device *dev)
{
	int err;
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adapter = pi->adapter;

2714 2715 2716 2717 2718
	if (!(adapter->flags & FULL_INIT_DONE)) {
		err = cxgb_up(adapter);
		if (err < 0)
			return err;
	}
2719

2720 2721 2722 2723
	netif_set_real_num_tx_queues(dev, pi->nqsets);
	err = netif_set_real_num_rx_queues(dev, pi->nqsets);
	if (err)
		return err;
2724 2725 2726 2727
	err = link_start(dev);
	if (!err)
		netif_tx_start_all_queues(dev);
	return err;
2728 2729 2730 2731 2732 2733 2734 2735 2736
}

static int cxgb_close(struct net_device *dev)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adapter = pi->adapter;

	netif_tx_stop_all_queues(dev);
	netif_carrier_off(dev);
2737
	return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
2738 2739
}

2740 2741
static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
						struct rtnl_link_stats64 *ns)
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
{
	struct port_stats stats;
	struct port_info *p = netdev_priv(dev);
	struct adapter *adapter = p->adapter;

	spin_lock(&adapter->stats_lock);
	t4_get_port_stats(adapter, p->tx_chan, &stats);
	spin_unlock(&adapter->stats_lock);

	ns->tx_bytes   = stats.tx_octets;
	ns->tx_packets = stats.tx_frames;
	ns->rx_bytes   = stats.rx_octets;
	ns->rx_packets = stats.rx_frames;
	ns->multicast  = stats.rx_mcast_frames;

	/* detailed rx_errors */
	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
			       stats.rx_runt;
	ns->rx_over_errors   = 0;
	ns->rx_crc_errors    = stats.rx_fcs_err;
	ns->rx_frame_errors  = stats.rx_symbol_err;
	ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
			       stats.rx_ovflow2 + stats.rx_ovflow3 +
			       stats.rx_trunc0 + stats.rx_trunc1 +
			       stats.rx_trunc2 + stats.rx_trunc3;
	ns->rx_missed_errors = 0;

	/* detailed tx_errors */
	ns->tx_aborted_errors   = 0;
	ns->tx_carrier_errors   = 0;
	ns->tx_fifo_errors      = 0;
	ns->tx_heartbeat_errors = 0;
	ns->tx_window_errors    = 0;

	ns->tx_errors = stats.tx_error_frames;
	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
	return ns;
}

static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
2784
	unsigned int mbox;
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
	int ret = 0, prtad, devad;
	struct port_info *pi = netdev_priv(dev);
	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;

	switch (cmd) {
	case SIOCGMIIPHY:
		if (pi->mdio_addr < 0)
			return -EOPNOTSUPP;
		data->phy_id = pi->mdio_addr;
		break;
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		if (mdio_phy_id_is_c45(data->phy_id)) {
			prtad = mdio_phy_id_prtad(data->phy_id);
			devad = mdio_phy_id_devad(data->phy_id);
		} else if (data->phy_id < 32) {
			prtad = data->phy_id;
			devad = 0;
			data->reg_num &= 0x1f;
		} else
			return -EINVAL;

2807
		mbox = pi->adapter->fn;
2808
		if (cmd == SIOCGMIIREG)
2809
			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2810 2811
					 data->reg_num, &data->val_out);
		else
2812
			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
					 data->reg_num, data->val_in);
		break;
	default:
		return -EOPNOTSUPP;
	}
	return ret;
}

static void cxgb_set_rxmode(struct net_device *dev)
{
	/* unfortunately we can't return errors to the stack */
	set_rxmode(dev, -1, false);
}

static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
{
	int ret;
	struct port_info *pi = netdev_priv(dev);

	if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
		return -EINVAL;
2834 2835
	ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
			    -1, -1, -1, true);
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
	if (!ret)
		dev->mtu = new_mtu;
	return ret;
}

static int cxgb_set_mac_addr(struct net_device *dev, void *p)
{
	int ret;
	struct sockaddr *addr = p;
	struct port_info *pi = netdev_priv(dev);

	if (!is_valid_ether_addr(addr->sa_data))
		return -EINVAL;

2850 2851
	ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
			    pi->xact_addr_filt, addr->sa_data, true, true);
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
	if (ret < 0)
		return ret;

