bcm43xx_main.c 113.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/*

  Broadcom BCM43xx wireless driver

  Copyright (c) 2005 Martin Langer <martin-langer@gmx.de>,
                     Stefano Brivio <st3@riseup.net>
                     Michael Buesch <mbuesch@freenet.de>
                     Danny van Dyk <kugelfang@gentoo.org>
                     Andreas Jaggi <andreas.jaggi@waterwave.ch>

  Some parts of the code in this file are derived from the ipw2200
  driver  Copyright(c) 2003 - 2004 Intel Corporation.

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; see the file COPYING.  If not, write to
  the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
  Boston, MA 02110-1301, USA.

*/

#include <linux/delay.h>
#include <linux/init.h>
#include <linux/moduleparam.h>
#include <linux/if_arp.h>
#include <linux/etherdevice.h>
#include <linux/version.h>
#include <linux/firmware.h>
#include <linux/wireless.h>
#include <linux/workqueue.h>
#include <linux/skbuff.h>
41
#include <linux/dma-mapping.h>
42 43 44 45 46 47 48 49 50 51 52
#include <net/iw_handler.h>

#include "bcm43xx.h"
#include "bcm43xx_main.h"
#include "bcm43xx_debugfs.h"
#include "bcm43xx_radio.h"
#include "bcm43xx_phy.h"
#include "bcm43xx_dma.h"
#include "bcm43xx_pio.h"
#include "bcm43xx_power.h"
#include "bcm43xx_wx.h"
53
#include "bcm43xx_ethtool.h"
54
#include "bcm43xx_xmit.h"
55
#include "bcm43xx_sysfs.h"
56 57 58 59 60 61 62 63 64 65 66 67


MODULE_DESCRIPTION("Broadcom BCM43xx wireless driver");
MODULE_AUTHOR("Martin Langer");
MODULE_AUTHOR("Stefano Brivio");
MODULE_AUTHOR("Michael Buesch");
MODULE_LICENSE("GPL");

#ifdef CONFIG_BCM947XX
extern char *nvram_get(char *name);
#endif

68
#if defined(CONFIG_BCM43XX_DMA) && defined(CONFIG_BCM43XX_PIO)
69 70 71
static int modparam_pio;
module_param_named(pio, modparam_pio, int, 0444);
MODULE_PARM_DESC(pio, "enable(1) / disable(0) PIO mode");
72 73 74 75 76
#elif defined(CONFIG_BCM43XX_DMA)
# define modparam_pio	0
#elif defined(CONFIG_BCM43XX_PIO)
# define modparam_pio	1
#endif
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

static int modparam_bad_frames_preempt;
module_param_named(bad_frames_preempt, modparam_bad_frames_preempt, int, 0444);
MODULE_PARM_DESC(bad_frames_preempt, "enable(1) / disable(0) Bad Frames Preemption");

static int modparam_short_retry = BCM43xx_DEFAULT_SHORT_RETRY_LIMIT;
module_param_named(short_retry, modparam_short_retry, int, 0444);
MODULE_PARM_DESC(short_retry, "Short-Retry-Limit (0 - 15)");

static int modparam_long_retry = BCM43xx_DEFAULT_LONG_RETRY_LIMIT;
module_param_named(long_retry, modparam_long_retry, int, 0444);
MODULE_PARM_DESC(long_retry, "Long-Retry-Limit (0 - 15)");

static int modparam_locale = -1;
module_param_named(locale, modparam_locale, int, 0444);
MODULE_PARM_DESC(country, "Select LocaleCode 0-11 (For travelers)");

static int modparam_noleds;
module_param_named(noleds, modparam_noleds, int, 0444);
MODULE_PARM_DESC(noleds, "Turn off all LED activity");

#ifdef CONFIG_BCM43XX_DEBUG
static char modparam_fwpostfix[64];
module_param_string(fwpostfix, modparam_fwpostfix, 64, 0444);
MODULE_PARM_DESC(fwpostfix, "Postfix for .fw files. Useful for debugging.");
#else
# define modparam_fwpostfix  ""
#endif /* CONFIG_BCM43XX_DEBUG*/


/* If you want to debug with just a single device, enable this,
 * where the string is the pci device ID (as given by the kernel's
 * pci_name function) of the device to be used.
 */
//#define DEBUG_SINGLE_DEVICE_ONLY	"0001:11:00.0"

/* If you want to enable printing of each MMIO access, enable this. */
//#define DEBUG_ENABLE_MMIO_PRINT

/* If you want to enable printing of MMIO access within
 * ucode/pcm upload, initvals write, enable this.
 */
//#define DEBUG_ENABLE_UCODE_MMIO_PRINT

/* If you want to enable printing of PCI Config Space access, enable this */
//#define DEBUG_ENABLE_PCILOG


125 126 127 128
/* Detailed list maintained at:
 * http://openfacts.berlios.de/index-en.phtml?title=Bcm43xxDevices
 */
	static struct pci_device_id bcm43xx_pci_tbl[] = {
129 130
	/* Broadcom 4303 802.11b */
	{ PCI_VENDOR_ID_BROADCOM, 0x4301, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
S
Stefano Brivio 已提交
131
	/* Broadcom 4307 802.11b */
132
	{ PCI_VENDOR_ID_BROADCOM, 0x4307, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
S
Stefano Brivio 已提交
133
	/* Broadcom 4318 802.11b/g */
134
	{ PCI_VENDOR_ID_BROADCOM, 0x4318, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
135 136
	/* Broadcom 4319 802.11a/b/g */
	{ PCI_VENDOR_ID_BROADCOM, 0x4319, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
137 138
	/* Broadcom 4306 802.11b/g */
	{ PCI_VENDOR_ID_BROADCOM, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
S
Stefano Brivio 已提交
139
	/* Broadcom 4306 802.11a */
140 141 142 143 144
//	{ PCI_VENDOR_ID_BROADCOM, 0x4321, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
	/* Broadcom 4309 802.11a/b/g */
	{ PCI_VENDOR_ID_BROADCOM, 0x4324, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
	/* Broadcom 43XG 802.11b/g */
	{ PCI_VENDOR_ID_BROADCOM, 0x4325, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
145 146 147 148 149
#ifdef CONFIG_BCM947XX
	/* SB bus on BCM947xx */
	{ PCI_VENDOR_ID_BROADCOM, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
#endif
	{ 0 },
150 151 152 153 154 155 156 157 158 159 160 161
};
MODULE_DEVICE_TABLE(pci, bcm43xx_pci_tbl);

static void bcm43xx_ram_write(struct bcm43xx_private *bcm, u16 offset, u32 val)
{
	u32 status;

	status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
	if (!(status & BCM43xx_SBF_XFER_REG_BYTESWAP))
		val = swab32(val);

	bcm43xx_write32(bcm, BCM43xx_MMIO_RAM_CONTROL, offset);
162
	mmiowb();
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	bcm43xx_write32(bcm, BCM43xx_MMIO_RAM_DATA, val);
}

static inline
void bcm43xx_shm_control_word(struct bcm43xx_private *bcm,
			      u16 routing, u16 offset)
{
	u32 control;

	/* "offset" is the WORD offset. */

	control = routing;
	control <<= 16;
	control |= offset;
	bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_CONTROL, control);
}

u32 bcm43xx_shm_read32(struct bcm43xx_private *bcm,
		       u16 routing, u16 offset)
{
	u32 ret;

	if (routing == BCM43xx_SHM_SHARED) {
		if (offset & 0x0003) {
			/* Unaligned access */
			bcm43xx_shm_control_word(bcm, routing, offset >> 2);
			ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED);
			ret <<= 16;
			bcm43xx_shm_control_word(bcm, routing, (offset >> 2) + 1);
			ret |= bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA);

			return ret;
		}
		offset >>= 2;
	}
	bcm43xx_shm_control_word(bcm, routing, offset);
	ret = bcm43xx_read32(bcm, BCM43xx_MMIO_SHM_DATA);

	return ret;
}

u16 bcm43xx_shm_read16(struct bcm43xx_private *bcm,
		       u16 routing, u16 offset)
{
	u16 ret;

	if (routing == BCM43xx_SHM_SHARED) {
		if (offset & 0x0003) {
			/* Unaligned access */
			bcm43xx_shm_control_word(bcm, routing, offset >> 2);
			ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED);

			return ret;
		}
		offset >>= 2;
	}
	bcm43xx_shm_control_word(bcm, routing, offset);
	ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA);

	return ret;
}

void bcm43xx_shm_write32(struct bcm43xx_private *bcm,
			 u16 routing, u16 offset,
			 u32 value)
{
	if (routing == BCM43xx_SHM_SHARED) {
		if (offset & 0x0003) {
			/* Unaligned access */
			bcm43xx_shm_control_word(bcm, routing, offset >> 2);
233
			mmiowb();
234 235
			bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED,
					(value >> 16) & 0xffff);
236
			mmiowb();
237
			bcm43xx_shm_control_word(bcm, routing, (offset >> 2) + 1);
238
			mmiowb();
239 240 241 242 243 244 245
			bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA,
					value & 0xffff);
			return;
		}
		offset >>= 2;
	}
	bcm43xx_shm_control_word(bcm, routing, offset);
246
	mmiowb();
247 248 249 250 251 252 253 254 255 256 257
	bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA, value);
}

void bcm43xx_shm_write16(struct bcm43xx_private *bcm,
			 u16 routing, u16 offset,
			 u16 value)
{
	if (routing == BCM43xx_SHM_SHARED) {
		if (offset & 0x0003) {
			/* Unaligned access */
			bcm43xx_shm_control_word(bcm, routing, offset >> 2);
258
			mmiowb();
259 260 261 262 263 264 265
			bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED,
					value);
			return;
		}
		offset >>= 2;
	}
	bcm43xx_shm_control_word(bcm, routing, offset);
266
	mmiowb();
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
	bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA, value);
}

void bcm43xx_tsf_read(struct bcm43xx_private *bcm, u64 *tsf)
{
	/* We need to be careful. As we read the TSF from multiple
	 * registers, we should take care of register overflows.
	 * In theory, the whole tsf read process should be atomic.
	 * We try to be atomic here, by restaring the read process,
	 * if any of the high registers changed (overflew).
	 */
	if (bcm->current_core->rev >= 3) {
		u32 low, high, high2;

		do {
			high = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH);
			low = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW);
			high2 = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH);
		} while (unlikely(high != high2));

		*tsf = high;
		*tsf <<= 32;
		*tsf |= low;
	} else {
		u64 tmp;
		u16 v0, v1, v2, v3;
		u16 test1, test2, test3;

		do {
			v3 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_3);
			v2 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_2);
			v1 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_1);
			v0 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_0);

			test3 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_3);
			test2 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_2);
			test1 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_1);
		} while (v3 != test3 || v2 != test2 || v1 != test1);

		*tsf = v3;
		*tsf <<= 48;
		tmp = v2;
		tmp <<= 32;
		*tsf |= tmp;
		tmp = v1;
		tmp <<= 16;
		*tsf |= tmp;
		*tsf |= v0;
	}
}

void bcm43xx_tsf_write(struct bcm43xx_private *bcm, u64 tsf)
{
	u32 status;

	status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
	status |= BCM43xx_SBF_TIME_UPDATE;
	bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status);
325
	mmiowb();
326 327 328 329 330 331 332 333 334 335

	/* Be careful with the in-progress timer.
	 * First zero out the low register, so we have a full
	 * register-overflow duration to complete the operation.
	 */
	if (bcm->current_core->rev >= 3) {
		u32 lo = (tsf & 0x00000000FFFFFFFFULL);
		u32 hi = (tsf & 0xFFFFFFFF00000000ULL) >> 32;

		bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW, 0);
336
		mmiowb();
337
		bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH, hi);
338
		mmiowb();
339 340 341 342 343 344 345 346
		bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW, lo);
	} else {
		u16 v0 = (tsf & 0x000000000000FFFFULL);
		u16 v1 = (tsf & 0x00000000FFFF0000ULL) >> 16;
		u16 v2 = (tsf & 0x0000FFFF00000000ULL) >> 32;
		u16 v3 = (tsf & 0xFFFF000000000000ULL) >> 48;

		bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_0, 0);
347
		mmiowb();
348
		bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_3, v3);
349
		mmiowb();
350
		bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_2, v2);
351
		mmiowb();
352
		bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_1, v1);
353
		mmiowb();
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
		bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_0, v0);
	}

	status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
	status &= ~BCM43xx_SBF_TIME_UPDATE;
	bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status);
}

static
void bcm43xx_macfilter_set(struct bcm43xx_private *bcm,
			   u16 offset,
			   const u8 *mac)
{
	u16 data;

	offset |= 0x0020;
	bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_CONTROL, offset);

	data = mac[0];
	data |= mac[1] << 8;
	bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data);
	data = mac[2];
	data |= mac[3] << 8;
	bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data);
	data = mac[4];
	data |= mac[5] << 8;
	bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data);
}

383 384
static void bcm43xx_macfilter_clear(struct bcm43xx_private *bcm,
				    u16 offset)
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
{
	const u8 zero_addr[ETH_ALEN] = { 0 };

	bcm43xx_macfilter_set(bcm, offset, zero_addr);
}

static void bcm43xx_write_mac_bssid_templates(struct bcm43xx_private *bcm)
{
	const u8 *mac = (const u8 *)(bcm->net_dev->dev_addr);
	const u8 *bssid = (const u8 *)(bcm->ieee->bssid);
	u8 mac_bssid[ETH_ALEN * 2];
	int i;

	memcpy(mac_bssid, mac, ETH_ALEN);
	memcpy(mac_bssid + ETH_ALEN, bssid, ETH_ALEN);

	/* Write our MAC address and BSSID to template ram */
	for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32))
		bcm43xx_ram_write(bcm, 0x20 + i, *((u32 *)(mac_bssid + i)));
	for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32))
		bcm43xx_ram_write(bcm, 0x78 + i, *((u32 *)(mac_bssid + i)));
	for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32))
		bcm43xx_ram_write(bcm, 0x478 + i, *((u32 *)(mac_bssid + i)));
}

410 411
//FIXME: Well, we should probably call them from somewhere.
#if 0
412
static void bcm43xx_set_slot_time(struct bcm43xx_private *bcm, u16 slot_time)
413 414
{
	/* slot_time is in usec. */
415
	if (bcm43xx_current_phy(bcm)->type != BCM43xx_PHYTYPE_G)
416 417 418 419 420
		return;
	bcm43xx_write16(bcm, 0x684, 510 + slot_time);
	bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0010, slot_time);
}

421
static void bcm43xx_short_slot_timing_enable(struct bcm43xx_private *bcm)
422 423 424 425
{
	bcm43xx_set_slot_time(bcm, 9);
}

426
static void bcm43xx_short_slot_timing_disable(struct bcm43xx_private *bcm)
427 428 429
{
	bcm43xx_set_slot_time(bcm, 20);
}
430
#endif
431

432 433 434 435
/* FIXME: To get the MAC-filter working, we need to implement the
 *        following functions (and rename them :)
 */
#if 0
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
static void bcm43xx_disassociate(struct bcm43xx_private *bcm)
{
	bcm43xx_mac_suspend(bcm);
	bcm43xx_macfilter_clear(bcm, BCM43xx_MACFILTER_ASSOC);

	bcm43xx_ram_write(bcm, 0x0026, 0x0000);
	bcm43xx_ram_write(bcm, 0x0028, 0x0000);
	bcm43xx_ram_write(bcm, 0x007E, 0x0000);
	bcm43xx_ram_write(bcm, 0x0080, 0x0000);
	bcm43xx_ram_write(bcm, 0x047E, 0x0000);
	bcm43xx_ram_write(bcm, 0x0480, 0x0000);

	if (bcm->current_core->rev < 3) {
		bcm43xx_write16(bcm, 0x0610, 0x8000);
		bcm43xx_write16(bcm, 0x060E, 0x0000);
	} else
		bcm43xx_write32(bcm, 0x0188, 0x80000000);

	bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0004, 0x000003ff);

456
	if (bcm43xx_current_phy(bcm)->type == BCM43xx_PHYTYPE_G &&
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
	    ieee80211_is_ofdm_rate(bcm->softmac->txrates.default_rate))
		bcm43xx_short_slot_timing_enable(bcm);

	bcm43xx_mac_enable(bcm);
}

static void bcm43xx_associate(struct bcm43xx_private *bcm,
			      const u8 *mac)
{
	memcpy(bcm->ieee->bssid, mac, ETH_ALEN);

	bcm43xx_mac_suspend(bcm);
	bcm43xx_macfilter_set(bcm, BCM43xx_MACFILTER_ASSOC, mac);
	bcm43xx_write_mac_bssid_templates(bcm);
	bcm43xx_mac_enable(bcm);
}
473
#endif
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500

/* Enable a Generic IRQ. "mask" is the mask of which IRQs to enable.
 * Returns the _previously_ enabled IRQ mask.
 */
static inline u32 bcm43xx_interrupt_enable(struct bcm43xx_private *bcm, u32 mask)
{
	u32 old_mask;

	old_mask = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK);
	bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK, old_mask | mask);

	return old_mask;
}

/* Disable a Generic IRQ. "mask" is the mask of which IRQs to disable.
 * Returns the _previously_ enabled IRQ mask.
 */
static inline u32 bcm43xx_interrupt_disable(struct bcm43xx_private *bcm, u32 mask)
{
	u32 old_mask;

	old_mask = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK);
	bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK, old_mask & ~mask);

	return old_mask;
}

501 502 503 504 505 506 507 508 509 510
/* Synchronize IRQ top- and bottom-half.
 * IRQs must be masked before calling this.
 * This must not be called with the irq_lock held.
 */
static void bcm43xx_synchronize_irq(struct bcm43xx_private *bcm)
{
	synchronize_irq(bcm->irq);
	tasklet_disable(&bcm->isr_tasklet);
}

