soc-cache.c 34.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * soc-cache.c  --  ASoC register cache helpers
 *
 * Copyright 2009 Wolfson Microelectronics PLC.
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 */

14
#include <linux/i2c.h>
15
#include <linux/spi/spi.h>
16
#include <sound/soc.h>
17 18
#include <linux/lzo.h>
#include <linux/bitmap.h>
19
#include <linux/rbtree.h>
20

21 22
#include <trace/events/asoc.h>

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
#if defined(CONFIG_SPI_MASTER)
static int do_spi_write(void *control_data, const void *msg,
			int len)
{
	struct spi_device *spi = control_data;
	struct spi_transfer t;
	struct spi_message m;

	if (len <= 0)
		return 0;

	spi_message_init(&m);
	memset(&t, 0, sizeof t);

	t.tx_buf = msg;
	t.len = len;

	spi_message_add_tail(&t, &m);
	spi_sync(spi, &m);

	return len;
}
#endif

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
static int do_hw_write(struct snd_soc_codec *codec, unsigned int reg,
		       unsigned int value, const void *data, int len)
{
	int ret;

	if (!snd_soc_codec_volatile_register(codec, reg) &&
	    reg < codec->driver->reg_cache_size &&
	    !codec->cache_bypass) {
		ret = snd_soc_cache_write(codec, reg, value);
		if (ret < 0)
			return -1;
	}

	if (codec->cache_only) {
		codec->cache_sync = 1;
		return 0;
	}

	ret = codec->hw_write(codec->control_data, data, len);
	if (ret == len)
		return 0;
	if (ret < 0)
		return ret;
	else
		return -EIO;
}

74
static unsigned int do_hw_read(struct snd_soc_codec *codec, unsigned int reg)
75
{
76 77
	int ret;
	unsigned int val;
78 79

	if (reg >= codec->driver->reg_cache_size ||
80 81 82 83
	    snd_soc_codec_volatile_register(codec, reg) ||
	    codec->cache_bypass) {
		if (codec->cache_only)
			return -1;
84

85 86
		BUG_ON(!codec->hw_read);
		return codec->hw_read(codec, reg);
87 88
	}

89 90 91 92
	ret = snd_soc_cache_read(codec, reg, &val);
	if (ret < 0)
		return -1;
	return val;
93 94
}

95
static unsigned int snd_soc_4_12_read(struct snd_soc_codec *codec,
96
				      unsigned int reg)
97 98 99 100
{
	return do_hw_read(codec, reg);
}

101
static int snd_soc_4_12_write(struct snd_soc_codec *codec, unsigned int reg,
102
			      unsigned int value)
103 104 105 106 107 108
{
	u8 data[2];

	data[0] = (reg << 4) | ((value >> 8) & 0x000f);
	data[1] = value & 0x00ff;

109
	return do_hw_write(codec, reg, value, data, 2);
110 111 112 113
}

#if defined(CONFIG_SPI_MASTER)
static int snd_soc_4_12_spi_write(void *control_data, const char *data,
114
				  int len)
115 116 117 118 119 120
{
	u8 msg[2];

	msg[0] = data[1];
	msg[1] = data[0];

121
	return do_spi_write(control_data, msg, len);
122 123 124 125 126
}
#else
#define snd_soc_4_12_spi_write NULL
#endif

127 128 129
static unsigned int snd_soc_7_9_read(struct snd_soc_codec *codec,
				     unsigned int reg)
{
130
	return do_hw_read(codec, reg);
131 132 133 134 135 136 137 138 139 140
}

static int snd_soc_7_9_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
	u8 data[2];

	data[0] = (reg << 1) | ((value >> 8) & 0x0001);
	data[1] = value & 0x00ff;

141
	return do_hw_write(codec, reg, value, data, 2);
142 143
}

144 145 146 147 148 149 150 151 152
#if defined(CONFIG_SPI_MASTER)
static int snd_soc_7_9_spi_write(void *control_data, const char *data,
				 int len)
{
	u8 msg[2];

	msg[0] = data[0];
	msg[1] = data[1];

153
	return do_spi_write(control_data, msg, len);
154 155 156 157 158
}
#else
#define snd_soc_7_9_spi_write NULL
#endif

159 160 161 162 163
static int snd_soc_8_8_write(struct snd_soc_codec *codec, unsigned int reg,
			     unsigned int value)
{
	u8 data[2];

164 165
	reg &= 0xff;
	data[0] = reg;
166 167
	data[1] = value & 0xff;

168
	return do_hw_write(codec, reg, value, data, 2);
169 170 171 172 173
}

static unsigned int snd_soc_8_8_read(struct snd_soc_codec *codec,
				     unsigned int reg)
{
174
	return do_hw_read(codec, reg);
175 176
}

177 178 179 180 181 182 183 184 185
#if defined(CONFIG_SPI_MASTER)
static int snd_soc_8_8_spi_write(void *control_data, const char *data,
				 int len)
{
	u8 msg[2];

	msg[0] = data[0];
	msg[1] = data[1];

186
	return do_spi_write(control_data, msg, len);
187 188 189 190 191
}
#else
#define snd_soc_8_8_spi_write NULL
#endif

192 193 194 195 196 197 198 199 200
static int snd_soc_8_16_write(struct snd_soc_codec *codec, unsigned int reg,
			      unsigned int value)
{
	u8 data[3];

	data[0] = reg;
	data[1] = (value >> 8) & 0xff;
	data[2] = value & 0xff;

201
	return do_hw_write(codec, reg, value, data, 3);
202 203 204 205 206
}

static unsigned int snd_soc_8_16_read(struct snd_soc_codec *codec,
				      unsigned int reg)
{
207
	return do_hw_read(codec, reg);
208 209
}

210 211
#if defined(CONFIG_SPI_MASTER)
static int snd_soc_8_16_spi_write(void *control_data, const char *data,
212
				  int len)
213 214 215 216 217 218 219
{
	u8 msg[3];

	msg[0] = data[0];
	msg[1] = data[1];
	msg[2] = data[2];