	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
	pi->xact_addr_filt = ret;
	return 0;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
static void cxgb_netpoll(struct net_device *dev)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;

	if (adap->flags & USING_MSIX) {
		int i;
		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];

		for (i = pi->nqsets; i; i--, rx++)
			t4_sge_intr_msix(0, &rx->rspq);
	} else
		t4_intr_handler(adap)(0, adap);
}
#endif

static const struct net_device_ops cxgb4_netdev_ops = {
	.ndo_open             = cxgb_open,
	.ndo_stop             = cxgb_close,
	.ndo_start_xmit       = t4_eth_xmit,
2881
	.ndo_get_stats64      = cxgb_get_stats,
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
	.ndo_set_rx_mode      = cxgb_set_rxmode,
	.ndo_set_mac_address  = cxgb_set_mac_addr,
	.ndo_validate_addr    = eth_validate_addr,
	.ndo_do_ioctl         = cxgb_ioctl,
	.ndo_change_mtu       = cxgb_change_mtu,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller  = cxgb_netpoll,
#endif
};

void t4_fatal_err(struct adapter *adap)
{
	t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
	t4_intr_disable(adap);
	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
}

static void setup_memwin(struct adapter *adap)
{
	u32 bar0;

	bar0 = pci_resource_start(adap->pdev, 0);  /* truncation intentional */
	t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
		     (bar0 + MEMWIN0_BASE) | BIR(0) |
		     WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
	t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
		     (bar0 + MEMWIN1_BASE) | BIR(0) |
		     WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
	t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
		     (bar0 + MEMWIN2_BASE) | BIR(0) |
		     WINDOW(ilog2(MEMWIN2_APERTURE) - 10));
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
	if (adap->vres.ocq.size) {
		unsigned int start, sz_kb;

		start = pci_resource_start(adap->pdev, 2) +
			OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
		t4_write_reg(adap,
			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
			     start | BIR(1) | WINDOW(ilog2(sz_kb)));
		t4_write_reg(adap,
			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
			     adap->vres.ocq.start);
		t4_read_reg(adap,
			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
	}
2928 2929
}

2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
{
	u32 v;
	int ret;

	/* get device capabilities */
	memset(c, 0, sizeof(*c));
	c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
			       FW_CMD_REQUEST | FW_CMD_READ);
	c->retval_len16 = htonl(FW_LEN16(*c));
2940
	ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
	if (ret < 0)
		return ret;

	/* select capabilities we'll be using */
	if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
		if (!vf_acls)
			c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
		else
			c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
	} else if (vf_acls) {
		dev_err(adap->pdev_dev, "virtualization ACLs not supported");
		return ret;
	}
	c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
			       FW_CMD_REQUEST | FW_CMD_WRITE);
2956
	ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
2957 2958 2959
	if (ret < 0)
		return ret;

2960
	ret = t4_config_glbl_rss(adap, adap->fn,
2961 2962 2963 2964 2965 2966
				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
	if (ret < 0)
		return ret;

2967 2968
	ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
			  0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
	if (ret < 0)
		return ret;

	t4_sge_init(adap);

	/* tweak some settings */
	t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
	t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
	t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
	v = t4_read_reg(adap, TP_PIO_DATA);
	t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
2980 2981 2982

	/* get basic stuff going */
	return t4_early_init(adap, adap->fn);
2983 2984
}

2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
/*
 * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
 */
#define MAX_ATIDS 8192U

/*
 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
 */
static int adap_init0(struct adapter *adap)
{
	int ret;
	u32 v, port_vec;
	enum dev_state state;
	u32 params[7], val[7];
	struct fw_caps_config_cmd c;

	ret = t4_check_fw_version(adap);
	if (ret == -EINVAL || ret > 0) {
		if (upgrade_fw(adap) >= 0)             /* recache FW version */
			ret = t4_check_fw_version(adap);
	}
	if (ret < 0)
		return ret;

	/* contact FW, request master */
3010
	ret = t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, &state);
3011 3012 3013 3014 3015 3016 3017
	if (ret < 0) {
		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
			ret);
		return ret;
	}

	/* reset device */
3018
	ret = t4_fw_reset(adap, adap->fn, PIORSTMODE | PIORST);
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
	if (ret < 0)
		goto bye;

	for (v = 0; v < SGE_NTIMERS - 1; v++)
		adap->sge.timer_val[v] = min(intr_holdoff[v], MAX_SGE_TIMERVAL);
	adap->sge.timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
	adap->sge.counter_val[0] = 1;
	for (v = 1; v < SGE_NCOUNTERS; v++)
		adap->sge.counter_val[v] = min(intr_cnt[v - 1],
					       THRESHOLD_3_MASK);
#define FW_PARAM_DEV(param) \
	(FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
	 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))