511
/* Make sure we don't receive more data from the device. */
512
static int bcm43xx_disable_interrupts_sync(struct bcm43xx_private *bcm)
513 514 515
{
	unsigned long flags;

516
	spin_lock_irqsave(&bcm->irq_lock, flags);
517
	if (unlikely(bcm43xx_status(bcm) != BCM43xx_STAT_INITIALIZED)) {
518
		spin_unlock_irqrestore(&bcm->irq_lock, flags);
519 520
		return -EBUSY;
	}
521
	bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
522
	spin_unlock_irqrestore(&bcm->irq_lock, flags);
523 524
	bcm43xx_synchronize_irq(bcm);

525 526 527 528 529
	return 0;
}

static int bcm43xx_read_radioinfo(struct bcm43xx_private *bcm)
{
530 531
	struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
	struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
	u32 radio_id;
	u16 manufact;
	u16 version;
	u8 revision;

	if (bcm->chip_id == 0x4317) {
		if (bcm->chip_rev == 0x00)
			radio_id = 0x3205017F;
		else if (bcm->chip_rev == 0x01)
			radio_id = 0x4205017F;
		else
			radio_id = 0x5205017F;
	} else {
		bcm43xx_write16(bcm, BCM43xx_MMIO_RADIO_CONTROL, BCM43xx_RADIOCTL_ID);
		radio_id = bcm43xx_read16(bcm, BCM43xx_MMIO_RADIO_DATA_HIGH);
		radio_id <<= 16;
		bcm43xx_write16(bcm, BCM43xx_MMIO_RADIO_CONTROL, BCM43xx_RADIOCTL_ID);
		radio_id |= bcm43xx_read16(bcm, BCM43xx_MMIO_RADIO_DATA_LOW);
	}

	manufact = (radio_id & 0x00000FFF);
	version = (radio_id & 0x0FFFF000) >> 12;
	revision = (radio_id & 0xF0000000) >> 28;

556
	dprintk(KERN_INFO PFX "Detected Radio: ID: %x (Manuf: %x Ver: %x Rev: %x)\n",
557 558
		radio_id, manufact, version, revision);

559
	switch (phy->type) {
560 561 562 563 564 565 566 567 568 569 570 571 572 573
	case BCM43xx_PHYTYPE_A:
		if ((version != 0x2060) || (revision != 1) || (manufact != 0x17f))
			goto err_unsupported_radio;
		break;
	case BCM43xx_PHYTYPE_B:
		if ((version & 0xFFF0) != 0x2050)
			goto err_unsupported_radio;
		break;
	case BCM43xx_PHYTYPE_G:
		if (version != 0x2050)
			goto err_unsupported_radio;
		break;
	}

574 575 576
	radio->manufact = manufact;
	radio->version = version;
	radio->revision = revision;
577

578
	if (phy->type == BCM43xx_PHYTYPE_A)
579
		radio->txpower_desired = bcm->sprom.maxpower_aphy;
580
	else
581
		radio->txpower_desired = bcm->sprom.maxpower_bgphy;
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693

	return 0;

err_unsupported_radio:
	printk(KERN_ERR PFX "Unsupported Radio connected to the PHY!\n");
	return -ENODEV;
}

static const char * bcm43xx_locale_iso(u8 locale)
{
	/* ISO 3166-1 country codes.
	 * Note that there aren't ISO 3166-1 codes for
	 * all or locales. (Not all locales are countries)
	 */
	switch (locale) {
	case BCM43xx_LOCALE_WORLD:
	case BCM43xx_LOCALE_ALL:
		return "XX";
	case BCM43xx_LOCALE_THAILAND:
		return "TH";
	case BCM43xx_LOCALE_ISRAEL:
		return "IL";
	case BCM43xx_LOCALE_JORDAN:
		return "JO";
	case BCM43xx_LOCALE_CHINA:
		return "CN";
	case BCM43xx_LOCALE_JAPAN:
	case BCM43xx_LOCALE_JAPAN_HIGH:
		return "JP";
	case BCM43xx_LOCALE_USA_CANADA_ANZ:
	case BCM43xx_LOCALE_USA_LOW:
		return "US";
	case BCM43xx_LOCALE_EUROPE:
		return "EU";
	case BCM43xx_LOCALE_NONE:
		return "  ";
	}
	assert(0);
	return "  ";
}

static const char * bcm43xx_locale_string(u8 locale)
{
	switch (locale) {
	case BCM43xx_LOCALE_WORLD:
		return "World";
	case BCM43xx_LOCALE_THAILAND:
		return "Thailand";
	case BCM43xx_LOCALE_ISRAEL:
		return "Israel";
	case BCM43xx_LOCALE_JORDAN:
		return "Jordan";
	case BCM43xx_LOCALE_CHINA:
		return "China";
	case BCM43xx_LOCALE_JAPAN:
		return "Japan";
	case BCM43xx_LOCALE_USA_CANADA_ANZ:
		return "USA/Canada/ANZ";
	case BCM43xx_LOCALE_EUROPE:
		return "Europe";
	case BCM43xx_LOCALE_USA_LOW:
		return "USAlow";
	case BCM43xx_LOCALE_JAPAN_HIGH:
		return "JapanHigh";
	case BCM43xx_LOCALE_ALL:
		return "All";
	case BCM43xx_LOCALE_NONE:
		return "None";
	}
	assert(0);
	return "";
}

static inline u8 bcm43xx_crc8(u8 crc, u8 data)
{
	static const u8 t[] = {
		0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B,
		0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21,
		0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF,
		0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5,
		0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14,
		0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E,
		0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80,
		0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA,
		0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95,
		0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF,
		0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01,
		0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B,
		0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA,
		0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0,
		0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E,
		0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34,
		0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0,
		0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A,
		0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54,
		0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E,
		0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF,
		0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5,
		0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B,
		0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61,
		0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E,
		0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74,
		0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA,
		0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0,
		0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41,
		0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B,
		0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5,
		0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F,
	};
	return t[crc ^ data];
}

694
static u8 bcm43xx_sprom_crc(const u16 *sprom)
695 696 697 698 699 700 701 702 703 704 705 706 707 708
{
	int word;
	u8 crc = 0xFF;

	for (word = 0; word < BCM43xx_SPROM_SIZE - 1; word++) {
		crc = bcm43xx_crc8(crc, sprom[word] & 0x00FF);
		crc = bcm43xx_crc8(crc, (sprom[word] & 0xFF00) >> 8);
	}
	crc = bcm43xx_crc8(crc, sprom[BCM43xx_SPROM_VERSION] & 0x00FF);
	crc ^= 0xFF;

	return crc;
}

709
int bcm43xx_sprom_read(struct bcm43xx_private *bcm, u16 *sprom)
710 711
{
	int i;
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
	u8 crc, expected_crc;

	for (i = 0; i < BCM43xx_SPROM_SIZE; i++)
		sprom[i] = bcm43xx_read16(bcm, BCM43xx_SPROM_BASE + (i * 2));
	/* CRC-8 check. */
	crc = bcm43xx_sprom_crc(sprom);
	expected_crc = (sprom[BCM43xx_SPROM_VERSION] & 0xFF00) >> 8;
	if (crc != expected_crc) {
		printk(KERN_WARNING PFX "WARNING: Invalid SPROM checksum "
					"(0x%02X, expected: 0x%02X)\n",
		       crc, expected_crc);
		return -EINVAL;
	}

	return 0;
}

int bcm43xx_sprom_write(struct bcm43xx_private *bcm, const u16 *sprom)
{
	int i, err;
	u8 crc, expected_crc;
	u32 spromctl;

	/* CRC-8 validation of the input data. */
	crc = bcm43xx_sprom_crc(sprom);
	expected_crc = (sprom[BCM43xx_SPROM_VERSION] & 0xFF00) >> 8;
	if (crc != expected_crc) {
		printk(KERN_ERR PFX "SPROM input data: Invalid CRC\n");
		return -EINVAL;
	}

	printk(KERN_INFO PFX "Writing SPROM. Do NOT turn off the power! Please stand by...\n");
	err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_SPROMCTL, &spromctl);
	if (err)
		goto err_ctlreg;
	spromctl |= 0x10; /* SPROM WRITE enable. */
	bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_SPROMCTL, spromctl);
	if (err)
		goto err_ctlreg;
	/* We must burn lots of CPU cycles here, but that does not
	 * really matter as one does not write the SPROM every other minute...
	 */
	printk(KERN_INFO PFX "[ 0%%");
	mdelay(500);
	for (i = 0; i < BCM43xx_SPROM_SIZE; i++) {
		if (i == 16)
			printk("25%%");
		else if (i == 32)
			printk("50%%");
		else if (i == 48)
			printk("75%%");
		else if (i % 2)
			printk(".");
		bcm43xx_write16(bcm, BCM43xx_SPROM_BASE + (i * 2), sprom[i]);
766
		mmiowb();
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
		mdelay(20);
	}
	spromctl &= ~0x10; /* SPROM WRITE enable. */
	bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_SPROMCTL, spromctl);
	if (err)
		goto err_ctlreg;
	mdelay(500);
	printk("100%% ]\n");
	printk(KERN_INFO PFX "SPROM written.\n");
	bcm43xx_controller_restart(bcm, "SPROM update");

	return 0;
err_ctlreg:
	printk(KERN_ERR PFX "Could not access SPROM control register.\n");
	return -ENODEV;
}

static int bcm43xx_sprom_extract(struct bcm43xx_private *bcm)
{
786 787 788 789 790 791 792 793 794
	u16 value;
	u16 *sprom;
#ifdef CONFIG_BCM947XX
	char *c;
#endif

	sprom = kzalloc(BCM43xx_SPROM_SIZE * sizeof(u16),
			GFP_KERNEL);
	if (!sprom) {
795
		printk(KERN_ERR PFX "sprom_extract OOM\n");
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
		return -ENOMEM;
	}
#ifdef CONFIG_BCM947XX
	sprom[BCM43xx_SPROM_BOARDFLAGS2] = atoi(nvram_get("boardflags2"));
	sprom[BCM43xx_SPROM_BOARDFLAGS] = atoi(nvram_get("boardflags"));

	if ((c = nvram_get("il0macaddr")) != NULL)
		e_aton(c, (char *) &(sprom[BCM43xx_SPROM_IL0MACADDR]));

	if ((c = nvram_get("et1macaddr")) != NULL)
		e_aton(c, (char *) &(sprom[BCM43xx_SPROM_ET1MACADDR]));

	sprom[BCM43xx_SPROM_PA0B0] = atoi(nvram_get("pa0b0"));
	sprom[BCM43xx_SPROM_PA0B1] = atoi(nvram_get("pa0b1"));
	sprom[BCM43xx_SPROM_PA0B2] = atoi(nvram_get("pa0b2"));

	sprom[BCM43xx_SPROM_PA1B0] = atoi(nvram_get("pa1b0"));
	sprom[BCM43xx_SPROM_PA1B1] = atoi(nvram_get("pa1b1"));
	sprom[BCM43xx_SPROM_PA1B2] = atoi(nvram_get("pa1b2"));

	sprom[BCM43xx_SPROM_BOARDREV] = atoi(nvram_get("boardrev"));
#else
818
	bcm43xx_sprom_read(bcm, sprom);
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
#endif

	/* boardflags2 */
	value = sprom[BCM43xx_SPROM_BOARDFLAGS2];
	bcm->sprom.boardflags2 = value;

	/* il0macaddr */
	value = sprom[BCM43xx_SPROM_IL0MACADDR + 0];
	*(((u16 *)bcm->sprom.il0macaddr) + 0) = cpu_to_be16(value);
	value = sprom[BCM43xx_SPROM_IL0MACADDR + 1];
	*(((u16 *)bcm->sprom.il0macaddr) + 1) = cpu_to_be16(value);
	value = sprom[BCM43xx_SPROM_IL0MACADDR + 2];
	*(((u16 *)bcm->sprom.il0macaddr) + 2) = cpu_to_be16(value);

	/* et0macaddr */
	value = sprom[BCM43xx_SPROM_ET0MACADDR + 0];
	*(((u16 *)bcm->sprom.et0macaddr) + 0) = cpu_to_be16(value);
	value = sprom[BCM43xx_SPROM_ET0MACADDR + 1];
	*(((u16 *)bcm->sprom.et0macaddr) + 1) = cpu_to_be16(value);
	value = sprom[BCM43xx_SPROM_ET0MACADDR + 2];
	*(((u16 *)bcm->sprom.et0macaddr) + 2) = cpu_to_be16(value);

	/* et1macaddr */
	value = sprom[BCM43xx_SPROM_ET1MACADDR + 0];
	*(((u16 *)bcm->sprom.et1macaddr) + 0) = cpu_to_be16(value);
	value = sprom[BCM43xx_SPROM_ET1MACADDR + 1];
	*(((u16 *)bcm->sprom.et1macaddr) + 1) = cpu_to_be16(value);
	value = sprom[BCM43xx_SPROM_ET1MACADDR + 2];
	*(((u16 *)bcm->sprom.et1macaddr) + 2) = cpu_to_be16(value);

	/* ethernet phy settings */
	value = sprom[BCM43xx_SPROM_ETHPHY];
	bcm->sprom.et0phyaddr = (value & 0x001F);
	bcm->sprom.et1phyaddr = (value & 0x03E0) >> 5;
	bcm->sprom.et0mdcport = (value & (1 << 14)) >> 14;
	bcm->sprom.et1mdcport = (value & (1 << 15)) >> 15;

	/* boardrev, antennas, locale */
	value = sprom[BCM43xx_SPROM_BOARDREV];
	bcm->sprom.boardrev = (value & 0x00FF);
	bcm->sprom.locale = (value & 0x0F00) >> 8;
	bcm->sprom.antennas_aphy = (value & 0x3000) >> 12;
	bcm->sprom.antennas_bgphy = (value & 0xC000) >> 14;
	if (modparam_locale != -1) {
		if (modparam_locale >= 0 && modparam_locale <= 11) {
			bcm->sprom.locale = modparam_locale;
			printk(KERN_WARNING PFX "Operating with modified "
						"LocaleCode %u (%s)\n",
			       bcm->sprom.locale,
			       bcm43xx_locale_string(bcm->sprom.locale));
		} else {
			printk(KERN_WARNING PFX "Module parameter \"locale\" "
						"invalid value. (0 - 11)\n");
		}
	}

	/* pa0b* */
	value = sprom[BCM43xx_SPROM_PA0B0];
	bcm->sprom.pa0b0 = value;
	value = sprom[BCM43xx_SPROM_PA0B1];
	bcm->sprom.pa0b1 = value;
	value = sprom[BCM43xx_SPROM_PA0B2];
	bcm->sprom.pa0b2 = value;

	/* wl0gpio* */
	value = sprom[BCM43xx_SPROM_WL0GPIO0];
	if (value == 0x0000)
		value = 0xFFFF;
	bcm->sprom.wl0gpio0 = value & 0x00FF;
	bcm->sprom.wl0gpio1 = (value & 0xFF00) >> 8;
	value = sprom[BCM43xx_SPROM_WL0GPIO2];
	if (value == 0x0000)
		value = 0xFFFF;
	bcm->sprom.wl0gpio2 = value & 0x00FF;
	bcm->sprom.wl0gpio3 = (value & 0xFF00) >> 8;

	/* maxpower */
	value = sprom[BCM43xx_SPROM_MAXPWR];
	bcm->sprom.maxpower_aphy = (value & 0xFF00) >> 8;
	bcm->sprom.maxpower_bgphy = value & 0x00FF;

	/* pa1b* */
	value = sprom[BCM43xx_SPROM_PA1B0];
	bcm->sprom.pa1b0 = value;
	value = sprom[BCM43xx_SPROM_PA1B1];
	bcm->sprom.pa1b1 = value;
	value = sprom[BCM43xx_SPROM_PA1B2];
	bcm->sprom.pa1b2 = value;

	/* idle tssi target */
	value = sprom[BCM43xx_SPROM_IDL_TSSI_TGT];
	bcm->sprom.idle_tssi_tgt_aphy = value & 0x00FF;
	bcm->sprom.idle_tssi_tgt_bgphy = (value & 0xFF00) >> 8;

	/* boardflags */
	value = sprom[BCM43xx_SPROM_BOARDFLAGS];
	if (value == 0xFFFF)
		value = 0x0000;
	bcm->sprom.boardflags = value;
918 919 920 921 922 923 924 925 926
	/* boardflags workarounds */
	if (bcm->board_vendor == PCI_VENDOR_ID_DELL &&
	    bcm->chip_id == 0x4301 &&
	    bcm->board_revision == 0x74)
		bcm->sprom.boardflags |= BCM43xx_BFL_BTCOEXIST;
	if (bcm->board_vendor == PCI_VENDOR_ID_APPLE &&
	    bcm->board_type == 0x4E &&
	    bcm->board_revision > 0x40)
		bcm->sprom.boardflags |= BCM43xx_BFL_PACTRL;
927 928 929 930 931 932 933 934 935 936 937 938 939 940