220
	return do_spi_write(control_data, msg, len);
221 222 223 224 225
}
#else
#define snd_soc_8_16_spi_write NULL
#endif

226
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
227 228 229
static unsigned int do_i2c_read(struct snd_soc_codec *codec,
				void *reg, int reglen,
				void *data, int datalen)
230 231 232 233 234 235 236 237
{
	struct i2c_msg xfer[2];
	int ret;
	struct i2c_client *client = codec->control_data;

	/* Write register */
	xfer[0].addr = client->addr;
	xfer[0].flags = 0;
238 239
	xfer[0].len = reglen;
	xfer[0].buf = reg;
240 241 242 243

	/* Read data */
	xfer[1].addr = client->addr;
	xfer[1].flags = I2C_M_RD;
244 245
	xfer[1].len = datalen;
	xfer[1].buf = data;
246 247

	ret = i2c_transfer(client->adapter, xfer, 2);
248 249
	dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
	if (ret == 2)
250
		return 0;
251 252 253 254 255 256 257 258 259
	else if (ret < 0)
		return ret;
	else
		return -EIO;
}
#endif

#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_8_8_read_i2c(struct snd_soc_codec *codec,
260
					 unsigned int r)
261 262 263 264
{
	u8 reg = r;
	u8 data;
	int ret;
265

266 267 268
	ret = do_i2c_read(codec, &reg, 1, &data, 1);
	if (ret < 0)
		return 0;
269 270 271 272 273 274
	return data;
}
#else
#define snd_soc_8_8_read_i2c NULL
#endif

R
Randy Dunlap 已提交
275
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
276 277 278 279 280 281 282
static unsigned int snd_soc_8_16_read_i2c(struct snd_soc_codec *codec,
					  unsigned int r)
{
	u8 reg = r;
	u16 data;
	int ret;

283 284
	ret = do_i2c_read(codec, &reg, 1, &data, 2);
	if (ret < 0)
285 286 287 288 289 290
		return 0;
	return (data >> 8) | ((data & 0xff) << 8);
}
#else
#define snd_soc_8_16_read_i2c NULL
#endif
291

292 293 294 295 296 297 298 299
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_16_8_read_i2c(struct snd_soc_codec *codec,
					  unsigned int r)
{
	u16 reg = r;
	u8 data;
	int ret;

300 301
	ret = do_i2c_read(codec, &reg, 2, &data, 1);
	if (ret < 0)
302 303 304 305 306 307 308 309
		return 0;
	return data;
}
#else
#define snd_soc_16_8_read_i2c NULL
#endif

static unsigned int snd_soc_16_8_read(struct snd_soc_codec *codec,
310
				      unsigned int reg)
311
{
312
	return do_hw_read(codec, reg);
313 314 315
}

static int snd_soc_16_8_write(struct snd_soc_codec *codec, unsigned int reg,
316
			      unsigned int value)
317 318 319 320 321 322 323
{
	u8 data[3];

	data[0] = (reg >> 8) & 0xff;
	data[1] = reg & 0xff;
	data[2] = value;
	reg &= 0xff;
324

325
	return do_hw_write(codec, reg, value, data, 3);
326 327 328 329
}

#if defined(CONFIG_SPI_MASTER)
static int snd_soc_16_8_spi_write(void *control_data, const char *data,
330
				  int len)
331 332 333 334 335 336 337
{
	u8 msg[3];

	msg[0] = data[0];
	msg[1] = data[1];
	msg[2] = data[2];

338
	return do_spi_write(control_data, msg, len);
339 340 341 342 343
}
#else
#define snd_soc_16_8_spi_write NULL
#endif

344 345 346 347 348 349 350 351
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
static unsigned int snd_soc_16_16_read_i2c(struct snd_soc_codec *codec,
					   unsigned int r)
{
	u16 reg = cpu_to_be16(r);
	u16 data;
	int ret;

352 353
	ret = do_i2c_read(codec, &reg, 2, &data, 2);
	if (ret < 0)
354 355 356 357 358 359 360 361 362 363
		return 0;
	return be16_to_cpu(data);
}
#else
#define snd_soc_16_16_read_i2c NULL
#endif

static unsigned int snd_soc_16_16_read(struct snd_soc_codec *codec,
				       unsigned int reg)
{
364
	return do_hw_read(codec, reg);
365 366 367 368 369 370 371 372 373 374 375 376
}

static int snd_soc_16_16_write(struct snd_soc_codec *codec, unsigned int reg,
			       unsigned int value)
{
	u8 data[4];

	data[0] = (reg >> 8) & 0xff;
	data[1] = reg & 0xff;
	data[2] = (value >> 8) & 0xff;
	data[3] = value & 0xff;

377
	return do_hw_write(codec, reg, value, data, 4);
378
}
379

380 381
#if defined(CONFIG_SPI_MASTER)
static int snd_soc_16_16_spi_write(void *control_data, const char *data,
382
				   int len)
383 384 385 386 387 388 389 390
{
	u8 msg[4];

	msg[0] = data[0];
	msg[1] = data[1];
	msg[2] = data[2];
	msg[3] = data[3];

391
	return do_spi_write(control_data, msg, len);
392 393 394 395 396
}
#else
#define snd_soc_16_16_spi_write NULL
#endif

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
/* Primitive bulk write support for soc-cache.  The data pointed to by `data' needs
 * to already be in the form the hardware expects including any leading register specific
 * data.  Any data written through this function will not go through the cache as it
 * only handles writing to volatile or out of bounds registers.
 */
static int snd_soc_hw_bulk_write_raw(struct snd_soc_codec *codec, unsigned int reg,
				     const void *data, size_t len)
{
	int ret;