3033
	params[0] = FW_PARAM_DEV(CCLK);
3034
	ret = t4_query_params(adap, adap->fn, adap->fn, 0, 1, params, val);
3035 3036 3037 3038 3039 3040 3041 3042
	if (ret < 0)
		goto bye;
	adap->params.vpd.cclk = val[0];

	ret = adap_init1(adap, &c);
	if (ret < 0)
		goto bye;

3043 3044
#define FW_PARAM_PFVF(param) \
	(FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
3045 3046
	 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param) | \
	 FW_PARAMS_PARAM_Y(adap->fn))
3047 3048 3049 3050 3051 3052

	params[0] = FW_PARAM_DEV(PORTVEC);
	params[1] = FW_PARAM_PFVF(L2T_START);
	params[2] = FW_PARAM_PFVF(L2T_END);
	params[3] = FW_PARAM_PFVF(FILTER_START);
	params[4] = FW_PARAM_PFVF(FILTER_END);
3053 3054 3055
	params[5] = FW_PARAM_PFVF(IQFLINT_START);
	params[6] = FW_PARAM_PFVF(EQ_START);
	ret = t4_query_params(adap, adap->fn, adap->fn, 0, 7, params, val);
3056 3057 3058 3059 3060
	if (ret < 0)
		goto bye;
	port_vec = val[0];
	adap->tids.ftid_base = val[3];
	adap->tids.nftids = val[4] - val[3] + 1;
3061 3062
	adap->sge.ingr_start = val[5];
	adap->sge.egr_start = val[6];
3063 3064 3065 3066 3067 3068 3069 3070 3071

	if (c.ofldcaps) {
		/* query offload-related parameters */
		params[0] = FW_PARAM_DEV(NTID);
		params[1] = FW_PARAM_PFVF(SERVER_START);
		params[2] = FW_PARAM_PFVF(SERVER_END);
		params[3] = FW_PARAM_PFVF(TDDP_START);
		params[4] = FW_PARAM_PFVF(TDDP_END);
		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3072 3073
		ret = t4_query_params(adap, adap->fn, adap->fn, 0, 6, params,
				      val);
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
		if (ret < 0)
			goto bye;
		adap->tids.ntids = val[0];
		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
		adap->tids.stid_base = val[1];
		adap->tids.nstids = val[2] - val[1] + 1;
		adap->vres.ddp.start = val[3];
		adap->vres.ddp.size = val[4] - val[3] + 1;
		adap->params.ofldq_wr_cred = val[5];
		adap->params.offload = 1;
	}
	if (c.rdmacaps) {
		params[0] = FW_PARAM_PFVF(STAG_START);
		params[1] = FW_PARAM_PFVF(STAG_END);
		params[2] = FW_PARAM_PFVF(RQ_START);
		params[3] = FW_PARAM_PFVF(RQ_END);
		params[4] = FW_PARAM_PFVF(PBL_START);
		params[5] = FW_PARAM_PFVF(PBL_END);
3092 3093
		ret = t4_query_params(adap, adap->fn, adap->fn, 0, 6, params,
				      val);
3094 3095 3096 3097 3098 3099 3100 3101
		if (ret < 0)
			goto bye;
		adap->vres.stag.start = val[0];
		adap->vres.stag.size = val[1] - val[0] + 1;
		adap->vres.rq.start = val[2];
		adap->vres.rq.size = val[3] - val[2] + 1;
		adap->vres.pbl.start = val[4];
		adap->vres.pbl.size = val[5] - val[4] + 1;
3102 3103 3104 3105 3106

		params[0] = FW_PARAM_PFVF(SQRQ_START);
		params[1] = FW_PARAM_PFVF(SQRQ_END);
		params[2] = FW_PARAM_PFVF(CQ_START);
		params[3] = FW_PARAM_PFVF(CQ_END);
3107 3108
		params[4] = FW_PARAM_PFVF(OCQ_START);
		params[5] = FW_PARAM_PFVF(OCQ_END);
3109 3110
		ret = t4_query_params(adap, adap->fn, adap->fn, 0, 6, params,
				      val);
3111 3112 3113 3114 3115 3116
		if (ret < 0)
			goto bye;
		adap->vres.qp.start = val[0];
		adap->vres.qp.size = val[1] - val[0] + 1;
		adap->vres.cq.start = val[2];
		adap->vres.cq.size = val[3] - val[2] + 1;
3117 3118
		adap->vres.ocq.start = val[4];
		adap->vres.ocq.size = val[5] - val[4] + 1;
3119 3120 3121 3122
	}
	if (c.iscsicaps) {
		params[0] = FW_PARAM_PFVF(ISCSI_START);
		params[1] = FW_PARAM_PFVF(ISCSI_END);
3123 3124
		ret = t4_query_params(adap, adap->fn, adap->fn, 0, 2, params,
				      val);
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
		if (ret < 0)
			goto bye;
		adap->vres.iscsi.start = val[0];
		adap->vres.iscsi.size = val[1] - val[0] + 1;
	}
#undef FW_PARAM_PFVF
#undef FW_PARAM_DEV