	/* antenna gain */
	value = sprom[BCM43xx_SPROM_ANTENNA_GAIN];
	if (value == 0x0000 || value == 0xFFFF)
		value = 0x0202;
	/* convert values to Q5.2 */
	bcm->sprom.antennagain_aphy = ((value & 0xFF00) >> 8) * 4;
	bcm->sprom.antennagain_bgphy = (value & 0x00FF) * 4;

	kfree(sprom);

	return 0;
}

941
static int bcm43xx_geo_init(struct bcm43xx_private *bcm)
942
{
943
	struct ieee80211_geo *geo;
944 945
	struct ieee80211_channel *chan;
	int have_a = 0, have_bg = 0;
946
	int i;
947
	u8 channel;
948 949 950
	struct bcm43xx_phyinfo *phy;
	const char *iso_country;

951 952 953 954
	geo = kzalloc(sizeof(*geo), GFP_KERNEL);
	if (!geo)
		return -ENOMEM;

955 956
	for (i = 0; i < bcm->nr_80211_available; i++) {
		phy = &(bcm->core_80211_ext[i].phy);
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
		switch (phy->type) {
		case BCM43xx_PHYTYPE_B:
		case BCM43xx_PHYTYPE_G:
			have_bg = 1;
			break;
		case BCM43xx_PHYTYPE_A:
			have_a = 1;
			break;
		default:
			assert(0);
		}
	}
	iso_country = bcm43xx_locale_iso(bcm->sprom.locale);

 	if (have_a) {
972 973 974
		for (i = 0, channel = IEEE80211_52GHZ_MIN_CHANNEL;
		      channel <= IEEE80211_52GHZ_MAX_CHANNEL; channel++) {
			chan = &geo->a[i++];
975
			chan->freq = bcm43xx_channel_to_freq_a(channel);
976 977
			chan->channel = channel;
		}
978
		geo->a_channels = i;
979 980
	}
	if (have_bg) {
981 982 983
		for (i = 0, channel = IEEE80211_24GHZ_MIN_CHANNEL;
		      channel <= IEEE80211_24GHZ_MAX_CHANNEL; channel++) {
			chan = &geo->bg[i++];
984
			chan->freq = bcm43xx_channel_to_freq_bg(channel);
985 986
			chan->channel = channel;
		}
987
		geo->bg_channels = i;
988
	}
989
	memcpy(geo->name, iso_country, 2);
990
	if (0 /*TODO: Outdoor use only */)
991
		geo->name[2] = 'O';
992
	else if (0 /*TODO: Indoor use only */)
993
		geo->name[2] = 'I';
994
	else
995 996 997 998 999
		geo->name[2] = ' ';
	geo->name[3] = '\0';

	ieee80211_set_geo(bcm->ieee, geo);
	kfree(geo);
1000

1001
	return 0;
1002 1003 1004 1005 1006 1007 1008
}

/* DummyTransmission function, as documented on 
 * http://bcm-specs.sipsolutions.net/DummyTransmission
 */
void bcm43xx_dummy_transmission(struct bcm43xx_private *bcm)
{
1009 1010
	struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
	struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
	unsigned int i, max_loop;
	u16 value = 0;
	u32 buffer[5] = {
		0x00000000,
		0x0000D400,
		0x00000000,
		0x00000001,
		0x00000000,
	};

1021
	switch (phy->type) {
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	case BCM43xx_PHYTYPE_A:
		max_loop = 0x1E;
		buffer[0] = 0xCC010200;
		break;
	case BCM43xx_PHYTYPE_B:
	case BCM43xx_PHYTYPE_G:
		max_loop = 0xFA;
		buffer[0] = 0x6E840B00; 
		break;
	default:
		assert(0);
		return;
	}

	for (i = 0; i < 5; i++)
		bcm43xx_ram_write(bcm, i * 4, buffer[i]);

	bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); /* dummy read */

	bcm43xx_write16(bcm, 0x0568, 0x0000);
	bcm43xx_write16(bcm, 0x07C0, 0x0000);
1043
	bcm43xx_write16(bcm, 0x050C, ((phy->type == BCM43xx_PHYTYPE_A) ? 1 : 0));
1044 1045 1046 1047 1048 1049 1050 1051
	bcm43xx_write16(bcm, 0x0508, 0x0000);
	bcm43xx_write16(bcm, 0x050A, 0x0000);
	bcm43xx_write16(bcm, 0x054C, 0x0000);
	bcm43xx_write16(bcm, 0x056A, 0x0014);
	bcm43xx_write16(bcm, 0x0568, 0x0826);
	bcm43xx_write16(bcm, 0x0500, 0x0000);
	bcm43xx_write16(bcm, 0x0502, 0x0030);

1052 1053
	if (radio->version == 0x2050 && radio->revision <= 0x5)
		bcm43xx_radio_write16(bcm, 0x0051, 0x0017);
1054 1055
	for (i = 0x00; i < max_loop; i++) {
		value = bcm43xx_read16(bcm, 0x050E);
1056
		if (value & 0x0080)
1057 1058 1059 1060 1061
			break;
		udelay(10);
	}
	for (i = 0x00; i < 0x0A; i++) {
		value = bcm43xx_read16(bcm, 0x050E);
1062
		if (value & 0x0400)
1063 1064 1065 1066 1067
			break;
		udelay(10);
	}
	for (i = 0x00; i < 0x0A; i++) {
		value = bcm43xx_read16(bcm, 0x0690);
1068
		if (!(value & 0x0100))
1069 1070 1071
			break;
		udelay(10);
	}
1072 1073
	if (radio->version == 0x2050 && radio->revision <= 0x5)
		bcm43xx_radio_write16(bcm, 0x0051, 0x0037);
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
}

static void key_write(struct bcm43xx_private *bcm,
		      u8 index, u8 algorithm, const u16 *key)
{
	unsigned int i, basic_wep = 0;
	u32 offset;
	u16 value;
 
	/* Write associated key information */
	bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x100 + (index * 2),
			    ((index << 4) | (algorithm & 0x0F)));
 
	/* The first 4 WEP keys need extra love */
	if (((algorithm == BCM43xx_SEC_ALGO_WEP) ||
	    (algorithm == BCM43xx_SEC_ALGO_WEP104)) && (index < 4))
		basic_wep = 1;
 
	/* Write key payload, 8 little endian words */
	offset = bcm->security_offset + (index * BCM43xx_SEC_KEYSIZE);
	for (i = 0; i < (BCM43xx_SEC_KEYSIZE / sizeof(u16)); i++) {
		value = cpu_to_le16(key[i]);
		bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
				    offset + (i * 2), value);
 
		if (!basic_wep)
			continue;
 
		bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
				    offset + (i * 2) + 4 * BCM43xx_SEC_KEYSIZE,
				    value);
	}
}

static void keymac_write(struct bcm43xx_private *bcm,
			 u8 index, const u32 *addr)
{
	/* for keys 0-3 there is no associated mac address */
	if (index < 4)
		return;

	index -= 4;
	if (bcm->current_core->rev >= 5) {
		bcm43xx_shm_write32(bcm,
				    BCM43xx_SHM_HWMAC,
				    index * 2,
				    cpu_to_be32(*addr));
		bcm43xx_shm_write16(bcm,
				    BCM43xx_SHM_HWMAC,
				    (index * 2) + 1,
				    cpu_to_be16(*((u16 *)(addr + 1))));
	} else {
		if (index < 8) {
			TODO(); /* Put them in the macaddress filter */
		} else {
			TODO();
			/* Put them BCM43xx_SHM_SHARED, stating index 0x0120.
			   Keep in mind to update the count of keymacs in 0x003E as well! */
		}
	}
}

static int bcm43xx_key_write(struct bcm43xx_private *bcm,
			     u8 index, u8 algorithm,
			     const u8 *_key, int key_len,
			     const u8 *mac_addr)
{
	u8 key[BCM43xx_SEC_KEYSIZE] = { 0 };

	if (index >= ARRAY_SIZE(bcm->key))
		return -EINVAL;
	if (key_len > ARRAY_SIZE(key))
		return -EINVAL;
	if (algorithm < 1 || algorithm > 5)
		return -EINVAL;

	memcpy(key, _key, key_len);
	key_write(bcm, index, algorithm, (const u16 *)key);
	keymac_write(bcm, index, (const u32 *)mac_addr);

	bcm->key[index].algorithm = algorithm;

	return 0;
}

static void bcm43xx_clear_keys(struct bcm43xx_private *bcm)
{
	static const u32 zero_mac[2] = { 0 };
	unsigned int i,j, nr_keys = 54;
	u16 offset;

	if (bcm->current_core->rev < 5)
		nr_keys = 16;
	assert(nr_keys <= ARRAY_SIZE(bcm->key));

	for (i = 0; i < nr_keys; i++) {
		bcm->key[i].enabled = 0;
		/* returns for i < 4 immediately */
		keymac_write(bcm, i, zero_mac);
		bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
				    0x100 + (i * 2), 0x0000);
		for (j = 0; j < 8; j++) {
			offset = bcm->security_offset + (j * 4) + (i * BCM43xx_SEC_KEYSIZE);
			bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
					    offset, 0x0000);
		}
	}
	dprintk(KERN_INFO PFX "Keys cleared\n");
}

/* Lowlevel core-switch function. This is only to be used in
 * bcm43xx_switch_core() and bcm43xx_probe_cores()
 */
static int _switch_core(struct bcm43xx_private *bcm, int core)
{
	int err;
	int attempts = 0;
1191
	u32 current_core;
1192 1193

	assert(core >= 0);
1194 1195
	while (1) {
		err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_ACTIVE_CORE,
1196
						 (core * 0x1000) + 0x18000000);
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
		if (unlikely(err))
			goto error;
		err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_ACTIVE_CORE,
						&current_core);
		if (unlikely(err))
			goto error;
		current_core = (current_core - 0x18000000) / 0x1000;
		if (current_core == core)
			break;

		if (unlikely(attempts++ > BCM43xx_SWITCH_CORE_MAX_RETRIES))
			goto error;
		udelay(10);
	}
1211
#ifdef CONFIG_BCM947XX
1212 1213 1214 1215
	if (bcm->pci_dev->bus->number == 0)
		bcm->current_core_offset = 0x1000 * core;
	else
		bcm->current_core_offset = 0;
1216 1217
#endif

1218 1219 1220 1221
	return 0;
error:
	printk(KERN_ERR PFX "Failed to switch to core %d\n", core);
	return -ENODEV;
1222 1223 1224 1225 1226 1227
}

int bcm43xx_switch_core(struct bcm43xx_private *bcm, struct bcm43xx_coreinfo *new_core)
{
	int err;

1228
	if (unlikely(!new_core))
1229
		return 0;
1230
	if (!new_core->available)
1231 1232 1233 1234
		return -ENODEV;
	if (bcm->current_core == new_core)
		return 0;
	err = _switch_core(bcm, new_core->index);
1235 1236
	if (unlikely(err))
		goto out;
1237

1238 1239
	bcm->current_core = new_core;
out:
1240 1241 1242
	return err;
}

1243
static int bcm43xx_core_enabled(struct bcm43xx_private *bcm)
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
{
	u32 value;

	value = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
	value &= BCM43xx_SBTMSTATELOW_CLOCK | BCM43xx_SBTMSTATELOW_RESET
		 | BCM43xx_SBTMSTATELOW_REJECT;

	return (value == BCM43xx_SBTMSTATELOW_CLOCK);
}

/* disable current core */
static int bcm43xx_core_disable(struct bcm43xx_private *bcm, u32 core_flags)
{
	u32 sbtmstatelow;
	u32 sbtmstatehigh;
	int i;

	/* fetch sbtmstatelow from core information registers */
	sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);

	/* core is already in reset */
	if (sbtmstatelow & BCM43xx_SBTMSTATELOW_RESET)
		goto out;

	if (sbtmstatelow & BCM43xx_SBTMSTATELOW_CLOCK) {
		sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK |
			       BCM43xx_SBTMSTATELOW_REJECT;
		bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);

		for (i = 0; i < 1000; i++) {
			sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
			if (sbtmstatelow & BCM43xx_SBTMSTATELOW_REJECT) {
				i = -1;
				break;
			}
			udelay(10);
		}
		if (i != -1) {
			printk(KERN_ERR PFX "Error: core_disable() REJECT timeout!\n");
			return -EBUSY;
		}

		for (i = 0; i < 1000; i++) {
			sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
			if (!(sbtmstatehigh & BCM43xx_SBTMSTATEHIGH_BUSY)) {
				i = -1;
				break;
			}
			udelay(10);
		}
		if (i != -1) {
			printk(KERN_ERR PFX "Error: core_disable() BUSY timeout!\n");
			return -EBUSY;
		}

		sbtmstatelow = BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK |
			       BCM43xx_SBTMSTATELOW_REJECT |
			       BCM43xx_SBTMSTATELOW_RESET |
			       BCM43xx_SBTMSTATELOW_CLOCK |
			       core_flags;
		bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
		udelay(10);
	}

	sbtmstatelow = BCM43xx_SBTMSTATELOW_RESET |
		       BCM43xx_SBTMSTATELOW_REJECT |
		       core_flags;
	bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);

out:
1314 1315
	bcm->current_core->enabled = 0;

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	return 0;
}

/* enable (reset) current core */
static int bcm43xx_core_enable(struct bcm43xx_private *bcm, u32 core_flags)
{
	u32 sbtmstatelow;
	u32 sbtmstatehigh;
	u32 sbimstate;
	int err;

	err = bcm43xx_core_disable(bcm, core_flags);
	if (err)
		goto out;

	sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK |
		       BCM43xx_SBTMSTATELOW_RESET |
		       BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK |
		       core_flags;
	bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
	udelay(1);

	sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
	if (sbtmstatehigh & BCM43xx_SBTMSTATEHIGH_SERROR) {
		sbtmstatehigh = 0x00000000;
		bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATEHIGH, sbtmstatehigh);
	}

	sbimstate = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMSTATE);
	if (sbimstate & (BCM43xx_SBIMSTATE_IB_ERROR | BCM43xx_SBIMSTATE_TIMEOUT)) {
		sbimstate &= ~(BCM43xx_SBIMSTATE_IB_ERROR | BCM43xx_SBIMSTATE_TIMEOUT);
		bcm43xx_write32(bcm, BCM43xx_CIR_SBIMSTATE, sbimstate);
	}

	sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK |
		       BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK |
		       core_flags;
	bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
	udelay(1);

	sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK | core_flags;
	bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
	udelay(1);

1360
	bcm->current_core->enabled = 1;
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	assert(err == 0);
out:
	return err;
}

/* http://bcm-specs.sipsolutions.net/80211CoreReset */
void bcm43xx_wireless_core_reset(struct bcm43xx_private *bcm, int connect_phy)
{
	u32 flags = 0x00040000;

1371 1372
	if ((bcm43xx_core_enabled(bcm)) &&
	    !bcm43xx_using_pio(bcm)) {
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
//FIXME: Do we _really_ want #ifndef CONFIG_BCM947XX here?
#ifndef CONFIG_BCM947XX
		/* reset all used DMA controllers. */
		bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA1_BASE);
		bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA2_BASE);
		bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA3_BASE);
		bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA4_BASE);
		bcm43xx_dmacontroller_rx_reset(bcm, BCM43xx_MMIO_DMA1_BASE);
		if (bcm->current_core->rev < 5)
			bcm43xx_dmacontroller_rx_reset(bcm, BCM43xx_MMIO_DMA4_BASE);
#endif
	}
1385
	if (bcm43xx_status(bcm) == BCM43xx_STAT_SHUTTINGDOWN) {
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
		bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
		                bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
				& ~(BCM43xx_SBF_MAC_ENABLED | 0x00000002));
	} else {
		if (connect_phy)
			flags |= 0x20000000;
		bcm43xx_phy_connect(bcm, connect_phy);
		bcm43xx_core_enable(bcm, flags);
		bcm43xx_write16(bcm, 0x03E6, 0x0000);
		bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
				bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
				| BCM43xx_SBF_400);
	}
}

static void bcm43xx_wireless_core_disable(struct bcm43xx_private *bcm)
{
	bcm43xx_radio_turn_off(bcm);
	bcm43xx_write16(bcm, 0x03E6, 0x00F4);
	bcm43xx_core_disable(bcm, 0);
}

1408 1409
/* Mark the current 80211 core inactive. */
static void bcm43xx_wireless_core_mark_inactive(struct bcm43xx_private *bcm)
1410 1411 1412 1413 1414 1415
{
	u32 sbtmstatelow;

	bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
	bcm43xx_radio_turn_off(bcm);
	sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
1416 1417
	sbtmstatelow &= 0xDFF5FFFF;
	sbtmstatelow |= 0x000A0000;
1418 1419 1420
	bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
	udelay(1);
	sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
1421 1422
	sbtmstatelow &= 0xFFF5FFFF;
	sbtmstatelow |= 0x00080000;
1423 1424 1425 1426
	bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
	udelay(1);
}