	/* Ensure that the base register is volatile.  Subsequently
	 * any other register that is touched by this routine should be
	 * volatile as well to ensure that we don't get out of sync with
	 * the cache.
	 */
	if (!snd_soc_codec_volatile_register(codec, reg)
	    && reg < codec->driver->reg_cache_size)
		return -EINVAL;

	switch (codec->control_type) {
417
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
418 419 420
	case SND_SOC_I2C:
		ret = i2c_master_send(codec->control_data, data, len);
		break;
421 422
#endif
#if defined(CONFIG_SPI_MASTER)
423 424 425
	case SND_SOC_SPI:
		ret = do_spi_write(codec->control_data, data, len);
		break;
426
#endif
427 428 429 430 431 432 433 434 435 436 437 438
	default:
		BUG();
	}

	if (ret == len)
		return 0;
	if (ret < 0)
		return ret;
	else
		return -EIO;
}

439 440 441
static struct {
	int addr_bits;
	int data_bits;
442
	int (*write)(struct snd_soc_codec *codec, unsigned int, unsigned int);
443
	int (*spi_write)(void *, const char *, int);
444
	unsigned int (*read)(struct snd_soc_codec *, unsigned int);
445
	unsigned int (*i2c_read)(struct snd_soc_codec *, unsigned int);
446
} io_types[] = {
447 448 449 450 451
	{
		.addr_bits = 4, .data_bits = 12,
		.write = snd_soc_4_12_write, .read = snd_soc_4_12_read,
		.spi_write = snd_soc_4_12_spi_write,
	},
452 453 454
	{
		.addr_bits = 7, .data_bits = 9,
		.write = snd_soc_7_9_write, .read = snd_soc_7_9_read,
455
		.spi_write = snd_soc_7_9_spi_write,
456 457 458 459
	},
	{
		.addr_bits = 8, .data_bits = 8,
		.write = snd_soc_8_8_write, .read = snd_soc_8_8_read,
460
		.i2c_read = snd_soc_8_8_read_i2c,
461
		.spi_write = snd_soc_8_8_spi_write,
462 463 464 465 466
	},
	{
		.addr_bits = 8, .data_bits = 16,
		.write = snd_soc_8_16_write, .read = snd_soc_8_16_read,
		.i2c_read = snd_soc_8_16_read_i2c,
467
		.spi_write = snd_soc_8_16_spi_write,
468
	},
469 470 471 472 473 474
	{
		.addr_bits = 16, .data_bits = 8,
		.write = snd_soc_16_8_write, .read = snd_soc_16_8_read,
		.i2c_read = snd_soc_16_8_read_i2c,
		.spi_write = snd_soc_16_8_spi_write,
	},
475 476 477 478
	{
		.addr_bits = 16, .data_bits = 16,
		.write = snd_soc_16_16_write, .read = snd_soc_16_16_read,
		.i2c_read = snd_soc_16_16_read_i2c,
479
		.spi_write = snd_soc_16_16_spi_write,
480
	},
481 482 483 484 485 486 487 488 489
};

/**
 * snd_soc_codec_set_cache_io: Set up standard I/O functions.
 *
 * @codec: CODEC to configure.
 * @type: Type of cache.
 * @addr_bits: Number of bits of register address data.
 * @data_bits: Number of bits of data per register.
490
 * @control: Control bus used.
491 492 493 494 495 496 497 498 499 500 501 502 503
 *
 * Register formats are frequently shared between many I2C and SPI
 * devices.  In order to promote code reuse the ASoC core provides
 * some standard implementations of CODEC read and write operations
 * which can be set up using this function.
 *
 * The caller is responsible for allocating and initialising the
 * actual cache.
 *
 * Note that at present this code cannot be used by CODECs with
 * volatile registers.
 */
int snd_soc_codec_set_cache_io(struct snd_soc_codec *codec,
504 505
			       int addr_bits, int data_bits,
			       enum snd_soc_control_type control)
506 507 508 509 510 511 512 513 514 515 516 517 518 519
{
	int i;

	for (i = 0; i < ARRAY_SIZE(io_types); i++)
		if (io_types[i].addr_bits == addr_bits &&
		    io_types[i].data_bits == data_bits)
			break;
	if (i == ARRAY_SIZE(io_types)) {
		printk(KERN_ERR
		       "No I/O functions for %d bit address %d bit data\n",
		       addr_bits, data_bits);
		return -EINVAL;
	}

520 521
	codec->write = io_types[i].write;
	codec->read = io_types[i].read;
522
	codec->bulk_write_raw = snd_soc_hw_bulk_write_raw;
523

524 525 526 527 528
	switch (control) {
	case SND_SOC_CUSTOM:
		break;

	case SND_SOC_I2C:
R
Randy Dunlap 已提交
529
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
530 531
		codec->hw_write = (hw_write_t)i2c_master_send;
#endif
532 533
		if (io_types[i].i2c_read)
			codec->hw_read = io_types[i].i2c_read;
534 535 536 537

		codec->control_data = container_of(codec->dev,
						   struct i2c_client,
						   dev);
538 539 540
		break;

	case SND_SOC_SPI:
541 542
		if (io_types[i].spi_write)
			codec->hw_write = io_types[i].spi_write;
543 544 545 546

		codec->control_data = container_of(codec->dev,
						   struct spi_device,
						   dev);
547 548 549
		break;
	}

550 551 552
	return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_codec_set_cache_io);
553

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
static bool snd_soc_set_cache_val(void *base, unsigned int idx,
				  unsigned int val, unsigned int word_size)
{
	switch (word_size) {
	case 1: {
		u8 *cache = base;
		if (cache[idx] == val)
			return true;
		cache[idx] = val;
		break;
	}
	case 2: {
		u16 *cache = base;
		if (cache[idx] == val)
			return true;
		cache[idx] = val;
		break;
	}
	default:
		BUG();
	}
	return false;
}

static unsigned int snd_soc_get_cache_val(const void *base, unsigned int idx,
		unsigned int word_size)
{
	switch (word_size) {
	case 1: {
		const u8 *cache = base;
		return cache[idx];
	}
	case 2: {
		const u16 *cache = base;
		return cache[idx];
	}
	default:
		BUG();
	}
	/* unreachable */
	return -1;
}