	adap->params.nports = hweight32(port_vec);
	adap->params.portvec = port_vec;
	adap->flags |= FW_OK;

	/* These are finalized by FW initialization, load their values now */
	v = t4_read_reg(adap, TP_TIMER_RESOLUTION);
	adap->params.tp.tre = TIMERRESOLUTION_GET(v);
	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
		     adap->params.b_wnd);
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161

#ifdef CONFIG_PCI_IOV
	/*
	 * Provision resource limits for Virtual Functions.  We currently
	 * grant them all the same static resource limits except for the Port
	 * Access Rights Mask which we're assigning based on the PF.  All of
	 * the static provisioning stuff for both the PF and VF really needs
	 * to be managed in a persistent manner for each device which the
	 * firmware controls.
	 */
	{
		int pf, vf;

		for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
			if (num_vf[pf] <= 0)
				continue;

			/* VF numbering starts at 1! */
			for (vf = 1; vf <= num_vf[pf]; vf++) {
3162
				ret = t4_cfg_pfvf(adap, adap->fn, pf, vf,
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
						  VFRES_NEQ, VFRES_NETHCTRL,
						  VFRES_NIQFLINT, VFRES_NIQ,
						  VFRES_TC, VFRES_NVI,
						  FW_PFVF_CMD_CMASK_MASK,
						  pfvfres_pmask(adap, pf, vf),
						  VFRES_NEXACTF,
						  VFRES_R_CAPS, VFRES_WX_CAPS);
				if (ret < 0)
					dev_warn(adap->pdev_dev, "failed to "
						 "provision pf/vf=%d/%d; "
						 "err=%d\n", pf, vf, ret);
			}
		}
	}
#endif

3179
	setup_memwin(adap);
3180 3181 3182 3183 3184 3185 3186 3187
	return 0;

	/*
	 * If a command timed out or failed with EIO FW does not operate within
	 * its spec or something catastrophic happened to HW/FW, stop issuing
	 * commands.
	 */
bye:	if (ret != -ETIMEDOUT && ret != -EIO)
3188
		t4_fw_bye(adap, adap->fn);
3189 3190 3191
	return ret;
}

D
Dimitris Michailidis 已提交
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
/* EEH callbacks */

static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
					 pci_channel_state_t state)
{
	int i;
	struct adapter *adap = pci_get_drvdata(pdev);

	if (!adap)
		goto out;

	rtnl_lock();
	adap->flags &= ~FW_OK;
	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
	for_each_port(adap, i) {
		struct net_device *dev = adap->port[i];

		netif_device_detach(dev);
		netif_carrier_off(dev);
	}
	if (adap->flags & FULL_INIT_DONE)
		cxgb_down(adap);
	rtnl_unlock();
	pci_disable_device(pdev);
out:	return state == pci_channel_io_perm_failure ?
		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
}

static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
{
	int i, ret;
	struct fw_caps_config_cmd c;
	struct adapter *adap = pci_get_drvdata(pdev);

	if (!adap) {
		pci_restore_state(pdev);
		pci_save_state(pdev);
		return PCI_ERS_RESULT_RECOVERED;
	}

	if (pci_enable_device(pdev)) {
		dev_err(&pdev->dev, "cannot reenable PCI device after reset\n");
		return PCI_ERS_RESULT_DISCONNECT;
	}

	pci_set_master(pdev);
	pci_restore_state(pdev);
	pci_save_state(pdev);
	pci_cleanup_aer_uncorrect_error_status(pdev);

	if (t4_wait_dev_ready(adap) < 0)
		return PCI_ERS_RESULT_DISCONNECT;
3244
	if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL))
D
Dimitris Michailidis 已提交
3245 3246 3247 3248 3249 3250 3251 3252
		return PCI_ERS_RESULT_DISCONNECT;
	adap->flags |= FW_OK;
	if (adap_init1(adap, &c))
		return PCI_ERS_RESULT_DISCONNECT;

	for_each_port(adap, i) {
		struct port_info *p = adap2pinfo(adap, i);