1427
static void handle_irq_transmit_status(struct bcm43xx_private *bcm)
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
{
	u32 v0, v1;
	u16 tmp;
	struct bcm43xx_xmitstatus stat;

	while (1) {
		v0 = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_0);
		if (!v0)
			break;
		v1 = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_1);

		stat.cookie = (v0 >> 16) & 0x0000FFFF;
		tmp = (u16)((v0 & 0xFFF0) | ((v0 & 0xF) >> 1));
		stat.flags = tmp & 0xFF;
		stat.cnt1 = (tmp & 0x0F00) >> 8;
		stat.cnt2 = (tmp & 0xF000) >> 12;
		stat.seq = (u16)(v1 & 0xFFFF);
		stat.unknown = (u16)((v1 >> 16) & 0xFF);

		bcm43xx_debugfs_log_txstat(bcm, &stat);

		if (stat.flags & BCM43xx_TXSTAT_FLAG_IGNORE)
			continue;
		if (!(stat.flags & BCM43xx_TXSTAT_FLAG_ACK)) {
			//TODO: packet was not acked (was lost)
		}
		//TODO: There are more (unknown) flags to test. see bcm43xx_main.h

1456
		if (bcm43xx_using_pio(bcm))
1457 1458 1459 1460 1461 1462
			bcm43xx_pio_handle_xmitstatus(bcm, &stat);
		else
			bcm43xx_dma_handle_xmitstatus(bcm, &stat);
	}
}

1463
static void bcm43xx_generate_noise_sample(struct bcm43xx_private *bcm)
1464 1465 1466 1467 1468 1469
{
	bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x408, 0x7F7F);
	bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x40A, 0x7F7F);
	bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD,
			bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD) | (1 << 4));
	assert(bcm->noisecalc.core_at_start == bcm->current_core);
1470
	assert(bcm->noisecalc.channel_at_start == bcm43xx_current_radio(bcm)->channel);
1471 1472 1473 1474 1475 1476 1477 1478 1479
}

static void bcm43xx_calculate_link_quality(struct bcm43xx_private *bcm)
{
	/* Top half of Link Quality calculation. */

	if (bcm->noisecalc.calculation_running)
		return;
	bcm->noisecalc.core_at_start = bcm->current_core;
1480
	bcm->noisecalc.channel_at_start = bcm43xx_current_radio(bcm)->channel;
1481 1482 1483 1484 1485 1486
	bcm->noisecalc.calculation_running = 1;
	bcm->noisecalc.nr_samples = 0;

	bcm43xx_generate_noise_sample(bcm);
}

1487
static void handle_irq_noise(struct bcm43xx_private *bcm)
1488
{
1489
	struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	u16 tmp;
	u8 noise[4];
	u8 i, j;
	s32 average;

	/* Bottom half of Link Quality calculation. */

	assert(bcm->noisecalc.calculation_running);
	if (bcm->noisecalc.core_at_start != bcm->current_core ||
	    bcm->noisecalc.channel_at_start != radio->channel)
		goto drop_calculation;
	tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x408);
	noise[0] = (tmp & 0x00FF);
	noise[1] = (tmp & 0xFF00) >> 8;
	tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x40A);
	noise[2] = (tmp & 0x00FF);
	noise[3] = (tmp & 0xFF00) >> 8;
	if (noise[0] == 0x7F || noise[1] == 0x7F ||
	    noise[2] == 0x7F || noise[3] == 0x7F)
		goto generate_new;

	/* Get the noise samples. */
1512
	assert(bcm->noisecalc.nr_samples < 8);
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
	i = bcm->noisecalc.nr_samples;
	noise[0] = limit_value(noise[0], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
	noise[1] = limit_value(noise[1], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
	noise[2] = limit_value(noise[2], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
	noise[3] = limit_value(noise[3], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
	bcm->noisecalc.samples[i][0] = radio->nrssi_lt[noise[0]];
	bcm->noisecalc.samples[i][1] = radio->nrssi_lt[noise[1]];
	bcm->noisecalc.samples[i][2] = radio->nrssi_lt[noise[2]];
	bcm->noisecalc.samples[i][3] = radio->nrssi_lt[noise[3]];
	bcm->noisecalc.nr_samples++;
	if (bcm->noisecalc.nr_samples == 8) {
		/* Calculate the Link Quality by the noise samples. */
		average = 0;
		for (i = 0; i < 8; i++) {
			for (j = 0; j < 4; j++)
				average += bcm->noisecalc.samples[i][j];
		}
		average /= (8 * 4);
		average *= 125;
		average += 64;
		average /= 128;
1534

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
		tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x40C);
		tmp = (tmp / 128) & 0x1F;
		if (tmp >= 8)
			average += 2;
		else
			average -= 25;
		if (tmp == 8)
			average -= 72;
		else
			average -= 48;

1546 1547
/* FIXME: This is wrong, but people want fancy stats. well... */
bcm->stats.noise = average;
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
		if (average > -65)
			bcm->stats.link_quality = 0;
		else if (average > -75)
			bcm->stats.link_quality = 1;
		else if (average > -85)
			bcm->stats.link_quality = 2;
		else
			bcm->stats.link_quality = 3;
//		dprintk(KERN_INFO PFX "Link Quality: %u (avg was %d)\n", bcm->stats.link_quality, average);
drop_calculation:
		bcm->noisecalc.calculation_running = 0;
		return;
	}
generate_new:
	bcm43xx_generate_noise_sample(bcm);
}

1565
static void handle_irq_ps(struct bcm43xx_private *bcm)
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
{
	if (bcm->ieee->iw_mode == IW_MODE_MASTER) {
		///TODO: PS TBTT
	} else {
		if (1/*FIXME: the last PSpoll frame was sent successfully */)
			bcm43xx_power_saving_ctl_bits(bcm, -1, -1);
	}
	if (bcm->ieee->iw_mode == IW_MODE_ADHOC)
		bcm->reg124_set_0x4 = 1;
	//FIXME else set to false?
}

1578
static void handle_irq_reg124(struct bcm43xx_private *bcm)
1579 1580 1581 1582 1583 1584 1585 1586 1587
{
	if (!bcm->reg124_set_0x4)
		return;
	bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD,
			bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD)
			| 0x4);
	//FIXME: reset reg124_set_0x4 to false?
}

1588
static void handle_irq_pmq(struct bcm43xx_private *bcm)
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
{
	u32 tmp;

	//TODO: AP mode.

	while (1) {
		tmp = bcm43xx_read32(bcm, BCM43xx_MMIO_PS_STATUS);
		if (!(tmp & 0x00000008))
			break;
	}
	/* 16bit write is odd, but correct. */
	bcm43xx_write16(bcm, BCM43xx_MMIO_PS_STATUS, 0x0002);
}

static void bcm43xx_generate_beacon_template(struct bcm43xx_private *bcm,
					     u16 ram_offset, u16 shm_size_offset)
{
	u32 value;
	u16 size = 0;

	/* Timestamp. */
	//FIXME: assumption: The chip sets the timestamp
	value = 0;
	bcm43xx_ram_write(bcm, ram_offset++, value);
	bcm43xx_ram_write(bcm, ram_offset++, value);
	size += 8;

	/* Beacon Interval / Capability Information */
	value = 0x0000;//FIXME: Which interval?
	value |= (1 << 0) << 16; /* ESS */
	value |= (1 << 2) << 16; /* CF Pollable */	//FIXME?
	value |= (1 << 3) << 16; /* CF Poll Request */	//FIXME?
	if (!bcm->ieee->open_wep)
		value |= (1 << 4) << 16; /* Privacy */
	bcm43xx_ram_write(bcm, ram_offset++, value);
	size += 4;

	/* SSID */
	//TODO

	/* FH Parameter Set */
	//TODO

	/* DS Parameter Set */
	//TODO

	/* CF Parameter Set */
	//TODO

	/* TIM */
	//TODO

	bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, shm_size_offset, size);
}

1644
static void handle_irq_beacon(struct bcm43xx_private *bcm)
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
{
	u32 status;

	bcm->irq_savedstate &= ~BCM43xx_IRQ_BEACON;
	status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD);

	if ((status & 0x1) && (status & 0x2)) {
		/* ACK beacon IRQ. */
		bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON,
				BCM43xx_IRQ_BEACON);
		bcm->irq_savedstate |= BCM43xx_IRQ_BEACON;
		return;
	}
	if (!(status & 0x1)) {
		bcm43xx_generate_beacon_template(bcm, 0x68, 0x18);
		status |= 0x1;
		bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD, status);
	}
	if (!(status & 0x2)) {
		bcm43xx_generate_beacon_template(bcm, 0x468, 0x1A);
		status |= 0x2;
		bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD, status);
	}
}

/* Interrupt handler bottom-half */
static void bcm43xx_interrupt_tasklet(struct bcm43xx_private *bcm)
{
	u32 reason;
	u32 dma_reason[4];
	int activity = 0;
	unsigned long flags;

#ifdef CONFIG_BCM43XX_DEBUG
	u32 _handled = 0x00000000;
# define bcmirq_handled(irq)	do { _handled |= (irq); } while (0)
#else
# define bcmirq_handled(irq)	do { /* nothing */ } while (0)
#endif /* CONFIG_BCM43XX_DEBUG*/

1685
	spin_lock_irqsave(&bcm->irq_lock, flags);
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
	reason = bcm->irq_reason;
	dma_reason[0] = bcm->dma_reason[0];
	dma_reason[1] = bcm->dma_reason[1];
	dma_reason[2] = bcm->dma_reason[2];
	dma_reason[3] = bcm->dma_reason[3];

	if (unlikely(reason & BCM43xx_IRQ_XMIT_ERROR)) {
		/* TX error. We get this when Template Ram is written in wrong endianess
		 * in dummy_tx(). We also get this if something is wrong with the TX header
		 * on DMA or PIO queues.
		 * Maybe we get this in other error conditions, too.
		 */
1698
		printkl(KERN_ERR PFX "FATAL ERROR: BCM43xx_IRQ_XMIT_ERROR\n");
1699 1700
		bcmirq_handled(BCM43xx_IRQ_XMIT_ERROR);
	}
1701 1702 1703 1704 1705 1706 1707 1708 1709
	if (unlikely((dma_reason[0] & BCM43xx_DMAIRQ_FATALMASK) |
		     (dma_reason[1] & BCM43xx_DMAIRQ_FATALMASK) |
		     (dma_reason[2] & BCM43xx_DMAIRQ_FATALMASK) |
		     (dma_reason[3] & BCM43xx_DMAIRQ_FATALMASK))) {
		printkl(KERN_ERR PFX "FATAL ERROR: Fatal DMA error: "
				     "0x%08X, 0x%08X, 0x%08X, 0x%08X\n",
		        dma_reason[0], dma_reason[1],
			dma_reason[2], dma_reason[3]);
		bcm43xx_controller_restart(bcm, "DMA error");
1710
		mmiowb();
1711
		spin_unlock_irqrestore(&bcm->irq_lock, flags);
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
		return;
	}
	if (unlikely((dma_reason[0] & BCM43xx_DMAIRQ_NONFATALMASK) |
		     (dma_reason[1] & BCM43xx_DMAIRQ_NONFATALMASK) |
		     (dma_reason[2] & BCM43xx_DMAIRQ_NONFATALMASK) |
		     (dma_reason[3] & BCM43xx_DMAIRQ_NONFATALMASK))) {
		printkl(KERN_ERR PFX "DMA error: "
				     "0x%08X, 0x%08X, 0x%08X, 0x%08X\n",
		        dma_reason[0], dma_reason[1],
			dma_reason[2], dma_reason[3]);
	}
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758

	if (reason & BCM43xx_IRQ_PS) {
		handle_irq_ps(bcm);
		bcmirq_handled(BCM43xx_IRQ_PS);
	}

	if (reason & BCM43xx_IRQ_REG124) {
		handle_irq_reg124(bcm);
		bcmirq_handled(BCM43xx_IRQ_REG124);
	}

	if (reason & BCM43xx_IRQ_BEACON) {
		if (bcm->ieee->iw_mode == IW_MODE_MASTER)
			handle_irq_beacon(bcm);
		bcmirq_handled(BCM43xx_IRQ_BEACON);
	}

	if (reason & BCM43xx_IRQ_PMQ) {
		handle_irq_pmq(bcm);
		bcmirq_handled(BCM43xx_IRQ_PMQ);
	}

	if (reason & BCM43xx_IRQ_SCAN) {
		/*TODO*/
		//bcmirq_handled(BCM43xx_IRQ_SCAN);
	}

	if (reason & BCM43xx_IRQ_NOISE) {
		handle_irq_noise(bcm);
		bcmirq_handled(BCM43xx_IRQ_NOISE);
	}

	/* Check the DMA reason registers for received data. */
	assert(!(dma_reason[1] & BCM43xx_DMAIRQ_RX_DONE));
	assert(!(dma_reason[2] & BCM43xx_DMAIRQ_RX_DONE));
	if (dma_reason[0] & BCM43xx_DMAIRQ_RX_DONE) {
1759
		if (bcm43xx_using_pio(bcm))
1760
			bcm43xx_pio_rx(bcm43xx_current_pio(bcm)->queue0);
1761
		else
1762
			bcm43xx_dma_rx(bcm43xx_current_dma(bcm)->rx_ring0);
M
Michael Buesch 已提交
1763
		/* We intentionally don't set "activity" to 1, here. */
1764 1765
	}
	if (dma_reason[3] & BCM43xx_DMAIRQ_RX_DONE) {
1766
		if (bcm43xx_using_pio(bcm))
1767
			bcm43xx_pio_rx(bcm43xx_current_pio(bcm)->queue3);
1768
		else
1769
			bcm43xx_dma_rx(bcm43xx_current_dma(bcm)->rx_ring1);
1770
		activity = 1;
1771 1772 1773 1774
	}
	bcmirq_handled(BCM43xx_IRQ_RX);

	if (reason & BCM43xx_IRQ_XMIT_STATUS) {
1775 1776
		handle_irq_transmit_status(bcm);
		activity = 1;
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
		//TODO: In AP mode, this also causes sending of powersave responses.
		bcmirq_handled(BCM43xx_IRQ_XMIT_STATUS);
	}

	/* IRQ_PIO_WORKAROUND is handled in the top-half. */
	bcmirq_handled(BCM43xx_IRQ_PIO_WORKAROUND);
#ifdef CONFIG_BCM43XX_DEBUG
	if (unlikely(reason & ~_handled)) {
		printkl(KERN_WARNING PFX
			"Unhandled IRQ! Reason: 0x%08x,  Unhandled: 0x%08x,  "
			"DMA: 0x%08x, 0x%08x, 0x%08x, 0x%08x\n",
			reason, (reason & ~_handled),
			dma_reason[0], dma_reason[1],
			dma_reason[2], dma_reason[3]);
	}
#endif
#undef bcmirq_handled

	if (!modparam_noleds)
		bcm43xx_leds_update(bcm, activity);
	bcm43xx_interrupt_enable(bcm, bcm->irq_savedstate);
1798
	mmiowb();
1799
	spin_unlock_irqrestore(&bcm->irq_lock, flags);
1800 1801
}

1802 1803
static void pio_irq_workaround(struct bcm43xx_private *bcm,
			       u16 base, int queueidx)
1804
{
1805 1806 1807 1808 1809 1810 1811 1812
	u16 rxctl;

	rxctl = bcm43xx_read16(bcm, base + BCM43xx_PIO_RXCTL);
	if (rxctl & BCM43xx_PIO_RXCTL_DATAAVAILABLE)
		bcm->dma_reason[queueidx] |= BCM43xx_DMAIRQ_RX_DONE;
	else
		bcm->dma_reason[queueidx] &= ~BCM43xx_DMAIRQ_RX_DONE;
}
1813

1814 1815
static void bcm43xx_interrupt_ack(struct bcm43xx_private *bcm, u32 reason)
{
1816
	if (bcm43xx_using_pio(bcm) &&
1817 1818 1819
	    (bcm->current_core->rev < 3) &&
	    (!(reason & BCM43xx_IRQ_PIO_WORKAROUND))) {
		/* Apply a PIO specific workaround to the dma_reasons */
1820 1821 1822 1823
		pio_irq_workaround(bcm, BCM43xx_MMIO_PIO1_BASE, 0);
		pio_irq_workaround(bcm, BCM43xx_MMIO_PIO2_BASE, 1);
		pio_irq_workaround(bcm, BCM43xx_MMIO_PIO3_BASE, 2);
		pio_irq_workaround(bcm, BCM43xx_MMIO_PIO4_BASE, 3);
1824 1825
	}

1826
	bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, reason);
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840

	bcm43xx_write32(bcm, BCM43xx_MMIO_DMA1_REASON,
			bcm->dma_reason[0]);
	bcm43xx_write32(bcm, BCM43xx_MMIO_DMA2_REASON,
			bcm->dma_reason[1]);
	bcm43xx_write32(bcm, BCM43xx_MMIO_DMA3_REASON,
			bcm->dma_reason[2]);
	bcm43xx_write32(bcm, BCM43xx_MMIO_DMA4_REASON,
			bcm->dma_reason[3]);
}

/* Interrupt handler top-half */
static irqreturn_t bcm43xx_interrupt_handler(int irq, void *dev_id, struct pt_regs *regs)
{
1841
	irqreturn_t ret = IRQ_HANDLED;
1842
	struct bcm43xx_private *bcm = dev_id;
1843
	u32 reason;
1844 1845 1846 1847

	if (!bcm)
		return IRQ_NONE;

1848
	spin_lock(&bcm->irq_lock);
1849

1850 1851
	assert(bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED);
	assert(bcm->current_core->id == BCM43xx_COREID_80211);
1852

1853 1854 1855
	reason = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
	if (reason == 0xffffffff) {
		/* irq not for us (shared irq) */
1856 1857
		ret = IRQ_NONE;
		goto out;
1858
	}
1859 1860
	reason &= bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK);
	if (!reason)
1861
		goto out;
1862