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
struct snd_soc_rbtree_node {
	struct rb_node node;
	unsigned int reg;
	unsigned int value;
	unsigned int defval;
} __attribute__ ((packed));

struct snd_soc_rbtree_ctx {
	struct rb_root root;
};

static struct snd_soc_rbtree_node *snd_soc_rbtree_lookup(
	struct rb_root *root, unsigned int reg)
{
	struct rb_node *node;
	struct snd_soc_rbtree_node *rbnode;

	node = root->rb_node;
	while (node) {
		rbnode = container_of(node, struct snd_soc_rbtree_node, node);
		if (rbnode->reg < reg)
			node = node->rb_left;
		else if (rbnode->reg > reg)
			node = node->rb_right;
		else
			return rbnode;
	}

	return NULL;
}

static int snd_soc_rbtree_insert(struct rb_root *root,
				 struct snd_soc_rbtree_node *rbnode)
{
	struct rb_node **new, *parent;
	struct snd_soc_rbtree_node *rbnode_tmp;

	parent = NULL;
	new = &root->rb_node;
	while (*new) {
		rbnode_tmp = container_of(*new, struct snd_soc_rbtree_node,
					  node);
		parent = *new;
		if (rbnode_tmp->reg < rbnode->reg)
			new = &((*new)->rb_left);
		else if (rbnode_tmp->reg > rbnode->reg)
			new = &((*new)->rb_right);
		else
			return 0;
	}

	/* insert the node into the rbtree */
	rb_link_node(&rbnode->node, parent, new);
	rb_insert_color(&rbnode->node, root);

	return 1;
}

static int snd_soc_rbtree_cache_sync(struct snd_soc_codec *codec)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct rb_node *node;
	struct snd_soc_rbtree_node *rbnode;
	unsigned int val;
661
	int ret;
662 663 664 665 666 667

	rbtree_ctx = codec->reg_cache;
	for (node = rb_first(&rbtree_ctx->root); node; node = rb_next(node)) {
		rbnode = rb_entry(node, struct snd_soc_rbtree_node, node);
		if (rbnode->value == rbnode->defval)
			continue;
668 669
		WARN_ON(codec->writable_register &&
			codec->writable_register(codec, rbnode->reg));
670 671 672
		ret = snd_soc_cache_read(codec, rbnode->reg, &val);
		if (ret)
			return ret;
673
		codec->cache_bypass = 1;
674
		ret = snd_soc_write(codec, rbnode->reg, val);
675
		codec->cache_bypass = 0;
676 677
		if (ret)
			return ret;
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
		dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
			rbnode->reg, val);
	}

	return 0;
}

static int snd_soc_rbtree_cache_write(struct snd_soc_codec *codec,
				      unsigned int reg, unsigned int value)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct snd_soc_rbtree_node *rbnode;

	rbtree_ctx = codec->reg_cache;
	rbnode = snd_soc_rbtree_lookup(&rbtree_ctx->root, reg);
	if (rbnode) {
		if (rbnode->value == value)
			return 0;
		rbnode->value = value;
	} else {
		/* bail out early, no need to create the rbnode yet */
		if (!value)
			return 0;
		/*
		 * for uninitialized registers whose value is changed
		 * from the default zero, create an rbnode and insert
		 * it into the tree.
		 */
		rbnode = kzalloc(sizeof *rbnode, GFP_KERNEL);
		if (!rbnode)
			return -ENOMEM;
		rbnode->reg = reg;
		rbnode->value = value;
		snd_soc_rbtree_insert(&rbtree_ctx->root, rbnode);
	}

	return 0;
}

static int snd_soc_rbtree_cache_read(struct snd_soc_codec *codec,
				     unsigned int reg, unsigned int *value)
{
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct snd_soc_rbtree_node *rbnode;

	rbtree_ctx = codec->reg_cache;
	rbnode = snd_soc_rbtree_lookup(&rbtree_ctx->root, reg);
	if (rbnode) {
		*value = rbnode->value;
	} else {
		/* uninitialized registers default to 0 */
		*value = 0;
	}

	return 0;
}

static int snd_soc_rbtree_cache_exit(struct snd_soc_codec *codec)
{
	struct rb_node *next;
	struct snd_soc_rbtree_ctx *rbtree_ctx;
	struct snd_soc_rbtree_node *rbtree_node;

	/* if we've already been called then just return */
	rbtree_ctx = codec->reg_cache;
	if (!rbtree_ctx)
		return 0;

	/* free up the rbtree */
	next = rb_first(&rbtree_ctx->root);
	while (next) {
		rbtree_node = rb_entry(next, struct snd_soc_rbtree_node, node);
		next = rb_next(&rbtree_node->node);
		rb_erase(&rbtree_node->node, &rbtree_ctx->root);
		kfree(rbtree_node);
	}

	/* release the resources */
	kfree(codec->reg_cache);
	codec->reg_cache = NULL;

	return 0;
}

static int snd_soc_rbtree_cache_init(struct snd_soc_codec *codec)
{
764
	struct snd_soc_rbtree_node *rbtree_node;
765
	struct snd_soc_rbtree_ctx *rbtree_ctx;
766 767 768 769
	unsigned int val;
	unsigned int word_size;
	int i;
	int ret;
770 771 772 773 774 775 776 777

	codec->reg_cache = kmalloc(sizeof *rbtree_ctx, GFP_KERNEL);
	if (!codec->reg_cache)
		return -ENOMEM;

	rbtree_ctx = codec->reg_cache;
	rbtree_ctx->root = RB_ROOT;

778
	if (!codec->reg_def_copy)
779 780
		return 0;