3253 3254
		ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
				  NULL, NULL);
D
Dimitris Michailidis 已提交
3255 3256 3257 3258 3259 3260 3261 3262
		if (ret < 0)
			return PCI_ERS_RESULT_DISCONNECT;
		p->viid = ret;
		p->xact_addr_filt = -1;
	}

	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
		     adap->params.b_wnd);
3263
	setup_memwin(adap);
D
Dimitris Michailidis 已提交
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
	if (cxgb_up(adap))
		return PCI_ERS_RESULT_DISCONNECT;
	return PCI_ERS_RESULT_RECOVERED;
}

static void eeh_resume(struct pci_dev *pdev)
{
	int i;
	struct adapter *adap = pci_get_drvdata(pdev);

	if (!adap)
		return;

	rtnl_lock();
	for_each_port(adap, i) {
		struct net_device *dev = adap->port[i];

		if (netif_running(dev)) {
			link_start(dev);
			cxgb_set_rxmode(dev);
		}
		netif_device_attach(dev);
	}
	rtnl_unlock();
}

static struct pci_error_handlers cxgb4_eeh = {
	.error_detected = eeh_err_detected,
	.slot_reset     = eeh_slot_reset,
	.resume         = eeh_resume,
};

3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
static inline bool is_10g_port(const struct link_config *lc)
{
	return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0;
}

static inline void init_rspq(struct sge_rspq *q, u8 timer_idx, u8 pkt_cnt_idx,
			     unsigned int size, unsigned int iqe_size)
{
	q->intr_params = QINTR_TIMER_IDX(timer_idx) |
			 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0);
	q->pktcnt_idx = pkt_cnt_idx < SGE_NCOUNTERS ? pkt_cnt_idx : 0;
	q->iqe_len = iqe_size;
	q->size = size;
}

/*
 * Perform default configuration of DMA queues depending on the number and type
 * of ports we found and the number of available CPUs.  Most settings can be
 * modified by the admin prior to actual use.
 */
static void __devinit cfg_queues(struct adapter *adap)
{
	struct sge *s = &adap->sge;
	int i, q10g = 0, n10g = 0, qidx = 0;

	for_each_port(adap, i)
		n10g += is_10g_port(&adap2pinfo(adap, i)->link_cfg);

	/*
	 * We default to 1 queue per non-10G port and up to # of cores queues
	 * per 10G port.
	 */
	if (n10g)
		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
	if (q10g > num_online_cpus())
		q10g = num_online_cpus();

	for_each_port(adap, i) {
		struct port_info *pi = adap2pinfo(adap, i);

		pi->first_qset = qidx;
		pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
		qidx += pi->nqsets;
	}

	s->ethqsets = qidx;
	s->max_ethqsets = qidx;   /* MSI-X may lower it later */

	if (is_offload(adap)) {
		/*
		 * For offload we use 1 queue/channel if all ports are up to 1G,
		 * otherwise we divide all available queues amongst the channels
		 * capped by the number of available cores.
		 */
		if (n10g) {
			i = min_t(int, ARRAY_SIZE(s->ofldrxq),
				  num_online_cpus());
			s->ofldqsets = roundup(i, adap->params.nports);
		} else
			s->ofldqsets = adap->params.nports;
		/* For RDMA one Rx queue per channel suffices */
		s->rdmaqs = adap->params.nports;
	}

	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
		struct sge_eth_rxq *r = &s->ethrxq[i];

		init_rspq(&r->rspq, 0, 0, 1024, 64);
		r->fl.size = 72;
	}

	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
		s->ethtxq[i].q.size = 1024;

	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
		s->ctrlq[i].q.size = 512;

	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
		s->ofldtxq[i].q.size = 1024;

	for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
		struct sge_ofld_rxq *r = &s->ofldrxq[i];

		init_rspq(&r->rspq, 0, 0, 1024, 64);
		r->rspq.uld = CXGB4_ULD_ISCSI;
		r->fl.size = 72;
	}

	for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
		struct sge_ofld_rxq *r = &s->rdmarxq[i];

		init_rspq(&r->rspq, 0, 0, 511, 64);
		r->rspq.uld = CXGB4_ULD_RDMA;
		r->fl.size = 72;
	}

	init_rspq(&s->fw_evtq, 6, 0, 512, 64);
	init_rspq(&s->intrq, 6, 0, 2 * MAX_INGQ, 64);
}