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
	bcm->dma_reason[0] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA1_REASON)
			     & 0x0001dc00;
	bcm->dma_reason[1] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA2_REASON)
			     & 0x0000dc00;
	bcm->dma_reason[2] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA3_REASON)
			     & 0x0000dc00;
	bcm->dma_reason[3] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA4_REASON)
			     & 0x0001dc00;

	bcm43xx_interrupt_ack(bcm, reason);
1873

1874 1875 1876 1877 1878
	/* disable all IRQs. They are enabled again in the bottom half. */
	bcm->irq_savedstate = bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
	/* save the reason code and call our bottom half. */
	bcm->irq_reason = reason;
	tasklet_schedule(&bcm->isr_tasklet);
1879

1880 1881
out:
	mmiowb();
1882
	spin_unlock(&bcm->irq_lock);
1883

1884
	return ret;
1885 1886
}

1887
static void bcm43xx_release_firmware(struct bcm43xx_private *bcm, int force)
1888
{
1889 1890
	struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);

1891
	if (bcm->firmware_norelease && !force)
1892
		return; /* Suspending or controller reset. */
1893 1894 1895 1896 1897 1898 1899 1900
	release_firmware(phy->ucode);
	phy->ucode = NULL;
	release_firmware(phy->pcm);
	phy->pcm = NULL;
	release_firmware(phy->initvals0);
	phy->initvals0 = NULL;
	release_firmware(phy->initvals1);
	phy->initvals1 = NULL;
1901 1902 1903 1904
}

static int bcm43xx_request_firmware(struct bcm43xx_private *bcm)
{
1905
	struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
1906 1907 1908 1909 1910
	u8 rev = bcm->current_core->rev;
	int err = 0;
	int nr;
	char buf[22 + sizeof(modparam_fwpostfix) - 1] = { 0 };

1911
	if (!phy->ucode) {
1912 1913 1914
		snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_microcode%d%s.fw",
			 (rev >= 5 ? 5 : rev),
			 modparam_fwpostfix);
1915
		err = request_firmware(&phy->ucode, buf, &bcm->pci_dev->dev);
1916 1917 1918 1919 1920 1921 1922 1923
		if (err) {
			printk(KERN_ERR PFX 
			       "Error: Microcode \"%s\" not available or load failed.\n",
			        buf);
			goto error;
		}
	}

1924
	if (!phy->pcm) {
1925 1926 1927 1928
		snprintf(buf, ARRAY_SIZE(buf),
			 "bcm43xx_pcm%d%s.fw",
			 (rev < 5 ? 4 : 5),
			 modparam_fwpostfix);
1929
		err = request_firmware(&phy->pcm, buf, &bcm->pci_dev->dev);
1930 1931 1932 1933 1934 1935 1936 1937
		if (err) {
			printk(KERN_ERR PFX
			       "Error: PCM \"%s\" not available or load failed.\n",
			       buf);
			goto error;
		}
	}

1938
	if (!phy->initvals0) {
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
		if (rev == 2 || rev == 4) {
			switch (phy->type) {
			case BCM43xx_PHYTYPE_A:
				nr = 3;
				break;
			case BCM43xx_PHYTYPE_B:
			case BCM43xx_PHYTYPE_G:
				nr = 1;
				break;
			default:
				goto err_noinitval;
			}
		
		} else if (rev >= 5) {
			switch (phy->type) {
			case BCM43xx_PHYTYPE_A:
				nr = 7;
				break;
			case BCM43xx_PHYTYPE_B:
			case BCM43xx_PHYTYPE_G:
				nr = 5;
				break;
			default:
				goto err_noinitval;
			}
		} else
			goto err_noinitval;
		snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_initval%02d%s.fw",
			 nr, modparam_fwpostfix);

1969
		err = request_firmware(&phy->initvals0, buf, &bcm->pci_dev->dev);
1970 1971 1972 1973 1974 1975
		if (err) {
			printk(KERN_ERR PFX 
			       "Error: InitVals \"%s\" not available or load failed.\n",
			        buf);
			goto error;
		}
1976
		if (phy->initvals0->size % sizeof(struct bcm43xx_initval)) {
1977 1978 1979 1980 1981
			printk(KERN_ERR PFX "InitVals fileformat error.\n");
			goto error;
		}
	}

1982
	if (!phy->initvals1) {
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
		if (rev >= 5) {
			u32 sbtmstatehigh;

			switch (phy->type) {
			case BCM43xx_PHYTYPE_A:
				sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
				if (sbtmstatehigh & 0x00010000)
					nr = 9;
				else
					nr = 10;
				break;
			case BCM43xx_PHYTYPE_B:
			case BCM43xx_PHYTYPE_G:
					nr = 6;
				break;
			default:
				goto err_noinitval;
			}
			snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_initval%02d%s.fw",
				 nr, modparam_fwpostfix);

2004
			err = request_firmware(&phy->initvals1, buf, &bcm->pci_dev->dev);
2005 2006 2007 2008 2009 2010
			if (err) {
				printk(KERN_ERR PFX 
				       "Error: InitVals \"%s\" not available or load failed.\n",
			        	buf);
				goto error;
			}
2011
			if (phy->initvals1->size % sizeof(struct bcm43xx_initval)) {
2012 2013 2014 2015 2016 2017 2018 2019 2020
				printk(KERN_ERR PFX "InitVals fileformat error.\n");
				goto error;
			}
		}
	}

out:
	return err;
error:
2021
	bcm43xx_release_firmware(bcm, 1);
2022 2023 2024 2025 2026 2027 2028 2029 2030
	goto out;
err_noinitval:
	printk(KERN_ERR PFX "Error: No InitVals available!\n");
	err = -ENOENT;
	goto error;
}

static void bcm43xx_upload_microcode(struct bcm43xx_private *bcm)
{
2031
	struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
2032 2033 2034 2035
	const u32 *data;
	unsigned int i, len;

	/* Upload Microcode. */
2036 2037
	data = (u32 *)(phy->ucode->data);
	len = phy->ucode->size / sizeof(u32);
2038 2039 2040 2041 2042 2043 2044 2045
	bcm43xx_shm_control_word(bcm, BCM43xx_SHM_UCODE, 0x0000);
	for (i = 0; i < len; i++) {
		bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA,
				be32_to_cpu(data[i]));
		udelay(10);
	}

	/* Upload PCM data. */
2046 2047
	data = (u32 *)(phy->pcm->data);
	len = phy->pcm->size / sizeof(u32);
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
	bcm43xx_shm_control_word(bcm, BCM43xx_SHM_PCM, 0x01ea);
	bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA, 0x00004000);
	bcm43xx_shm_control_word(bcm, BCM43xx_SHM_PCM, 0x01eb);
	for (i = 0; i < len; i++) {
		bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA,
				be32_to_cpu(data[i]));
		udelay(10);
	}
}

2058 2059 2060
static int bcm43xx_write_initvals(struct bcm43xx_private *bcm,
				  const struct bcm43xx_initval *data,
				  const unsigned int len)
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
{
	u16 offset, size;
	u32 value;
	unsigned int i;

	for (i = 0; i < len; i++) {
		offset = be16_to_cpu(data[i].offset);
		size = be16_to_cpu(data[i].size);
		value = be32_to_cpu(data[i].value);

2071 2072 2073 2074 2075 2076 2077
		if (unlikely(offset >= 0x1000))
			goto err_format;
		if (size == 2) {
			if (unlikely(value & 0xFFFF0000))
				goto err_format;
			bcm43xx_write16(bcm, offset, (u16)value);
		} else if (size == 4) {
2078
			bcm43xx_write32(bcm, offset, value);
2079 2080
		} else
			goto err_format;
2081
	}
2082 2083 2084 2085 2086 2087 2088

	return 0;

err_format:
	printk(KERN_ERR PFX "InitVals (bcm43xx_initvalXX.fw) file-format error. "
			    "Please fix your bcm43xx firmware files.\n");
	return -EPROTO;
2089 2090
}

2091
static int bcm43xx_upload_initvals(struct bcm43xx_private *bcm)
2092
{
2093
	struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
2094 2095
	int err;

2096 2097
	err = bcm43xx_write_initvals(bcm, (struct bcm43xx_initval *)phy->initvals0->data,
				     phy->initvals0->size / sizeof(struct bcm43xx_initval));
2098 2099
	if (err)
		goto out;
2100 2101 2102
	if (phy->initvals1) {
		err = bcm43xx_write_initvals(bcm, (struct bcm43xx_initval *)phy->initvals1->data,
					     phy->initvals1->size / sizeof(struct bcm43xx_initval));
2103 2104
		if (err)
			goto out;
2105
	}
2106 2107
out:
	return err;
2108 2109
}

2110 2111 2112 2113 2114 2115 2116
#ifdef CONFIG_BCM947XX
static struct pci_device_id bcm43xx_47xx_ids[] = {
	{ PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, 0x4324) },
	{ 0 }
};
#endif

2117 2118
static int bcm43xx_initialize_irq(struct bcm43xx_private *bcm)
{
2119
	int err;
2120 2121 2122 2123

	bcm->irq = bcm->pci_dev->irq;
#ifdef CONFIG_BCM947XX
	if (bcm->pci_dev->bus->number == 0) {
2124 2125 2126 2127 2128 2129 2130 2131 2132
		struct pci_dev *d;
		struct pci_device_id *id;
		for (id = bcm43xx_47xx_ids; id->vendor; id++) {
			d = pci_get_device(id->vendor, id->device, NULL);
			if (d != NULL) {
				bcm->irq = d->irq;
				pci_dev_put(d);
				break;
			}
2133 2134 2135
		}
	}
#endif
2136
	err = request_irq(bcm->irq, bcm43xx_interrupt_handler,
2137
			  IRQF_SHARED, KBUILD_MODNAME, bcm);
2138
	if (err)
2139 2140
		printk(KERN_ERR PFX "Cannot register IRQ%d\n", bcm->irq);

2141
	return err;
2142 2143 2144 2145 2146
}

/* Switch to the core used to write the GPIO register.
 * This is either the ChipCommon, or the PCI core.
 */
2147
static int switch_to_gpio_core(struct bcm43xx_private *bcm)
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
{
	int err;

	/* Where to find the GPIO register depends on the chipset.
	 * If it has a ChipCommon, its register at offset 0x6c is the GPIO
	 * control register. Otherwise the register at offset 0x6c in the
	 * PCI core is the GPIO control register.
	 */
	err = bcm43xx_switch_core(bcm, &bcm->core_chipcommon);
	if (err == -ENODEV) {
		err = bcm43xx_switch_core(bcm, &bcm->core_pci);
2159
		if (unlikely(err == -ENODEV)) {
2160 2161
			printk(KERN_ERR PFX "gpio error: "
			       "Neither ChipCommon nor PCI core available!\n");
2162 2163
		}
	}
2164

2165
	return err;
2166 2167 2168 2169 2170 2171 2172 2173 2174
}

/* Initialize the GPIOs
 * http://bcm-specs.sipsolutions.net/GPIO
 */
static int bcm43xx_gpio_init(struct bcm43xx_private *bcm)
{
	struct bcm43xx_coreinfo *old_core;
	int err;
2175
	u32 mask, set;
2176

2177 2178 2179
	bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
			bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
			& 0xFFFF3FFF);
2180

2181
	bcm43xx_leds_switch_all(bcm, 0);
2182 2183 2184
	bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_MASK,
			bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_MASK) | 0x000F);

2185 2186
	mask = 0x0000001F;
	set = 0x0000000F;
2187
	if (bcm->chip_id == 0x4301) {
2188 2189 2190 2191 2192 2193 2194 2195 2196
		mask |= 0x0060;
		set |= 0x0060;
	}
	if (0 /* FIXME: conditional unknown */) {
		bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_MASK,
				bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_MASK)
				| 0x0100);
		mask |= 0x0180;
		set |= 0x0180;
2197 2198
	}
	if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL) {
2199 2200 2201 2202 2203
		bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_MASK,
				bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_MASK)
				| 0x0200);
		mask |= 0x0200;
		set |= 0x0200;
2204
	}
2205 2206
	if (bcm->current_core->rev >= 2)
		mask  |= 0x0010; /* FIXME: This is redundant. */
2207

2208 2209 2210 2211
	old_core = bcm->current_core;
	err = switch_to_gpio_core(bcm);
	if (err)
		goto out;
2212
	bcm43xx_write32(bcm, BCM43xx_GPIO_CONTROL,
2213
	                (bcm43xx_read32(bcm, BCM43xx_GPIO_CONTROL) & mask) | set);
2214
	err = bcm43xx_switch_core(bcm, old_core);
2215 2216
out:
	return err;
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
}

/* Turn off all GPIO stuff. Call this on module unload, for example. */
static int bcm43xx_gpio_cleanup(struct bcm43xx_private *bcm)
{
	struct bcm43xx_coreinfo *old_core;
	int err;

	old_core = bcm->current_core;
	err = switch_to_gpio_core(bcm);
	if (err)
		return err;
	bcm43xx_write32(bcm, BCM43xx_GPIO_CONTROL, 0x00000000);
	err = bcm43xx_switch_core(bcm, old_core);
	assert(err == 0);

	return 0;
}

/* http://bcm-specs.sipsolutions.net/EnableMac */
void bcm43xx_mac_enable(struct bcm43xx_private *bcm)
{
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
	bcm->mac_suspended--;
	assert(bcm->mac_suspended >= 0);
	if (bcm->mac_suspended == 0) {
		bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
		                bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
				| BCM43xx_SBF_MAC_ENABLED);
		bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, BCM43xx_IRQ_READY);
		bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); /* dummy read */
		bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
		bcm43xx_power_saving_ctl_bits(bcm, -1, -1);
	}
2250 2251 2252 2253 2254 2255 2256 2257
}

/* http://bcm-specs.sipsolutions.net/SuspendMAC */
void bcm43xx_mac_suspend(struct bcm43xx_private *bcm)
{
	int i;
	u32 tmp;

2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
	assert(bcm->mac_suspended >= 0);
	if (bcm->mac_suspended == 0) {
		bcm43xx_power_saving_ctl_bits(bcm, -1, 1);
		bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
		                bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
				& ~BCM43xx_SBF_MAC_ENABLED);
		bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
		for (i = 100000; i; i--) {
			tmp = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
			if (tmp & BCM43xx_IRQ_READY)
				goto out;
2269
			udelay(1);
2270 2271
		}
		printkl(KERN_ERR PFX "MAC suspend failed\n");
2272
	}
2273 2274
out:
	bcm->mac_suspended++;
2275 2276 2277 2278 2279 2280
}

void bcm43xx_set_iwmode(struct bcm43xx_private *bcm,
			int iw_mode)
{
	unsigned long flags;
2281
	struct net_device *net_dev = bcm->net_dev;
2282
	u32 status;
2283
	u16 value;
2284 2285 2286 2287 2288

	spin_lock_irqsave(&bcm->ieee->lock, flags);
	bcm->ieee->iw_mode = iw_mode;
	spin_unlock_irqrestore(&bcm->ieee->lock, flags);
	if (iw_mode == IW_MODE_MONITOR)
2289
		net_dev->type = ARPHRD_IEEE80211;
2290
	else
2291
		net_dev->type = ARPHRD_ETHER;
2292 2293 2294 2295

	status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
	/* Reset status to infrastructured mode */
	status &= ~(BCM43xx_SBF_MODE_AP | BCM43xx_SBF_MODE_MONITOR);
2296 2297 2298 2299 2300
	status &= ~BCM43xx_SBF_MODE_PROMISC;
	status |= BCM43xx_SBF_MODE_NOTADHOC;

/* FIXME: Always enable promisc mode, until we get the MAC filters working correctly. */
status |= BCM43xx_SBF_MODE_PROMISC;
2301 2302 2303

	switch (iw_mode) {
	case IW_MODE_MONITOR:
2304 2305
		status |= BCM43xx_SBF_MODE_MONITOR;
		status |= BCM43xx_SBF_MODE_PROMISC;
2306 2307 2308 2309 2310
		break;
	case IW_MODE_ADHOC:
		status &= ~BCM43xx_SBF_MODE_NOTADHOC;
		break;
	case IW_MODE_MASTER:
2311 2312
		status |= BCM43xx_SBF_MODE_AP;
		break;
2313 2314
	case IW_MODE_SECOND:
	case IW_MODE_REPEAT:
2315
		TODO(); /* TODO */
2316 2317 2318 2319 2320
		break;
	case IW_MODE_INFRA:
		/* nothing to be done here... */
		break;
	default:
2321
		dprintk(KERN_ERR PFX "Unknown mode in set_iwmode: %d\n", iw_mode);
2322
	}
2323 2324
	if (net_dev->flags & IFF_PROMISC)
		status |= BCM43xx_SBF_MODE_PROMISC;
2325
	bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status);
2326 2327 2328 2329 2330 2331 2332 2333 2334

	value = 0x0002;
	if (iw_mode != IW_MODE_ADHOC && iw_mode != IW_MODE_MASTER) {
		if (bcm->chip_id == 0x4306 && bcm->chip_rev == 3)
			value = 0x0064;
		else
			value = 0x0032;
	}
	bcm43xx_write16(bcm, 0x0612, value);
2335 2336 2337 2338 2339 2340 2341 2342 2343
}