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
	/*
	 * populate the rbtree with the initialized registers.  All other
	 * registers will be inserted when they are first modified.
	 */
	word_size = codec->driver->reg_word_size;
	for (i = 0; i < codec->driver->reg_cache_size; ++i) {
		val = snd_soc_get_cache_val(codec->reg_def_copy, i, word_size);
		if (!val)
			continue;
		rbtree_node = kzalloc(sizeof *rbtree_node, GFP_KERNEL);
		if (!rbtree_node) {
			ret = -ENOMEM;
			snd_soc_cache_exit(codec);
			break;
		}
		rbtree_node->reg = i;
		rbtree_node->value = val;
		rbtree_node->defval = val;
		snd_soc_rbtree_insert(&rbtree_ctx->root, rbtree_node);
800 801 802 803 804
	}

	return 0;
}

805
#ifdef CONFIG_SND_SOC_CACHE_LZO
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
struct snd_soc_lzo_ctx {
	void *wmem;
	void *dst;
	const void *src;
	size_t src_len;
	size_t dst_len;
	size_t decompressed_size;
	unsigned long *sync_bmp;
	int sync_bmp_nbits;
};

#define LZO_BLOCK_NUM 8
static int snd_soc_lzo_block_count(void)
{
	return LZO_BLOCK_NUM;
}

static int snd_soc_lzo_prepare(struct snd_soc_lzo_ctx *lzo_ctx)
{
	lzo_ctx->wmem = kmalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
	if (!lzo_ctx->wmem)
		return -ENOMEM;
	return 0;
}

static int snd_soc_lzo_compress(struct snd_soc_lzo_ctx *lzo_ctx)
{
	size_t compress_size;
	int ret;

	ret = lzo1x_1_compress(lzo_ctx->src, lzo_ctx->src_len,
			       lzo_ctx->dst, &compress_size, lzo_ctx->wmem);
	if (ret != LZO_E_OK || compress_size > lzo_ctx->dst_len)
		return -EINVAL;
	lzo_ctx->dst_len = compress_size;
	return 0;
}

static int snd_soc_lzo_decompress(struct snd_soc_lzo_ctx *lzo_ctx)
{
	size_t dst_len;
	int ret;

	dst_len = lzo_ctx->dst_len;
	ret = lzo1x_decompress_safe(lzo_ctx->src, lzo_ctx->src_len,
				    lzo_ctx->dst, &dst_len);
	if (ret != LZO_E_OK || dst_len != lzo_ctx->dst_len)
		return -EINVAL;
	return 0;
}

static int snd_soc_lzo_compress_cache_block(struct snd_soc_codec *codec,
		struct snd_soc_lzo_ctx *lzo_ctx)
{
	int ret;

	lzo_ctx->dst_len = lzo1x_worst_compress(PAGE_SIZE);
	lzo_ctx->dst = kmalloc(lzo_ctx->dst_len, GFP_KERNEL);
	if (!lzo_ctx->dst) {
		lzo_ctx->dst_len = 0;
		return -ENOMEM;
	}

	ret = snd_soc_lzo_compress(lzo_ctx);
	if (ret < 0)
		return ret;
	return 0;
}

static int snd_soc_lzo_decompress_cache_block(struct snd_soc_codec *codec,
		struct snd_soc_lzo_ctx *lzo_ctx)
{
	int ret;

	lzo_ctx->dst_len = lzo_ctx->decompressed_size;
	lzo_ctx->dst = kmalloc(lzo_ctx->dst_len, GFP_KERNEL);
	if (!lzo_ctx->dst) {
		lzo_ctx->dst_len = 0;
		return -ENOMEM;
	}

	ret = snd_soc_lzo_decompress(lzo_ctx);
	if (ret < 0)
		return ret;
	return 0;
}

static inline int snd_soc_lzo_get_blkindex(struct snd_soc_codec *codec,
		unsigned int reg)
{
896
	const struct snd_soc_codec_driver *codec_drv;
897 898 899

	codec_drv = codec->driver;
	return (reg * codec_drv->reg_word_size) /
900
	       DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count());
901 902 903 904 905
}

static inline int snd_soc_lzo_get_blkpos(struct snd_soc_codec *codec,
		unsigned int reg)
{
906
	const struct snd_soc_codec_driver *codec_drv;
907 908

	codec_drv = codec->driver;
909
	return reg % (DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count()) /
910 911 912 913 914
		      codec_drv->reg_word_size);
}

static inline int snd_soc_lzo_get_blksize(struct snd_soc_codec *codec)
{
915
	const struct snd_soc_codec_driver *codec_drv;
916 917

	codec_drv = codec->driver;
918
	return DIV_ROUND_UP(codec->reg_size, snd_soc_lzo_block_count());
919 920 921 922 923 924 925
}

static int snd_soc_lzo_cache_sync(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
	unsigned int val;
	int i;
926
	int ret;
927 928 929

	lzo_blocks = codec->reg_cache;
	for_each_set_bit(i, lzo_blocks[0]->sync_bmp, lzo_blocks[0]->sync_bmp_nbits) {
930 931
		WARN_ON(codec->writable_register &&
			codec->writable_register(codec, i));
932 933 934
		ret = snd_soc_cache_read(codec, i, &val);
		if (ret)
			return ret;
935
		codec->cache_bypass = 1;
936
		ret = snd_soc_write(codec, i, val);
937
		codec->cache_bypass = 0;
938 939
		if (ret)
			return ret;
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
		dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
			i, val);
	}

	return 0;
}

static int snd_soc_lzo_cache_write(struct snd_soc_codec *codec,
				   unsigned int reg, unsigned int value)
{
	struct snd_soc_lzo_ctx *lzo_block, **lzo_blocks;
	int ret, blkindex, blkpos;
	size_t blksize, tmp_dst_len;
	void *tmp_dst;

	/* index of the compressed lzo block */
	blkindex = snd_soc_lzo_get_blkindex(codec, reg);
	/* register index within the decompressed block */
	blkpos = snd_soc_lzo_get_blkpos(codec, reg);
	/* size of the compressed block */
	blksize = snd_soc_lzo_get_blksize(codec);
	lzo_blocks = codec->reg_cache;
	lzo_block = lzo_blocks[blkindex];