/*
 * Reduce the number of Ethernet queues across all ports to at most n.
 * n provides at least one queue per port.
 */
static void __devinit reduce_ethqs(struct adapter *adap, int n)
{
	int i;
	struct port_info *pi;

	while (n < adap->sge.ethqsets)
		for_each_port(adap, i) {
			pi = adap2pinfo(adap, i);
			if (pi->nqsets > 1) {
				pi->nqsets--;
				adap->sge.ethqsets--;
				if (adap->sge.ethqsets <= n)
					break;
			}
		}

	n = 0;
	for_each_port(adap, i) {
		pi = adap2pinfo(adap, i);
		pi->first_qset = n;
		n += pi->nqsets;
	}
}

/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
#define EXTRA_VECS 2

static int __devinit enable_msix(struct adapter *adap)
{
	int ofld_need = 0;
	int i, err, want, need;
	struct sge *s = &adap->sge;
	unsigned int nchan = adap->params.nports;
	struct msix_entry entries[MAX_INGQ + 1];

	for (i = 0; i < ARRAY_SIZE(entries); ++i)
		entries[i].entry = i;

	want = s->max_ethqsets + EXTRA_VECS;
	if (is_offload(adap)) {
		want += s->rdmaqs + s->ofldqsets;
		/* need nchan for each possible ULD */
		ofld_need = 2 * nchan;
	}
	need = adap->params.nports + EXTRA_VECS + ofld_need;

	while ((err = pci_enable_msix(adap->pdev, entries, want)) >= need)
		want = err;

	if (!err) {
		/*
		 * Distribute available vectors to the various queue groups.
		 * Every group gets its minimum requirement and NIC gets top
		 * priority for leftovers.
		 */
		i = want - EXTRA_VECS - ofld_need;
		if (i < s->max_ethqsets) {
			s->max_ethqsets = i;
			if (i < s->ethqsets)
				reduce_ethqs(adap, i);
		}
		if (is_offload(adap)) {
			i = want - EXTRA_VECS - s->max_ethqsets;
			i -= ofld_need - nchan;
			s->ofldqsets = (i / nchan) * nchan;  /* round down */
		}
		for (i = 0; i < want; ++i)
			adap->msix_info[i].vec = entries[i].vector;
	} else if (err > 0)
		dev_info(adap->pdev_dev,
			 "only %d MSI-X vectors left, not using MSI-X\n", err);
	return err;
}

#undef EXTRA_VECS

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
static int __devinit init_rss(struct adapter *adap)
{
	unsigned int i, j;

	for_each_port(adap, i) {
		struct port_info *pi = adap2pinfo(adap, i);

		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
		if (!pi->rss)
			return -ENOMEM;
		for (j = 0; j < pi->rss_size; j++)
			pi->rss[j] = j % pi->nqsets;
	}
	return 0;
}

3492 3493 3494
static void __devinit print_port_info(struct adapter *adap)
{
	static const char *base[] = {
3495 3496
		"R XFI", "R XAUI", "T SGMII", "T XFI", "T XAUI", "KX4", "CX4",
		"KX", "KR", "KR SFP+", "KR FEC"
3497 3498 3499 3500
	};

	int i;
	char buf[80];
3501 3502 3503 3504 3505 3506
	const char *spd = "";

	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
		spd = " 2.5 GT/s";
	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
		spd = " 5 GT/s";
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525

	for_each_port(adap, i) {
		struct net_device *dev = adap->port[i];
		const struct port_info *pi = netdev_priv(dev);
		char *bufp = buf;

		if (!test_bit(i, &adap->registered_device_map))
			continue;

		if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
			bufp += sprintf(bufp, "100/");
		if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
			bufp += sprintf(bufp, "1000/");
		if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
			bufp += sprintf(bufp, "10G/");
		if (bufp != buf)
			--bufp;
		sprintf(bufp, "BASE-%s", base[pi->port_type]);

3526
		netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
3527 3528
			    adap->params.vpd.id, adap->params.rev,
			    buf, is_offload(adap) ? "R" : "",
3529
			    adap->params.pci.width, spd,
3530 3531 3532 3533 3534 3535 3536 3537
			    (adap->flags & USING_MSIX) ? " MSI-X" :
			    (adap->flags & USING_MSI) ? " MSI" : "");
		if (adap->name == dev->name)
			netdev_info(dev, "S/N: %s, E/C: %s\n",
				    adap->params.vpd.sn, adap->params.vpd.ec);
	}
}