/* This is the opposite of bcm43xx_chip_init() */
static void bcm43xx_chip_cleanup(struct bcm43xx_private *bcm)
{
	bcm43xx_radio_turn_off(bcm);
	if (!modparam_noleds)
		bcm43xx_leds_exit(bcm);
	bcm43xx_gpio_cleanup(bcm);
2344
	bcm43xx_release_firmware(bcm, 0);
2345 2346 2347 2348 2349 2350 2351
}

/* Initialize the chip
 * http://bcm-specs.sipsolutions.net/ChipInit
 */
static int bcm43xx_chip_init(struct bcm43xx_private *bcm)
{
2352 2353
	struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
	struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
2354
	int err;
2355
	int i, tmp;
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
	u32 value32;
	u16 value16;

	bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
			BCM43xx_SBF_CORE_READY
			| BCM43xx_SBF_400);

	err = bcm43xx_request_firmware(bcm);
	if (err)
		goto out;
	bcm43xx_upload_microcode(bcm);

2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
	bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, 0xFFFFFFFF);
	bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, 0x00020402);
	i = 0;
	while (1) {
		value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
		if (value32 == BCM43xx_IRQ_READY)
			break;
		i++;
		if (i >= BCM43xx_IRQWAIT_MAX_RETRIES) {
			printk(KERN_ERR PFX "IRQ_READY timeout\n");
			err = -ENODEV;
			goto err_release_fw;
		}
		udelay(10);
	}
	bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
2384 2385 2386

	err = bcm43xx_gpio_init(bcm);
	if (err)
2387
		goto err_release_fw;
2388

2389 2390 2391
	err = bcm43xx_upload_initvals(bcm);
	if (err)
		goto err_gpio_cleanup;
2392 2393 2394 2395 2396 2397 2398 2399
	bcm43xx_radio_turn_on(bcm);

	bcm43xx_write16(bcm, 0x03E6, 0x0000);
	err = bcm43xx_phy_init(bcm);
	if (err)
		goto err_radio_off;

	/* Select initial Interference Mitigation. */
2400 2401
	tmp = radio->interfmode;
	radio->interfmode = BCM43xx_RADIO_INTERFMODE_NONE;
2402 2403 2404 2405
	bcm43xx_radio_set_interference_mitigation(bcm, tmp);

	bcm43xx_phy_set_antenna_diversity(bcm);
	bcm43xx_radio_set_txantenna(bcm, BCM43xx_RADIO_TXANTENNA_DEFAULT);
2406
	if (phy->type == BCM43xx_PHYTYPE_B) {
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
		value16 = bcm43xx_read16(bcm, 0x005E);
		value16 |= 0x0004;
		bcm43xx_write16(bcm, 0x005E, value16);
	}
	bcm43xx_write32(bcm, 0x0100, 0x01000000);
	if (bcm->current_core->rev < 5)
		bcm43xx_write32(bcm, 0x010C, 0x01000000);

	value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
	value32 &= ~ BCM43xx_SBF_MODE_NOTADHOC;
	bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);
	value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
	value32 |= BCM43xx_SBF_MODE_NOTADHOC;
	bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);

	value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
2423
	value32 |= 0x100000;
2424 2425
	bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);

2426
	if (bcm43xx_using_pio(bcm)) {
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
		bcm43xx_write32(bcm, 0x0210, 0x00000100);
		bcm43xx_write32(bcm, 0x0230, 0x00000100);
		bcm43xx_write32(bcm, 0x0250, 0x00000100);
		bcm43xx_write32(bcm, 0x0270, 0x00000100);
		bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0034, 0x0000);
	}

	/* Probe Response Timeout value */
	/* FIXME: Default to 0, has to be set by ioctl probably... :-/ */
	bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0074, 0x0000);

2438 2439
	/* Initially set the wireless operation mode. */
	bcm43xx_set_iwmode(bcm, bcm->ieee->iw_mode);
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468

	if (bcm->current_core->rev < 3) {
		bcm43xx_write16(bcm, 0x060E, 0x0000);
		bcm43xx_write16(bcm, 0x0610, 0x8000);
		bcm43xx_write16(bcm, 0x0604, 0x0000);
		bcm43xx_write16(bcm, 0x0606, 0x0200);
	} else {
		bcm43xx_write32(bcm, 0x0188, 0x80000000);
		bcm43xx_write32(bcm, 0x018C, 0x02000000);
	}
	bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, 0x00004000);
	bcm43xx_write32(bcm, BCM43xx_MMIO_DMA1_IRQ_MASK, 0x0001DC00);
	bcm43xx_write32(bcm, BCM43xx_MMIO_DMA2_IRQ_MASK, 0x0000DC00);
	bcm43xx_write32(bcm, BCM43xx_MMIO_DMA3_IRQ_MASK, 0x0000DC00);
	bcm43xx_write32(bcm, BCM43xx_MMIO_DMA4_IRQ_MASK, 0x0001DC00);

	value32 = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
	value32 |= 0x00100000;
	bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, value32);

	bcm43xx_write16(bcm, BCM43xx_MMIO_POWERUP_DELAY, bcm43xx_pctl_powerup_delay(bcm));

	assert(err == 0);
	dprintk(KERN_INFO PFX "Chip initialized\n");
out:
	return err;

err_radio_off:
	bcm43xx_radio_turn_off(bcm);
2469
err_gpio_cleanup:
2470
	bcm43xx_gpio_cleanup(bcm);
2471 2472
err_release_fw:
	bcm43xx_release_firmware(bcm, 1);
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
	goto out;
}
	
/* Validate chip access
 * http://bcm-specs.sipsolutions.net/ValidateChipAccess */
static int bcm43xx_validate_chip(struct bcm43xx_private *bcm)
{
	u32 value;
	u32 shm_backup;

	shm_backup = bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000);
	bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, 0xAA5555AA);
2485 2486
	if (bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000) != 0xAA5555AA)
		goto error;
2487
	bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, 0x55AAAA55);
2488 2489
	if (bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000) != 0x55AAAA55)
		goto error;
2490 2491 2492
	bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, shm_backup);

	value = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
2493 2494
	if ((value | 0x80000000) != 0x80000400)
		goto error;
2495 2496

	value = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
2497 2498
	if (value != 0x00000000)
		goto error;
2499

2500 2501 2502 2503
	return 0;
error:
	printk(KERN_ERR PFX "Failed to validate the chipaccess\n");
	return -ENODEV;
2504 2505
}

2506
static void bcm43xx_init_struct_phyinfo(struct bcm43xx_phyinfo *phy)
2507 2508 2509
{
	/* Initialize a "phyinfo" structure. The structure is already
	 * zeroed out.
2510
	 * This is called on insmod time to initialize members.
2511 2512 2513 2514 2515
	 */
	phy->savedpctlreg = 0xFFFF;
	spin_lock_init(&phy->lock);
}

2516
static void bcm43xx_init_struct_radioinfo(struct bcm43xx_radioinfo *radio)
2517 2518 2519
{
	/* Initialize a "radioinfo" structure. The structure is already
	 * zeroed out.
2520
	 * This is called on insmod time to initialize members.
2521 2522 2523 2524 2525 2526
	 */
	radio->interfmode = BCM43xx_RADIO_INTERFMODE_NONE;
	radio->channel = 0xFF;
	radio->initial_channel = 0xFF;
}

2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
static int bcm43xx_probe_cores(struct bcm43xx_private *bcm)
{
	int err, i;
	int current_core;
	u32 core_vendor, core_id, core_rev;
	u32 sb_id_hi, chip_id_32 = 0;
	u16 pci_device, chip_id_16;
	u8 core_count;

	memset(&bcm->core_chipcommon, 0, sizeof(struct bcm43xx_coreinfo));
	memset(&bcm->core_pci, 0, sizeof(struct bcm43xx_coreinfo));
	memset(&bcm->core_80211, 0, sizeof(struct bcm43xx_coreinfo)
				    * BCM43xx_MAX_80211_CORES);
2540 2541 2542 2543 2544
	memset(&bcm->core_80211_ext, 0, sizeof(struct bcm43xx_coreinfo_80211)
					* BCM43xx_MAX_80211_CORES);
	bcm->nr_80211_available = 0;
	bcm->current_core = NULL;
	bcm->active_80211_core = NULL;
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561

	/* map core 0 */
	err = _switch_core(bcm, 0);
	if (err)
		goto out;

	/* fetch sb_id_hi from core information registers */
	sb_id_hi = bcm43xx_read32(bcm, BCM43xx_CIR_SB_ID_HI);

	core_id = (sb_id_hi & 0xFFF0) >> 4;
	core_rev = (sb_id_hi & 0xF);
	core_vendor = (sb_id_hi & 0xFFFF0000) >> 16;

	/* if present, chipcommon is always core 0; read the chipid from it */
	if (core_id == BCM43xx_COREID_CHIPCOMMON) {
		chip_id_32 = bcm43xx_read32(bcm, 0);
		chip_id_16 = chip_id_32 & 0xFFFF;
2562
		bcm->core_chipcommon.available = 1;
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
		bcm->core_chipcommon.id = core_id;
		bcm->core_chipcommon.rev = core_rev;
		bcm->core_chipcommon.index = 0;
		/* While we are at it, also read the capabilities. */
		bcm->chipcommon_capabilities = bcm43xx_read32(bcm, BCM43xx_CHIPCOMMON_CAPABILITIES);
	} else {
		/* without a chipCommon, use a hard coded table. */
		pci_device = bcm->pci_dev->device;
		if (pci_device == 0x4301)
			chip_id_16 = 0x4301;
		else if ((pci_device >= 0x4305) && (pci_device <= 0x4307))
			chip_id_16 = 0x4307;
		else if ((pci_device >= 0x4402) && (pci_device <= 0x4403))
			chip_id_16 = 0x4402;
		else if ((pci_device >= 0x4610) && (pci_device <= 0x4615))
			chip_id_16 = 0x4610;
		else if ((pci_device >= 0x4710) && (pci_device <= 0x4715))
			chip_id_16 = 0x4710;
#ifdef CONFIG_BCM947XX
		else if ((pci_device >= 0x4320) && (pci_device <= 0x4325))
			chip_id_16 = 0x4309;
#endif
		else {
			printk(KERN_ERR PFX "Could not determine Chip ID\n");
			return -ENODEV;
		}
	}

	/* ChipCommon with Core Rev >=4 encodes number of cores,
	 * otherwise consult hardcoded table */
	if ((core_id == BCM43xx_COREID_CHIPCOMMON) && (core_rev >= 4)) {
		core_count = (chip_id_32 & 0x0F000000) >> 24;
	} else {
		switch (chip_id_16) {
			case 0x4610:
			case 0x4704:
			case 0x4710:
				core_count = 9;
				break;
			case 0x4310:
				core_count = 8;
				break;
			case 0x5365:
				core_count = 7;
				break;
			case 0x4306:
				core_count = 6;
				break;
			case 0x4301:
			case 0x4307:
				core_count = 5;
				break;
			case 0x4402:
				core_count = 3;
				break;
			default:
				/* SOL if we get here */
				assert(0);
				core_count = 1;
		}
	}

	bcm->chip_id = chip_id_16;
2626 2627
	bcm->chip_rev = (chip_id_32 & 0x000F0000) >> 16;
	bcm->chip_package = (chip_id_32 & 0x00F00000) >> 20;
2628 2629 2630 2631

	dprintk(KERN_INFO PFX "Chip ID 0x%x, rev 0x%x\n",
		bcm->chip_id, bcm->chip_rev);
	dprintk(KERN_INFO PFX "Number of cores: %d\n", core_count);
2632
	if (bcm->core_chipcommon.available) {
2633 2634 2635 2636 2637
		dprintk(KERN_INFO PFX "Core 0: ID 0x%x, rev 0x%x, vendor 0x%x, %s\n",
			core_id, core_rev, core_vendor,
			bcm43xx_core_enabled(bcm) ? "enabled" : "disabled");
	}

2638
	if (bcm->core_chipcommon.available)
2639 2640 2641 2642 2643
		current_core = 1;
	else
		current_core = 0;
	for ( ; current_core < core_count; current_core++) {
		struct bcm43xx_coreinfo *core;
2644
		struct bcm43xx_coreinfo_80211 *ext_80211;
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665

		err = _switch_core(bcm, current_core);
		if (err)
			goto out;
		/* Gather information */
		/* fetch sb_id_hi from core information registers */
		sb_id_hi = bcm43xx_read32(bcm, BCM43xx_CIR_SB_ID_HI);

		/* extract core_id, core_rev, core_vendor */
		core_id = (sb_id_hi & 0xFFF0) >> 4;
		core_rev = (sb_id_hi & 0xF);
		core_vendor = (sb_id_hi & 0xFFFF0000) >> 16;

		dprintk(KERN_INFO PFX "Core %d: ID 0x%x, rev 0x%x, vendor 0x%x, %s\n",
			current_core, core_id, core_rev, core_vendor,
			bcm43xx_core_enabled(bcm) ? "enabled" : "disabled" );

		core = NULL;
		switch (core_id) {
		case BCM43xx_COREID_PCI:
			core = &bcm->core_pci;
2666
			if (core->available) {
2667 2668 2669 2670 2671 2672 2673
				printk(KERN_WARNING PFX "Multiple PCI cores found.\n");
				continue;
			}
			break;
		case BCM43xx_COREID_80211:
			for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
				core = &(bcm->core_80211[i]);
2674 2675
				ext_80211 = &(bcm->core_80211_ext[i]);
				if (!core->available)
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
					break;
				core = NULL;
			}
			if (!core) {
				printk(KERN_WARNING PFX "More than %d cores of type 802.11 found.\n",
				       BCM43xx_MAX_80211_CORES);
				continue;
			}
			if (i != 0) {
				/* More than one 80211 core is only supported
				 * by special chips.
				 * There are chips with two 80211 cores, but with
				 * dangling pins on the second core. Be careful
				 * and ignore these cores here.
				 */
				if (bcm->pci_dev->device != 0x4324) {
					dprintk(KERN_INFO PFX "Ignoring additional 802.11 core.\n");
					continue;
				}
			}
			switch (core_rev) {
			case 2:
			case 4:
			case 5:
			case 6:
			case 7:
			case 9:
				break;
			default:
				printk(KERN_ERR PFX "Error: Unsupported 80211 core revision %u\n",
				       core_rev);
				err = -ENODEV;
				goto out;
			}
2710
			bcm->nr_80211_available++;
2711
			core->priv = ext_80211;
2712 2713
			bcm43xx_init_struct_phyinfo(&ext_80211->phy);
			bcm43xx_init_struct_radioinfo(&ext_80211->radio);
2714 2715 2716 2717 2718 2719
			break;
		case BCM43xx_COREID_CHIPCOMMON:
			printk(KERN_WARNING PFX "Multiple CHIPCOMMON cores found.\n");
			break;
		}
		if (core) {
2720
			core->available = 1;
2721 2722 2723 2724 2725 2726
			core->id = core_id;
			core->rev = core_rev;
			core->index = current_core;
		}
	}

2727
	if (!bcm->core_80211[0].available) {
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
		printk(KERN_ERR PFX "Error: No 80211 core found!\n");
		err = -ENODEV;
		goto out;
	}

	err = bcm43xx_switch_core(bcm, &bcm->core_80211[0]);

	assert(err == 0);
out:
	return err;
}

static void bcm43xx_gen_bssid(struct bcm43xx_private *bcm)
{
	const u8 *mac = (const u8*)(bcm->net_dev->dev_addr);
	u8 *bssid = bcm->ieee->bssid;

	switch (bcm->ieee->iw_mode) {
	case IW_MODE_ADHOC:
		random_ether_addr(bssid);
		break;
	case IW_MODE_MASTER:
	case IW_MODE_INFRA:
	case IW_MODE_REPEAT:
	case IW_MODE_SECOND:
	case IW_MODE_MONITOR:
		memcpy(bssid, mac, ETH_ALEN);
		break;
	default:
		assert(0);
	}
}

static void bcm43xx_rate_memory_write(struct bcm43xx_private *bcm,
				      u16 rate,
				      int is_ofdm)
{
	u16 offset;

	if (is_ofdm) {
		offset = 0x480;
		offset += (bcm43xx_plcp_get_ratecode_ofdm(rate) & 0x000F) * 2;
	}
	else {
		offset = 0x4C0;
		offset += (bcm43xx_plcp_get_ratecode_cck(rate) & 0x000F) * 2;
	}
	bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, offset + 0x20,
			    bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, offset));
}

static void bcm43xx_rate_memory_init(struct bcm43xx_private *bcm)
{
2781
	switch (bcm43xx_current_phy(bcm)->type) {
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
	case BCM43xx_PHYTYPE_A:
	case BCM43xx_PHYTYPE_G:
		bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_6MB, 1);
		bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_12MB, 1);
		bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_18MB, 1);
		bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_24MB, 1);
		bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_36MB, 1);
		bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_48MB, 1);
		bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_54MB, 1);
	case BCM43xx_PHYTYPE_B:
		bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_1MB, 0);
		bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_2MB, 0);
		bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_5MB, 0);
		bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_11MB, 0);
		break;
	default:
		assert(0);
	}
}

static void bcm43xx_wireless_core_cleanup(struct bcm43xx_private *bcm)
{
	bcm43xx_chip_cleanup(bcm);
	bcm43xx_pio_free(bcm);
	bcm43xx_dma_free(bcm);