	/* save the pointer and length of the compressed block */
	tmp_dst = lzo_block->dst;
	tmp_dst_len = lzo_block->dst_len;

	/* prepare the source to be the compressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* decompress the block */
	ret = snd_soc_lzo_decompress_cache_block(codec, lzo_block);
	if (ret < 0) {
		kfree(lzo_block->dst);
		goto out;
	}

	/* write the new value to the cache */
980 981 982 983
	if (snd_soc_set_cache_val(lzo_block->dst, blkpos, value,
				  codec->driver->reg_word_size)) {
		kfree(lzo_block->dst);
		goto out;
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	}

	/* prepare the source to be the decompressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* compress the block */
	ret = snd_soc_lzo_compress_cache_block(codec, lzo_block);
	if (ret < 0) {
		kfree(lzo_block->dst);
		kfree(lzo_block->src);
		goto out;
	}

	/* set the bit so we know we have to sync this register */
	set_bit(reg, lzo_block->sync_bmp);
	kfree(tmp_dst);
	kfree(lzo_block->src);
	return 0;
out:
	lzo_block->dst = tmp_dst;
	lzo_block->dst_len = tmp_dst_len;
	return ret;
}

static int snd_soc_lzo_cache_read(struct snd_soc_codec *codec,
				  unsigned int reg, unsigned int *value)
{
	struct snd_soc_lzo_ctx *lzo_block, **lzo_blocks;
	int ret, blkindex, blkpos;
	size_t blksize, tmp_dst_len;
	void *tmp_dst;

	*value = 0;
	/* index of the compressed lzo block */
	blkindex = snd_soc_lzo_get_blkindex(codec, reg);
	/* register index within the decompressed block */
	blkpos = snd_soc_lzo_get_blkpos(codec, reg);
	/* size of the compressed block */
	blksize = snd_soc_lzo_get_blksize(codec);
	lzo_blocks = codec->reg_cache;
	lzo_block = lzo_blocks[blkindex];

	/* save the pointer and length of the compressed block */
	tmp_dst = lzo_block->dst;
	tmp_dst_len = lzo_block->dst_len;

	/* prepare the source to be the compressed block */
	lzo_block->src = lzo_block->dst;
	lzo_block->src_len = lzo_block->dst_len;

	/* decompress the block */
	ret = snd_soc_lzo_decompress_cache_block(codec, lzo_block);
1037
	if (ret >= 0)
1038
		/* fetch the value from the cache */
1039 1040
		*value = snd_soc_get_cache_val(lzo_block->dst, blkpos,
					       codec->driver->reg_word_size);
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

	kfree(lzo_block->dst);
	/* restore the pointer and length of the compressed block */
	lzo_block->dst = tmp_dst;
	lzo_block->dst_len = tmp_dst_len;
	return 0;
}

static int snd_soc_lzo_cache_exit(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
	int i, blkcount;

	lzo_blocks = codec->reg_cache;
	if (!lzo_blocks)
		return 0;

	blkcount = snd_soc_lzo_block_count();
	/*
	 * the pointer to the bitmap used for syncing the cache
	 * is shared amongst all lzo_blocks.  Ensure it is freed
	 * only once.
	 */
	if (lzo_blocks[0])
		kfree(lzo_blocks[0]->sync_bmp);
	for (i = 0; i < blkcount; ++i) {
		if (lzo_blocks[i]) {
			kfree(lzo_blocks[i]->wmem);
			kfree(lzo_blocks[i]->dst);
		}
		/* each lzo_block is a pointer returned by kmalloc or NULL */
		kfree(lzo_blocks[i]);
	}
	kfree(lzo_blocks);
	codec->reg_cache = NULL;
	return 0;
}

static int snd_soc_lzo_cache_init(struct snd_soc_codec *codec)
{
	struct snd_soc_lzo_ctx **lzo_blocks;
1082
	size_t bmp_size;
1083
	const struct snd_soc_codec_driver *codec_drv;
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	int ret, tofree, i, blksize, blkcount;
	const char *p, *end;
	unsigned long *sync_bmp;

	ret = 0;
	codec_drv = codec->driver;

	/*
	 * If we have not been given a default register cache
	 * then allocate a dummy zero-ed out region, compress it
	 * and remember to free it afterwards.
	 */
	tofree = 0;
1097
	if (!codec->reg_def_copy)
1098 1099
		tofree = 1;

1100
	if (!codec->reg_def_copy) {
1101
		codec->reg_def_copy = kzalloc(codec->reg_size, GFP_KERNEL);
1102
		if (!codec->reg_def_copy)
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
			return -ENOMEM;
	}

	blkcount = snd_soc_lzo_block_count();
	codec->reg_cache = kzalloc(blkcount * sizeof *lzo_blocks,
				   GFP_KERNEL);
	if (!codec->reg_cache) {
		ret = -ENOMEM;
		goto err_tofree;
	}
	lzo_blocks = codec->reg_cache;

	/*
	 * allocate a bitmap to be used when syncing the cache with
	 * the hardware.  Each time a register is modified, the corresponding
	 * bit is set in the bitmap, so we know that we have to sync
	 * that register.
	 */
	bmp_size = codec_drv->reg_cache_size;
1122
	sync_bmp = kmalloc(BITS_TO_LONGS(bmp_size) * sizeof(long),
1123 1124 1125 1126 1127
			   GFP_KERNEL);
	if (!sync_bmp) {
		ret = -ENOMEM;
		goto err;
	}
1128
	bitmap_zero(sync_bmp, bmp_size);
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