3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
/*
 * Free the following resources:
 * - memory used for tables
 * - MSI/MSI-X
 * - net devices
 * - resources FW is holding for us
 */
static void free_some_resources(struct adapter *adapter)
{
	unsigned int i;

	t4_free_mem(adapter->l2t);
	t4_free_mem(adapter->tids.tid_tab);
	disable_msi(adapter);

	for_each_port(adapter, i)
3554 3555
		if (adapter->port[i]) {
			kfree(adap2pinfo(adapter, i)->rss);
3556
			free_netdev(adapter->port[i]);
3557
		}
3558
	if (adapter->flags & FW_OK)
3559
		t4_fw_bye(adapter, adapter->fn);
3560 3561
}

3562
#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)

static int __devinit init_one(struct pci_dev *pdev,
			      const struct pci_device_id *ent)
{
	int func, i, err;
	struct port_info *pi;
	unsigned int highdma = 0;
	struct adapter *adapter = NULL;

	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);

	err = pci_request_regions(pdev, KBUILD_MODNAME);
	if (err) {
		/* Just info, some other driver may have claimed the device. */
		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
		return err;
	}

3582
	/* We control everything through one PF */
3583
	func = PCI_FUNC(pdev->devfn);
3584
	if (func != ent->driver_data) {
D
Dimitris Michailidis 已提交
3585
		pci_save_state(pdev);        /* to restore SR-IOV later */
3586
		goto sriov;
D
Dimitris Michailidis 已提交
3587
	}
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629

	err = pci_enable_device(pdev);
	if (err) {
		dev_err(&pdev->dev, "cannot enable PCI device\n");
		goto out_release_regions;
	}

	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
		highdma = NETIF_F_HIGHDMA;
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
		if (err) {
			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
				"coherent allocations\n");
			goto out_disable_device;
		}
	} else {
		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (err) {
			dev_err(&pdev->dev, "no usable DMA configuration\n");
			goto out_disable_device;
		}
	}

	pci_enable_pcie_error_reporting(pdev);
	pci_set_master(pdev);
	pci_save_state(pdev);

	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
	if (!adapter) {
		err = -ENOMEM;
		goto out_disable_device;
	}

	adapter->regs = pci_ioremap_bar(pdev, 0);
	if (!adapter->regs) {
		dev_err(&pdev->dev, "cannot map device registers\n");
		err = -ENOMEM;
		goto out_free_adapter;
	}

	adapter->pdev = pdev;
	adapter->pdev_dev = &pdev->dev;
3630
	adapter->fn = func;
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
	adapter->name = pci_name(pdev);
	adapter->msg_enable = dflt_msg_enable;
	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));

	spin_lock_init(&adapter->stats_lock);
	spin_lock_init(&adapter->tid_release_lock);

	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);

	err = t4_prep_adapter(adapter);
	if (err)
		goto out_unmap_bar;
	err = adap_init0(adapter);
	if (err)
		goto out_unmap_bar;

	for_each_port(adapter, i) {
		struct net_device *netdev;

		netdev = alloc_etherdev_mq(sizeof(struct port_info),
					   MAX_ETH_QSETS);
		if (!netdev) {
			err = -ENOMEM;
			goto out_free_dev;
		}

		SET_NETDEV_DEV(netdev, &pdev->dev);

		adapter->port[i] = netdev;
		pi = netdev_priv(netdev);
		pi->adapter = adapter;
		pi->xact_addr_filt = -1;
		pi->rx_offload = RX_CSO;
		pi->port_id = i;
		netif_carrier_off(netdev);
		netdev->irq = pdev->irq;

3668
		netdev->features |= NETIF_F_SG | TSO_FLAGS;
3669
		netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
D
Dimitris Michailidis 已提交
3670
		netdev->features |= NETIF_F_GRO | NETIF_F_RXHASH | highdma;
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
		netdev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
		netdev->vlan_features = netdev->features & VLAN_FEAT;

		netdev->netdev_ops = &cxgb4_netdev_ops;
		SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
	}

	pci_set_drvdata(pdev, adapter);

	if (adapter->flags & FW_OK) {
3681
		err = t4_port_init(adapter, func, func, 0);
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
		if (err)
			goto out_free_dev;
	}

	/*
	 * Configure queues and allocate tables now, they can be needed as
	 * soon as the first register_netdev completes.
	 */
	cfg_queues(adapter);

	adapter->l2t = t4_init_l2t();
	if (!adapter->l2t) {
		/* We tolerate a lack of L2T, giving up some functionality */
		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
		adapter->params.offload = 0;
	}

	if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
		dev_warn(&pdev->dev, "could not allocate TID table, "
			 "continuing\n");
		adapter->params.offload = 0;
	}