2808
	bcm->current_core->initialized = 0;
2809 2810 2811
}

/* http://bcm-specs.sipsolutions.net/80211Init */
2812 2813
static int bcm43xx_wireless_core_init(struct bcm43xx_private *bcm,
				      int active_wlcore)
2814
{
2815 2816
	struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
	struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
	u32 ucodeflags;
	int err;
	u32 sbimconfiglow;
	u8 limit;

	if (bcm->chip_rev < 5) {
		sbimconfiglow = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMCONFIGLOW);
		sbimconfiglow &= ~ BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_MASK;
		sbimconfiglow &= ~ BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_MASK;
		if (bcm->bustype == BCM43xx_BUSTYPE_PCI)
			sbimconfiglow |= 0x32;
		else if (bcm->bustype == BCM43xx_BUSTYPE_SB)
			sbimconfiglow |= 0x53;
		else
			assert(0);
		bcm43xx_write32(bcm, BCM43xx_CIR_SBIMCONFIGLOW, sbimconfiglow);
	}

	bcm43xx_phy_calibrate(bcm);
	err = bcm43xx_chip_init(bcm);
	if (err)
		goto out;

	bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0016, bcm->current_core->rev);
	ucodeflags = bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, BCM43xx_UCODEFLAGS_OFFSET);

	if (0 /*FIXME: which condition has to be used here? */)
		ucodeflags |= 0x00000010;

	/* HW decryption needs to be set now */
	ucodeflags |= 0x40000000;
	
2849
	if (phy->type == BCM43xx_PHYTYPE_G) {
2850
		ucodeflags |= BCM43xx_UCODEFLAG_UNKBGPHY;
2851
		if (phy->rev == 1)
2852 2853 2854
			ucodeflags |= BCM43xx_UCODEFLAG_UNKGPHY;
		if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL)
			ucodeflags |= BCM43xx_UCODEFLAG_UNKPACTRL;
2855
	} else if (phy->type == BCM43xx_PHYTYPE_B) {
2856
		ucodeflags |= BCM43xx_UCODEFLAG_UNKBGPHY;
2857
		if (phy->rev >= 2 && radio->version == 0x2050)
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
			ucodeflags &= ~BCM43xx_UCODEFLAG_UNKGPHY;
	}

	if (ucodeflags != bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED,
					     BCM43xx_UCODEFLAGS_OFFSET)) {
		bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED,
				    BCM43xx_UCODEFLAGS_OFFSET, ucodeflags);
	}

	/* Short/Long Retry Limit.
	 * The retry-limit is a 4-bit counter. Enforce this to avoid overflowing
	 * the chip-internal counter.
	 */
	limit = limit_value(modparam_short_retry, 0, 0xF);
	bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0006, limit);
	limit = limit_value(modparam_long_retry, 0, 0xF);
	bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0007, limit);

	bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0044, 3);
	bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0046, 2);

	bcm43xx_rate_memory_init(bcm);

	/* Minimum Contention Window */
2882
	if (phy->type == BCM43xx_PHYTYPE_B)
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
		bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0003, 0x0000001f);
	else
		bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0003, 0x0000000f);
	/* Maximum Contention Window */
	bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0004, 0x000003ff);

	bcm43xx_gen_bssid(bcm);
	bcm43xx_write_mac_bssid_templates(bcm);

	if (bcm->current_core->rev >= 5)
		bcm43xx_write16(bcm, 0x043C, 0x000C);

2895 2896 2897 2898 2899 2900 2901 2902
	if (active_wlcore) {
		if (bcm43xx_using_pio(bcm))
			err = bcm43xx_pio_init(bcm);
		else
			err = bcm43xx_dma_init(bcm);
		if (err)
			goto err_chip_cleanup;
	}
2903 2904 2905 2906
	bcm43xx_write16(bcm, 0x0612, 0x0050);
	bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0416, 0x0050);
	bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0414, 0x01F4);

2907 2908 2909 2910
	if (active_wlcore) {
		if (radio->initial_channel != 0xFF)
			bcm43xx_radio_selectchannel(bcm, radio->initial_channel, 0);
	}
2911

2912 2913 2914
	/* Don't enable MAC/IRQ here, as it will race with the IRQ handler.
	 * We enable it later.
	 */
2915
	bcm->current_core->initialized = 1;
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
out:
	return err;

err_chip_cleanup:
	bcm43xx_chip_cleanup(bcm);
	goto out;
}

static int bcm43xx_chipset_attach(struct bcm43xx_private *bcm)
{
	int err;
	u16 pci_status;

	err = bcm43xx_pctl_set_crystal(bcm, 1);
	if (err)
		goto out;
	bcm43xx_pci_read_config16(bcm, PCI_STATUS, &pci_status);
	bcm43xx_pci_write_config16(bcm, PCI_STATUS, pci_status & ~PCI_STATUS_SIG_TARGET_ABORT);

out:
	return err;
}

static void bcm43xx_chipset_detach(struct bcm43xx_private *bcm)
{
	bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_SLOW);
	bcm43xx_pctl_set_crystal(bcm, 0);
}

2945 2946 2947
static void bcm43xx_pcicore_broadcast_value(struct bcm43xx_private *bcm,
					    u32 address,
					    u32 data)
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
{
	bcm43xx_write32(bcm, BCM43xx_PCICORE_BCAST_ADDR, address);
	bcm43xx_write32(bcm, BCM43xx_PCICORE_BCAST_DATA, data);
}

static int bcm43xx_pcicore_commit_settings(struct bcm43xx_private *bcm)
{
	int err;
	struct bcm43xx_coreinfo *old_core;

	old_core = bcm->current_core;
	err = bcm43xx_switch_core(bcm, &bcm->core_pci);
	if (err)
		goto out;

	bcm43xx_pcicore_broadcast_value(bcm, 0xfd8, 0x00000000);

	bcm43xx_switch_core(bcm, old_core);
	assert(err == 0);
out:
	return err;
}

/* Make an I/O Core usable. "core_mask" is the bitmask of the cores to enable.
 * To enable core 0, pass a core_mask of 1<<0
 */
static int bcm43xx_setup_backplane_pci_connection(struct bcm43xx_private *bcm,
						  u32 core_mask)
{
	u32 backplane_flag_nr;
	u32 value;
	struct bcm43xx_coreinfo *old_core;
	int err = 0;

	value = bcm43xx_read32(bcm, BCM43xx_CIR_SBTPSFLAG);
	backplane_flag_nr = value & BCM43xx_BACKPLANE_FLAG_NR_MASK;

	old_core = bcm->current_core;
	err = bcm43xx_switch_core(bcm, &bcm->core_pci);
	if (err)
		goto out;

	if (bcm->core_pci.rev < 6) {
		value = bcm43xx_read32(bcm, BCM43xx_CIR_SBINTVEC);
		value |= (1 << backplane_flag_nr);
		bcm43xx_write32(bcm, BCM43xx_CIR_SBINTVEC, value);
	} else {
		err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_ICR, &value);
		if (err) {
			printk(KERN_ERR PFX "Error: ICR setup failure!\n");
			goto out_switch_back;
		}
		value |= core_mask << 8;
		err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_ICR, value);
		if (err) {
			printk(KERN_ERR PFX "Error: ICR setup failure!\n");
			goto out_switch_back;
		}
	}

	value = bcm43xx_read32(bcm, BCM43xx_PCICORE_SBTOPCI2);
	value |= BCM43xx_SBTOPCI2_PREFETCH | BCM43xx_SBTOPCI2_BURST;
	bcm43xx_write32(bcm, BCM43xx_PCICORE_SBTOPCI2, value);

	if (bcm->core_pci.rev < 5) {
		value = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMCONFIGLOW);
		value |= (2 << BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_SHIFT)
			 & BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_MASK;
		value |= (3 << BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_SHIFT)
			 & BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_MASK;
		bcm43xx_write32(bcm, BCM43xx_CIR_SBIMCONFIGLOW, value);
		err = bcm43xx_pcicore_commit_settings(bcm);
		assert(err == 0);
	}

out_switch_back:
	err = bcm43xx_switch_core(bcm, old_core);
out:
	return err;
}

3029
static void bcm43xx_periodic_every120sec(struct bcm43xx_private *bcm)
3030
{
3031
	struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
3032

3033 3034
	if (phy->type != BCM43xx_PHYTYPE_G || phy->rev < 2)
		return;
3035

3036 3037 3038
	bcm43xx_mac_suspend(bcm);
	bcm43xx_phy_lo_g_measure(bcm);
	bcm43xx_mac_enable(bcm);
3039 3040
}

3041
static void bcm43xx_periodic_every60sec(struct bcm43xx_private *bcm)
3042 3043 3044 3045 3046 3047 3048 3049 3050
{
	bcm43xx_phy_lo_mark_all_unused(bcm);
	if (bcm->sprom.boardflags & BCM43xx_BFL_RSSI) {
		bcm43xx_mac_suspend(bcm);
		bcm43xx_calc_nrssi_slope(bcm);
		bcm43xx_mac_enable(bcm);
	}
}

3051
static void bcm43xx_periodic_every30sec(struct bcm43xx_private *bcm)
3052
{
3053 3054 3055
	/* Update device statistics. */
	bcm43xx_calculate_link_quality(bcm);
}
3056

3057 3058
static void bcm43xx_periodic_every15sec(struct bcm43xx_private *bcm)
{
3059 3060
	struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
	struct bcm43xx_radioinfo *radio = bcm43xx_current_radio(bcm);
3061

3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
	if (phy->type == BCM43xx_PHYTYPE_G) {
		//TODO: update_aci_moving_average
		if (radio->aci_enable && radio->aci_wlan_automatic) {
			bcm43xx_mac_suspend(bcm);
			if (!radio->aci_enable && 1 /*TODO: not scanning? */) {
				if (0 /*TODO: bunch of conditions*/) {
					bcm43xx_radio_set_interference_mitigation(bcm,
										  BCM43xx_RADIO_INTERFMODE_MANUALWLAN);
				}
			} else if (1/*TODO*/) {
				/*
				if ((aci_average > 1000) && !(bcm43xx_radio_aci_scan(bcm))) {
					bcm43xx_radio_set_interference_mitigation(bcm,
										  BCM43xx_RADIO_INTERFMODE_NONE);
				}
				*/
			}
			bcm43xx_mac_enable(bcm);
		} else if (radio->interfmode == BCM43xx_RADIO_INTERFMODE_NONWLAN &&
			   phy->rev == 1) {
			//TODO: implement rev1 workaround
		}
3084
	}
3085 3086
	bcm43xx_phy_xmitpower(bcm); //FIXME: unless scanning?
	//TODO for APHY (temperature?)
3087 3088
}

3089
static void do_periodic_work(struct bcm43xx_private *bcm)
3090
{
3091
	unsigned int state;
3092

3093 3094 3095 3096 3097 3098 3099
	state = bcm->periodic_state;
	if (state % 8 == 0)
		bcm43xx_periodic_every120sec(bcm);
	if (state % 4 == 0)
		bcm43xx_periodic_every60sec(bcm);
	if (state % 2 == 0)
		bcm43xx_periodic_every30sec(bcm);
3100 3101
	if (state % 1 == 0)
		bcm43xx_periodic_every15sec(bcm);
3102 3103
	bcm->periodic_state = state + 1;

3104
	schedule_delayed_work(&bcm->periodic_work, HZ * 15);
3105
}
3106

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
/* Estimate a "Badness" value based on the periodic work
 * state-machine state. "Badness" is worse (bigger), if the
 * periodic work will take longer.
 */
static int estimate_periodic_work_badness(unsigned int state)
{
	int badness = 0;

	if (state % 8 == 0) /* every 120 sec */
		badness += 10;
	if (state % 4 == 0) /* every 60 sec */
		badness += 5;
	if (state % 2 == 0) /* every 30 sec */
		badness += 1;
	if (state % 1 == 0) /* every 15 sec */
		badness += 1;

#define BADNESS_LIMIT	4
	return badness;
}

static void bcm43xx_periodic_work_handler(void *d)
{
	struct bcm43xx_private *bcm = d;
	unsigned long flags;
	u32 savedirqs = 0;
	int badness;

	badness = estimate_periodic_work_badness(bcm->periodic_state);
	if (badness > BADNESS_LIMIT) {
		/* Periodic work will take a long time, so we want it to
		 * be preemtible.
		 */
		netif_stop_queue(bcm->net_dev);
3141
		synchronize_net();
3142
		spin_lock_irqsave(&bcm->irq_lock, flags);
3143
		bcm43xx_mac_suspend(bcm);
3144 3145 3146
		if (bcm43xx_using_pio(bcm))
			bcm43xx_pio_freeze_txqueues(bcm);
		savedirqs = bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
3147 3148
		spin_unlock_irqrestore(&bcm->irq_lock, flags);
		mutex_lock(&bcm->mutex);
3149 3150 3151 3152 3153
		bcm43xx_synchronize_irq(bcm);
	} else {
		/* Periodic work should take short time, so we want low
		 * locking overhead.
		 */
3154 3155
		mutex_lock(&bcm->mutex);
		spin_lock_irqsave(&bcm->irq_lock, flags);
3156 3157 3158 3159 3160
	}

	do_periodic_work(bcm);

	if (badness > BADNESS_LIMIT) {
3161
		spin_lock_irqsave(&bcm->irq_lock, flags);
3162 3163 3164 3165 3166
		if (likely(bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED)) {
			tasklet_enable(&bcm->isr_tasklet);
			bcm43xx_interrupt_enable(bcm, savedirqs);
			if (bcm43xx_using_pio(bcm))
				bcm43xx_pio_thaw_txqueues(bcm);
3167
			bcm43xx_mac_enable(bcm);
3168 3169 3170
		}
		netif_wake_queue(bcm->net_dev);
	}
3171 3172 3173
	mmiowb();
	spin_unlock_irqrestore(&bcm->irq_lock, flags);
	mutex_unlock(&bcm->mutex);
3174 3175 3176 3177
}

static void bcm43xx_periodic_tasks_delete(struct bcm43xx_private *bcm)
{
3178
	cancel_rearming_delayed_work(&bcm->periodic_work);
3179 3180 3181 3182
}

static void bcm43xx_periodic_tasks_setup(struct bcm43xx_private *bcm)
{
3183
	struct work_struct *work = &(bcm->periodic_work);
3184

3185 3186 3187
	assert(bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED);
	INIT_WORK(work, bcm43xx_periodic_work_handler, bcm);
	schedule_work(work);
3188 3189 3190 3191 3192 3193 3194 3195 3196
}

static void bcm43xx_security_init(struct bcm43xx_private *bcm)
{
	bcm->security_offset = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
						  0x0056) * 2;
	bcm43xx_clear_keys(bcm);
}

3197 3198 3199 3200 3201
static int bcm43xx_rng_read(struct hwrng *rng, u32 *data)
{
	struct bcm43xx_private *bcm = (struct bcm43xx_private *)rng->priv;
	unsigned long flags;

3202
	spin_lock_irqsave(&(bcm)->irq_lock, flags);
3203
	*data = bcm43xx_read16(bcm, BCM43xx_MMIO_RNG);
3204
	spin_unlock_irqrestore(&(bcm)->irq_lock, flags);
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229

	return (sizeof(u16));
}

static void bcm43xx_rng_exit(struct bcm43xx_private *bcm)
{
	hwrng_unregister(&bcm->rng);
}

static int bcm43xx_rng_init(struct bcm43xx_private *bcm)
{
	int err;

	snprintf(bcm->rng_name, ARRAY_SIZE(bcm->rng_name),
		 "%s_%s", KBUILD_MODNAME, bcm->net_dev->name);
	bcm->rng.name = bcm->rng_name;
	bcm->rng.data_read = bcm43xx_rng_read;
	bcm->rng.priv = (unsigned long)bcm;
	err = hwrng_register(&bcm->rng);
	if (err)
		printk(KERN_ERR PFX "RNG init failed (%d)\n", err);

	return err;
}

3230
static int bcm43xx_shutdown_all_wireless_cores(struct bcm43xx_private *bcm)
3231
{
3232
	int ret = 0;
3233
	int i, err;
3234
	struct bcm43xx_coreinfo *core;
3235

3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
	bcm43xx_set_status(bcm, BCM43xx_STAT_SHUTTINGDOWN);
	for (i = 0; i < bcm->nr_80211_available; i++) {
		core = &(bcm->core_80211[i]);
		assert(core->available);
		if (!core->initialized)
			continue;
		err = bcm43xx_switch_core(bcm, core);
		if (err) {
			dprintk(KERN_ERR PFX "shutdown_all_wireless_cores "
					     "switch_core failed (%d)\n", err);
			ret = err;
			continue;
		}
		bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
		bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
		bcm43xx_wireless_core_cleanup(bcm);
		if (core == bcm->active_80211_core)
			bcm->active_80211_core = NULL;
	}
	free_irq(bcm->irq, bcm);
	bcm43xx_set_status(bcm, BCM43xx_STAT_UNINIT);

	return ret;
}

/* This is the opposite of bcm43xx_init_board() */
static void bcm43xx_free_board(struct bcm43xx_private *bcm)
{
3264
	bcm43xx_sysfs_unregister(bcm);
3265 3266
	bcm43xx_periodic_tasks_delete(bcm);

3267
	mutex_lock(&(bcm)->mutex);
3268 3269
	bcm43xx_shutdown_all_wireless_cores(bcm);
	bcm43xx_pctl_set_crystal(bcm, 0);
3270
	mutex_unlock(&(bcm)->mutex);
3271
}
3272