	/* allocate the lzo blocks and initialize them */
	for (i = 0; i < blkcount; ++i) {
		lzo_blocks[i] = kzalloc(sizeof **lzo_blocks,
					GFP_KERNEL);
		if (!lzo_blocks[i]) {
			kfree(sync_bmp);
			ret = -ENOMEM;
			goto err;
		}
		lzo_blocks[i]->sync_bmp = sync_bmp;
1140
		lzo_blocks[i]->sync_bmp_nbits = bmp_size;
1141 1142 1143 1144 1145 1146 1147
		/* alloc the working space for the compressed block */
		ret = snd_soc_lzo_prepare(lzo_blocks[i]);
		if (ret < 0)
			goto err;
	}

	blksize = snd_soc_lzo_get_blksize(codec);
1148
	p = codec->reg_def_copy;
1149
	end = codec->reg_def_copy + codec->reg_size;
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	/* compress the register map and fill the lzo blocks */
	for (i = 0; i < blkcount; ++i, p += blksize) {
		lzo_blocks[i]->src = p;
		if (p + blksize > end)
			lzo_blocks[i]->src_len = end - p;
		else
			lzo_blocks[i]->src_len = blksize;
		ret = snd_soc_lzo_compress_cache_block(codec,
						       lzo_blocks[i]);
		if (ret < 0)
			goto err;
		lzo_blocks[i]->decompressed_size =
			lzo_blocks[i]->src_len;
	}

1165 1166 1167 1168
	if (tofree) {
		kfree(codec->reg_def_copy);
		codec->reg_def_copy = NULL;
	}
1169 1170 1171 1172
	return 0;
err:
	snd_soc_cache_exit(codec);
err_tofree:
1173 1174 1175 1176
	if (tofree) {
		kfree(codec->reg_def_copy);
		codec->reg_def_copy = NULL;
	}
1177 1178
	return ret;
}
1179
#endif
1180

1181 1182 1183
static int snd_soc_flat_cache_sync(struct snd_soc_codec *codec)
{
	int i;
1184
	int ret;
1185
	const struct snd_soc_codec_driver *codec_drv;
1186 1187 1188 1189
	unsigned int val;

	codec_drv = codec->driver;
	for (i = 0; i < codec_drv->reg_cache_size; ++i) {
1190 1191
		WARN_ON(codec->writable_register &&
			codec->writable_register(codec, i));
1192 1193 1194
		ret = snd_soc_cache_read(codec, i, &val);
		if (ret)
			return ret;
1195 1196
		if (codec->reg_def_copy)
			if (snd_soc_get_cache_val(codec->reg_def_copy,
1197 1198
						  i, codec_drv->reg_word_size) == val)
				continue;
1199 1200 1201
		ret = snd_soc_write(codec, i, val);
		if (ret)
			return ret;
1202 1203 1204 1205 1206 1207 1208 1209 1210
		dev_dbg(codec->dev, "Synced register %#x, value = %#x\n",
			i, val);
	}
	return 0;
}

static int snd_soc_flat_cache_write(struct snd_soc_codec *codec,
				    unsigned int reg, unsigned int value)
{
1211 1212
	snd_soc_set_cache_val(codec->reg_cache, reg, value,
			      codec->driver->reg_word_size);
1213 1214 1215 1216 1217 1218
	return 0;
}

static int snd_soc_flat_cache_read(struct snd_soc_codec *codec,
				   unsigned int reg, unsigned int *value)
{
1219 1220
	*value = snd_soc_get_cache_val(codec->reg_cache, reg,
				       codec->driver->reg_word_size);
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	return 0;
}

static int snd_soc_flat_cache_exit(struct snd_soc_codec *codec)
{
	if (!codec->reg_cache)
		return 0;
	kfree(codec->reg_cache);
	codec->reg_cache = NULL;
	return 0;
}

static int snd_soc_flat_cache_init(struct snd_soc_codec *codec)
{
1235
	const struct snd_soc_codec_driver *codec_drv;
1236 1237 1238

	codec_drv = codec->driver;

1239 1240
	if (codec->reg_def_copy)
		codec->reg_cache = kmemdup(codec->reg_def_copy,
1241
					   codec->reg_size, GFP_KERNEL);
1242
	else
1243
		codec->reg_cache = kzalloc(codec->reg_size, GFP_KERNEL);
1244 1245 1246 1247 1248 1249 1250 1251
	if (!codec->reg_cache)
		return -ENOMEM;

	return 0;
}

/* an array of all supported compression types */
static const struct snd_soc_cache_ops cache_types[] = {
1252
	/* Flat *must* be the first entry for fallback */
1253
	{
1254
		.id = SND_SOC_FLAT_COMPRESSION,
1255
		.name = "flat",
1256 1257 1258 1259 1260
		.init = snd_soc_flat_cache_init,
		.exit = snd_soc_flat_cache_exit,
		.read = snd_soc_flat_cache_read,
		.write = snd_soc_flat_cache_write,
		.sync = snd_soc_flat_cache_sync
1261
	},
1262
#ifdef CONFIG_SND_SOC_CACHE_LZO
1263 1264
	{
		.id = SND_SOC_LZO_COMPRESSION,
1265
		.name = "LZO",
1266 1267 1268 1269 1270
		.init = snd_soc_lzo_cache_init,
		.exit = snd_soc_lzo_cache_exit,
		.read = snd_soc_lzo_cache_read,
		.write = snd_soc_lzo_cache_write,
		.sync = snd_soc_lzo_cache_sync
1271
	},
1272
#endif
1273 1274
	{
		.id = SND_SOC_RBTREE_COMPRESSION,
1275
		.name = "rbtree",
1276 1277 1278 1279 1280
		.init = snd_soc_rbtree_cache_init,
		.exit = snd_soc_rbtree_cache_exit,
		.read = snd_soc_rbtree_cache_read,
		.write = snd_soc_rbtree_cache_write,
		.sync = snd_soc_rbtree_cache_sync
1281 1282 1283 1284 1285 1286 1287 1288
	}
};

int snd_soc_cache_init(struct snd_soc_codec *codec)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(cache_types); ++i)
1289
		if (cache_types[i].id == codec->compress_type)
1290
			break;
1291 1292