3705 3706 3707 3708 3709 3710
	/* See what interrupts we'll be using */
	if (msi > 1 && enable_msix(adapter) == 0)
		adapter->flags |= USING_MSIX;
	else if (msi > 0 && pci_enable_msi(pdev) == 0)
		adapter->flags |= USING_MSI;

3711 3712 3713 3714
	err = init_rss(adapter);
	if (err)
		goto out_free_dev;

3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
	/*
	 * The card is now ready to go.  If any errors occur during device
	 * registration we do not fail the whole card but rather proceed only
	 * with the ports we manage to register successfully.  However we must
	 * register at least one net device.
	 */
	for_each_port(adapter, i) {
		err = register_netdev(adapter->port[i]);
		if (err)
			dev_warn(&pdev->dev,
				 "cannot register net device %s, skipping\n",
				 adapter->port[i]->name);
		else {
			/*
			 * Change the name we use for messages to the name of
			 * the first successfully registered interface.
			 */
			if (!adapter->registered_device_map)
				adapter->name = adapter->port[i]->name;

			__set_bit(i, &adapter->registered_device_map);
			adapter->chan_map[adap2pinfo(adapter, i)->tx_chan] = i;
		}
	}
	if (!adapter->registered_device_map) {
		dev_err(&pdev->dev, "could not register any net devices\n");
		goto out_free_dev;
	}

	if (cxgb4_debugfs_root) {
		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
							   cxgb4_debugfs_root);
		setup_debugfs(adapter);
	}

	if (is_offload(adapter))
		attach_ulds(adapter);

	print_port_info(adapter);

sriov:
#ifdef CONFIG_PCI_IOV
	if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
		if (pci_enable_sriov(pdev, num_vf[func]) == 0)
			dev_info(&pdev->dev,
				 "instantiated %u virtual functions\n",
				 num_vf[func]);
#endif
	return 0;

 out_free_dev:
3766
	free_some_resources(adapter);
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
 out_unmap_bar:
	iounmap(adapter->regs);
 out_free_adapter:
	kfree(adapter);
 out_disable_device:
	pci_disable_pcie_error_reporting(pdev);
	pci_disable_device(pdev);
 out_release_regions:
	pci_release_regions(pdev);
	pci_set_drvdata(pdev, NULL);
	return err;
}

static void __devexit remove_one(struct pci_dev *pdev)
{
	struct adapter *adapter = pci_get_drvdata(pdev);

	pci_disable_sriov(pdev);

	if (adapter) {
		int i;

		if (is_offload(adapter))
			detach_ulds(adapter);

		for_each_port(adapter, i)
			if (test_bit(i, &adapter->registered_device_map))
				unregister_netdev(adapter->port[i]);

		if (adapter->debugfs_root)
			debugfs_remove_recursive(adapter->debugfs_root);

3799 3800
		if (adapter->flags & FULL_INIT_DONE)
			cxgb_down(adapter);
3801

3802
		free_some_resources(adapter);
3803 3804 3805 3806 3807 3808
		iounmap(adapter->regs);
		kfree(adapter);
		pci_disable_pcie_error_reporting(pdev);
		pci_disable_device(pdev);
		pci_release_regions(pdev);
		pci_set_drvdata(pdev, NULL);
3809
	} else
3810 3811 3812 3813 3814 3815 3816 3817
		pci_release_regions(pdev);
}

static struct pci_driver cxgb4_driver = {
	.name     = KBUILD_MODNAME,
	.id_table = cxgb4_pci_tbl,
	.probe    = init_one,
	.remove   = __devexit_p(remove_one),
D
Dimitris Michailidis 已提交
3818
	.err_handler = &cxgb4_eeh,
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
};

static int __init cxgb4_init_module(void)
{
	int ret;

	/* Debugfs support is optional, just warn if this fails */
	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
	if (!cxgb4_debugfs_root)
		pr_warning("could not create debugfs entry, continuing\n");

	ret = pci_register_driver(&cxgb4_driver);
	if (ret < 0)
		debugfs_remove(cxgb4_debugfs_root);
	return ret;
}

static void __exit cxgb4_cleanup_module(void)
{
	pci_unregister_driver(&cxgb4_driver);
	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
}

module_init(cxgb4_init_module);
module_exit(cxgb4_cleanup_module);