	/* Fall back to flat compression */
1293
	if (i == ARRAY_SIZE(cache_types)) {
1294 1295 1296
		dev_warn(codec->dev, "Could not match compress type: %d\n",
			 codec->compress_type);
		i = 0;
1297 1298 1299 1300 1301
	}

	mutex_init(&codec->cache_rw_mutex);
	codec->cache_ops = &cache_types[i];

1302 1303 1304 1305
	if (codec->cache_ops->init) {
		if (codec->cache_ops->name)
			dev_dbg(codec->dev, "Initializing %s cache for %s codec\n",
				codec->cache_ops->name, codec->name);
1306
		return codec->cache_ops->init(codec);
1307
	}
1308
	return -ENOSYS;
1309 1310 1311 1312 1313 1314 1315 1316
}

/*
 * NOTE: keep in mind that this function might be called
 * multiple times.
 */
int snd_soc_cache_exit(struct snd_soc_codec *codec)
{
1317 1318 1319 1320
	if (codec->cache_ops && codec->cache_ops->exit) {
		if (codec->cache_ops->name)
			dev_dbg(codec->dev, "Destroying %s cache for %s codec\n",
				codec->cache_ops->name, codec->name);
1321
		return codec->cache_ops->exit(codec);
1322
	}
1323
	return -ENOSYS;
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
}

/**
 * snd_soc_cache_read: Fetch the value of a given register from the cache.
 *
 * @codec: CODEC to configure.
 * @reg: The register index.
 * @value: The value to be returned.
 */
int snd_soc_cache_read(struct snd_soc_codec *codec,
		       unsigned int reg, unsigned int *value)
{
	int ret;

	mutex_lock(&codec->cache_rw_mutex);

	if (value && codec->cache_ops && codec->cache_ops->read) {
		ret = codec->cache_ops->read(codec, reg, value);
		mutex_unlock(&codec->cache_rw_mutex);
		return ret;
	}

	mutex_unlock(&codec->cache_rw_mutex);
1347
	return -ENOSYS;
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
}
EXPORT_SYMBOL_GPL(snd_soc_cache_read);

/**
 * snd_soc_cache_write: Set the value of a given register in the cache.
 *
 * @codec: CODEC to configure.
 * @reg: The register index.
 * @value: The new register value.
 */
int snd_soc_cache_write(struct snd_soc_codec *codec,
			unsigned int reg, unsigned int value)
{
	int ret;

	mutex_lock(&codec->cache_rw_mutex);

	if (codec->cache_ops && codec->cache_ops->write) {
		ret = codec->cache_ops->write(codec, reg, value);
		mutex_unlock(&codec->cache_rw_mutex);
		return ret;
	}

	mutex_unlock(&codec->cache_rw_mutex);
1372
	return -ENOSYS;
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
}
EXPORT_SYMBOL_GPL(snd_soc_cache_write);

/**
 * snd_soc_cache_sync: Sync the register cache with the hardware.
 *
 * @codec: CODEC to configure.
 *
 * Any registers that should not be synced should be marked as
 * volatile.  In general drivers can choose not to use the provided
 * syncing functionality if they so require.
 */
int snd_soc_cache_sync(struct snd_soc_codec *codec)
{
	int ret;
1388
	const char *name;
1389 1390 1391 1392 1393

	if (!codec->cache_sync) {
		return 0;
	}

1394
	if (!codec->cache_ops || !codec->cache_ops->sync)
1395
		return -ENOSYS;
1396

1397 1398 1399 1400 1401
	if (codec->cache_ops->name)
		name = codec->cache_ops->name;
	else
		name = "unknown";

1402 1403 1404 1405 1406 1407 1408 1409 1410
	if (codec->cache_ops->name)
		dev_dbg(codec->dev, "Syncing %s cache for %s codec\n",
			codec->cache_ops->name, codec->name);
	trace_snd_soc_cache_sync(codec, name, "start");
	ret = codec->cache_ops->sync(codec);
	if (!ret)
		codec->cache_sync = 0;
	trace_snd_soc_cache_sync(codec, name, "end");
	return ret;
1411 1412
}
EXPORT_SYMBOL_GPL(snd_soc_cache_sync);
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461

static int snd_soc_get_reg_access_index(struct snd_soc_codec *codec,
					unsigned int reg)
{
	const struct snd_soc_codec_driver *codec_drv;
	unsigned int min, max, index;

	codec_drv = codec->driver;
	min = 0;
	max = codec_drv->reg_access_size - 1;
	do {
		index = (min + max) / 2;
		if (codec_drv->reg_access_default[index].reg == reg)
			return index;
		if (codec_drv->reg_access_default[index].reg < reg)
			min = index + 1;
		else
			max = index;
	} while (min <= max);
	return -1;
}

int snd_soc_default_volatile_register(struct snd_soc_codec *codec,
				      unsigned int reg)
{
	int index;

	if (reg >= codec->driver->reg_cache_size)
		return 1;
	index = snd_soc_get_reg_access_index(codec, reg);
	if (index < 0)
		return 0;
	return codec->driver->reg_access_default[index].vol;
}
EXPORT_SYMBOL_GPL(snd_soc_default_volatile_register);

int snd_soc_default_readable_register(struct snd_soc_codec *codec,
				      unsigned int reg)
{
	int index;

	if (reg >= codec->driver->reg_cache_size)
		return 1;
	index = snd_soc_get_reg_access_index(codec, reg);
	if (index < 0)
		return 0;
	return codec->driver->reg_access_default[index].read;
}
EXPORT_SYMBOL_GPL(snd_soc_default_readable_register);
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

int snd_soc_default_writable_register(struct snd_soc_codec *codec,
				      unsigned int reg)
{
	int index;

	if (reg >= codec->driver->reg_cache_size)
		return 1;
	index = snd_soc_get_reg_access_index(codec, reg);
	if (index < 0)
		return 0;
	return codec->driver->reg_access_default[index].write;
}
EXPORT_SYMBOL_GPL(snd_soc_default_writable_register);