3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
static void prepare_phydata_for_init(struct bcm43xx_phyinfo *phy)
{
	phy->antenna_diversity = 0xFFFF;
	memset(phy->minlowsig, 0xFF, sizeof(phy->minlowsig));
	memset(phy->minlowsigpos, 0, sizeof(phy->minlowsigpos));

	/* Flags */
	phy->calibrated = 0;
	phy->is_locked = 0;

	if (phy->_lo_pairs) {
		memset(phy->_lo_pairs, 0,
		       sizeof(struct bcm43xx_lopair) * BCM43xx_LO_COUNT);
	}
	memset(phy->loopback_gain, 0, sizeof(phy->loopback_gain));
}

static void prepare_radiodata_for_init(struct bcm43xx_private *bcm,
				       struct bcm43xx_radioinfo *radio)
{
	int i;

	/* Set default attenuation values. */
	radio->baseband_atten = bcm43xx_default_baseband_attenuation(bcm);
	radio->radio_atten = bcm43xx_default_radio_attenuation(bcm);
	radio->txctl1 = bcm43xx_default_txctl1(bcm);
	radio->txctl2 = 0xFFFF;
	radio->txpwr_offset = 0;

	/* NRSSI */
	radio->nrssislope = 0;
	for (i = 0; i < ARRAY_SIZE(radio->nrssi); i++)
		radio->nrssi[i] = -1000;
	for (i = 0; i < ARRAY_SIZE(radio->nrssi_lt); i++)
		radio->nrssi_lt[i] = i;

	radio->lofcal = 0xFFFF;
	radio->initval = 0xFFFF;

	radio->aci_enable = 0;
	radio->aci_wlan_automatic = 0;
	radio->aci_hw_rssi = 0;
}

static void prepare_priv_for_init(struct bcm43xx_private *bcm)
{
	int i;
	struct bcm43xx_coreinfo *core;
	struct bcm43xx_coreinfo_80211 *wlext;

	assert(!bcm->active_80211_core);

	bcm43xx_set_status(bcm, BCM43xx_STAT_INITIALIZING);

	/* Flags */
	bcm->was_initialized = 0;
	bcm->reg124_set_0x4 = 0;

	/* Stats */
	memset(&bcm->stats, 0, sizeof(bcm->stats));

	/* Wireless core data */
3335
	for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
3336 3337 3338 3339
		core = &(bcm->core_80211[i]);
		wlext = core->priv;

		if (!core->available)
3340
			continue;
3341
		assert(wlext == &(bcm->core_80211_ext[i]));
3342

3343 3344
		prepare_phydata_for_init(&wlext->phy);
		prepare_radiodata_for_init(bcm, &wlext->radio);
3345 3346
	}

3347 3348 3349 3350
	/* IRQ related flags */
	bcm->irq_reason = 0;
	memset(bcm->dma_reason, 0, sizeof(bcm->dma_reason));
	bcm->irq_savedstate = BCM43xx_IRQ_INITIAL;
3351

3352 3353 3354 3355 3356
	/* Noise calculation context */
	memset(&bcm->noisecalc, 0, sizeof(bcm->noisecalc));

	/* Periodic work context */
	bcm->periodic_state = 0;
3357 3358
}

3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
static int wireless_core_up(struct bcm43xx_private *bcm,
			    int active_wlcore)
{
	int err;

	if (!bcm43xx_core_enabled(bcm))
		bcm43xx_wireless_core_reset(bcm, 1);
	if (!active_wlcore)
		bcm43xx_wireless_core_mark_inactive(bcm);
	err = bcm43xx_wireless_core_init(bcm, active_wlcore);
	if (err)
		goto out;
	if (!active_wlcore)
		bcm43xx_radio_turn_off(bcm);
out:
	return err;
}

/* Select and enable the "to be used" wireless core.
 * Locking: bcm->mutex must be aquired before calling this.
 *          bcm->irq_lock must not be aquired.
 */
int bcm43xx_select_wireless_core(struct bcm43xx_private *bcm,
				 int phytype)
3383 3384
{
	int i, err;
3385 3386 3387 3388 3389
	struct bcm43xx_coreinfo *active_core = NULL;
	struct bcm43xx_coreinfo_80211 *active_wlext = NULL;
	struct bcm43xx_coreinfo *core;
	struct bcm43xx_coreinfo_80211 *wlext;
	int adjust_active_sbtmstatelow = 0;
3390 3391 3392

	might_sleep();

3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
	if (phytype < 0) {
		/* If no phytype is requested, select the first core. */
		assert(bcm->core_80211[0].available);
		wlext = bcm->core_80211[0].priv;
		phytype = wlext->phy.type;
	}
	/* Find the requested core. */
	for (i = 0; i < bcm->nr_80211_available; i++) {
		core = &(bcm->core_80211[i]);
		wlext = core->priv;
		if (wlext->phy.type == phytype) {
			active_core = core;
			active_wlext = wlext;
			break;
		}
	}
	if (!active_core)
		return -ESRCH; /* No such PHYTYPE on this board. */

	if (bcm->active_80211_core) {
		/* We already selected a wl core in the past.
		 * So first clean up everything.
		 */
		dprintk(KERN_INFO PFX "select_wireless_core: cleanup\n");
		ieee80211softmac_stop(bcm->net_dev);
		bcm43xx_set_status(bcm, BCM43xx_STAT_INITIALIZED);
		err = bcm43xx_disable_interrupts_sync(bcm);
		assert(!err);
		tasklet_enable(&bcm->isr_tasklet);
		err = bcm43xx_shutdown_all_wireless_cores(bcm);
		if (err)
			goto error;
		/* Ok, everything down, continue to re-initialize. */
		bcm43xx_set_status(bcm, BCM43xx_STAT_INITIALIZING);
	}
3428

3429 3430
	/* Reset all data structures. */
	prepare_priv_for_init(bcm);
3431

3432 3433
	err = bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_FAST);
	if (err)
3434
		goto error;
3435

3436
	/* Mark all unused cores "inactive". */
3437
	for (i = 0; i < bcm->nr_80211_available; i++) {
3438 3439
		core = &(bcm->core_80211[i]);
		wlext = core->priv;
3440

3441 3442 3443 3444 3445 3446 3447
		if (core == active_core)
			continue;
		err = bcm43xx_switch_core(bcm, core);
		if (err) {
			dprintk(KERN_ERR PFX "Could not switch to inactive "
					     "802.11 core (%d)\n", err);
			goto error;
3448
		}
3449 3450 3451 3452 3453 3454 3455 3456
		err = wireless_core_up(bcm, 0);
		if (err) {
			dprintk(KERN_ERR PFX "core_up for inactive 802.11 core "
					     "failed (%d)\n", err);
			goto error;
		}
		adjust_active_sbtmstatelow = 1;
	}
3457

3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
	/* Now initialize the active 802.11 core. */
	err = bcm43xx_switch_core(bcm, active_core);
	if (err) {
		dprintk(KERN_ERR PFX "Could not switch to active "
				     "802.11 core (%d)\n", err);
		goto error;
	}
	if (adjust_active_sbtmstatelow &&
	    active_wlext->phy.type == BCM43xx_PHYTYPE_G) {
		u32 sbtmstatelow;
3468

3469 3470 3471
		sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
		sbtmstatelow |= 0x20000000;
		bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
3472
	}
3473 3474 3475 3476 3477
	err = wireless_core_up(bcm, 1);
	if (err) {
		dprintk(KERN_ERR PFX "core_up for active 802.11 core "
				     "failed (%d)\n", err);
		goto error;
3478
	}
3479
	err = bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_DYNAMIC);
3480
	if (err)
3481 3482 3483
		goto error;
	bcm->active_80211_core = active_core;

3484 3485 3486
	bcm43xx_macfilter_clear(bcm, BCM43xx_MACFILTER_ASSOC);
	bcm43xx_macfilter_set(bcm, BCM43xx_MACFILTER_SELF, (u8 *)(bcm->net_dev->dev_addr));
	bcm43xx_security_init(bcm);
3487
	ieee80211softmac_start(bcm->net_dev);
3488

3489 3490 3491 3492 3493 3494 3495 3496 3497
	/* Let's go! Be careful after enabling the IRQs.
	 * Don't switch cores, for example.
	 */
	bcm43xx_mac_enable(bcm);
	bcm43xx_set_status(bcm, BCM43xx_STAT_INITIALIZED);
	err = bcm43xx_initialize_irq(bcm);
	if (err)
		goto error;
	bcm43xx_interrupt_enable(bcm, bcm->irq_savedstate);
3498

3499 3500
	dprintk(KERN_INFO PFX "Selected 802.11 core (phytype %d)\n",
		active_wlext->phy.type);
3501

3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
	return 0;

error:
	bcm43xx_set_status(bcm, BCM43xx_STAT_UNINIT);
	bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_SLOW);
	return err;
}

static int bcm43xx_init_board(struct bcm43xx_private *bcm)
{
	int err;

3514
	mutex_lock(&(bcm)->mutex);
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525

	tasklet_enable(&bcm->isr_tasklet);
	err = bcm43xx_pctl_set_crystal(bcm, 1);
	if (err)
		goto err_tasklet;
	err = bcm43xx_pctl_init(bcm);
	if (err)
		goto err_crystal_off;
	err = bcm43xx_select_wireless_core(bcm, -1);
	if (err)
		goto err_crystal_off;
3526

3527
	bcm43xx_periodic_tasks_setup(bcm);
3528 3529 3530
	err = bcm43xx_sysfs_register(bcm);
	if (err)
		goto err_wlshutdown;
3531

3532 3533 3534
	/*FIXME: This should be handled by softmac instead. */
	schedule_work(&bcm->softmac->associnfo.work);

3535
out:
3536
	mutex_unlock(&(bcm)->mutex);
3537

3538 3539
	return err;

3540 3541
err_wlshutdown:
	bcm43xx_shutdown_all_wireless_cores(bcm);
3542 3543
err_crystal_off:
	bcm43xx_pctl_set_crystal(bcm, 0);
3544 3545
err_tasklet:
	tasklet_disable(&bcm->isr_tasklet);
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
	goto out;
}

static void bcm43xx_detach_board(struct bcm43xx_private *bcm)
{
	struct pci_dev *pci_dev = bcm->pci_dev;
	int i;

	bcm43xx_chipset_detach(bcm);
	/* Do _not_ access the chip, after it is detached. */
3556
	pci_iounmap(pci_dev, bcm->mmio_addr);
3557 3558 3559 3560 3561
	pci_release_regions(pci_dev);
	pci_disable_device(pci_dev);

	/* Free allocated structures/fields */
	for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
3562 3563 3564
		kfree(bcm->core_80211_ext[i].phy._lo_pairs);
		if (bcm->core_80211_ext[i].phy.dyn_tssi_tbl)
			kfree(bcm->core_80211_ext[i].phy.tssi2dbm);
3565 3566 3567 3568 3569
	}
}	

static int bcm43xx_read_phyinfo(struct bcm43xx_private *bcm)
{
3570
	struct bcm43xx_phyinfo *phy = bcm43xx_current_phy(bcm);
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
	u16 value;
	u8 phy_version;
	u8 phy_type;
	u8 phy_rev;
	int phy_rev_ok = 1;
	void *p;

	value = bcm43xx_read16(bcm, BCM43xx_MMIO_PHY_VER);

	phy_version = (value & 0xF000) >> 12;
	phy_type = (value & 0x0F00) >> 8;
	phy_rev = (value & 0x000F);

	dprintk(KERN_INFO PFX "Detected PHY: Version: %x, Type %x, Revision %x\n",
		phy_version, phy_type, phy_rev);

	switch (phy_type) {
	case BCM43xx_PHYTYPE_A:
		if (phy_rev >= 4)
			phy_rev_ok = 0;
		/*FIXME: We need to switch the ieee->modulation, etc.. flags,
		 *       if we switch 80211 cores after init is done.
		 *       As we do not implement on the fly switching between
		 *       wireless cores, I will leave this as a future task.
		 */
		bcm->ieee->modulation = IEEE80211_OFDM_MODULATION;
		bcm->ieee->mode = IEEE_A;
		bcm->ieee->freq_band = IEEE80211_52GHZ_BAND |
				       IEEE80211_24GHZ_BAND;
		break;
	case BCM43xx_PHYTYPE_B:
		if (phy_rev != 2 && phy_rev != 4 && phy_rev != 6 && phy_rev != 7)
			phy_rev_ok = 0;
		bcm->ieee->modulation = IEEE80211_CCK_MODULATION;
		bcm->ieee->mode = IEEE_B;
		bcm->ieee->freq_band = IEEE80211_24GHZ_BAND;
		break;
	case BCM43xx_PHYTYPE_G:
		if (phy_rev > 7)
			phy_rev_ok = 0;
		bcm->ieee->modulation = IEEE80211_OFDM_MODULATION |
					IEEE80211_CCK_MODULATION;
		bcm->ieee->mode = IEEE_G;
		bcm->ieee->freq_band = IEEE80211_24GHZ_BAND;
		break;
	default:
		printk(KERN_ERR PFX "Error: Unknown PHY Type %x\n",
		       phy_type);
		return -ENODEV;
	};
	if (!phy_rev_ok) {
		printk(KERN_WARNING PFX "Invalid PHY Revision %x\n",
		       phy_rev);
	}

3626 3627 3628
	phy->version = phy_version;
	phy->type = phy_type;
	phy->rev = phy_rev;
3629 3630 3631 3632 3633
	if ((phy_type == BCM43xx_PHYTYPE_B) || (phy_type == BCM43xx_PHYTYPE_G)) {
		p = kzalloc(sizeof(struct bcm43xx_lopair) * BCM43xx_LO_COUNT,
			    GFP_KERNEL);
		if (!p)
			return -ENOMEM;
3634
		phy->_lo_pairs = p;
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
	}

	return 0;
}

static int bcm43xx_attach_board(struct bcm43xx_private *bcm)
{
	struct pci_dev *pci_dev = bcm->pci_dev;
	struct net_device *net_dev = bcm->net_dev;
	int err;
	int i;
	u32 coremask;

	err = pci_enable_device(pci_dev);
	if (err) {
3650
		printk(KERN_ERR PFX "pci_enable_device() failed\n");
3651 3652
		goto out;
	}
3653
	err = pci_request_regions(pci_dev, KBUILD_MODNAME);
3654
	if (err) {
3655
		printk(KERN_ERR PFX "pci_request_regions() failed\n");
3656 3657 3658 3659
		goto err_pci_disable;
	}
	/* enable PCI bus-mastering */
	pci_set_master(pci_dev);
3660
	bcm->mmio_addr = pci_iomap(pci_dev, 0, ~0UL);
3661
	if (!bcm->mmio_addr) {
3662
		printk(KERN_ERR PFX "pci_iomap() failed\n");
3663 3664 3665
		err = -EIO;
		goto err_pci_release;
	}
3666
	net_dev->base_addr = (unsigned long)bcm->mmio_addr;
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686

	bcm43xx_pci_read_config16(bcm, PCI_SUBSYSTEM_VENDOR_ID,
	                          &bcm->board_vendor);
	bcm43xx_pci_read_config16(bcm, PCI_SUBSYSTEM_ID,
	                          &bcm->board_type);
	bcm43xx_pci_read_config16(bcm, PCI_REVISION_ID,
	                          &bcm->board_revision);

	err = bcm43xx_chipset_attach(bcm);
	if (err)
		goto err_iounmap;
	err = bcm43xx_pctl_init(bcm);
	if (err)
		goto err_chipset_detach;
	err = bcm43xx_probe_cores(bcm);
	if (err)
		goto err_chipset_detach;
	
	/* Attach all IO cores to the backplane. */
	coremask = 0;
3687
	for (i = 0; i < bcm->nr_80211_available; i++)
3688 3689 3690 3691 3692 3693 3694 3695
		coremask |= (1 << bcm->core_80211[i].index);
	//FIXME: Also attach some non80211 cores?
	err = bcm43xx_setup_backplane_pci_connection(bcm, coremask);
	if (err) {
		printk(KERN_ERR PFX "Backplane->PCI connection failed!\n");
		goto err_chipset_detach;
	}

3696
	err = bcm43xx_sprom_extract(bcm);
3697 3698 3699 3700 3701 3702
	if (err)
		goto err_chipset_detach;
	err = bcm43xx_leds_init(bcm);
	if (err)
		goto err_chipset_detach;

3703
	for (i = 0; i < bcm->nr_80211_available; i++) {
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
		err = bcm43xx_switch_core(bcm, &bcm->core_80211[i]);
		assert(err != -ENODEV);
		if (err)
			goto err_80211_unwind;

		/* Enable the selected wireless core.
		 * Connect PHY only on the first core.
		 */
		bcm43xx_wireless_core_reset(bcm, (i == 0));

		err = bcm43xx_read_phyinfo(bcm);
		if (err && (i == 0))
			goto err_80211_unwind;

		err = bcm43xx_read_radioinfo(bcm);
		if (err && (i == 0))
			goto err_80211_unwind;

		err = bcm43xx_validate_chip(bcm);
		if (err && (i == 0))
			goto err_80211_unwind;

		bcm43xx_radio_turn_off(bcm);
		err = bcm43xx_phy_init_tssi2dbm_table(bcm);
		if (err)
			goto err_80211_unwind;
		bcm43xx_wireless_core_disable(bcm);
	}
3732 3733 3734
	err = bcm43xx_geo_init(bcm);
	if (err)
		goto err_80211_unwind;
3735 3736 3737
	bcm43xx_pctl_set_crystal(bcm, 0);

	/* Set the MAC address in the networking subsystem */
3738
	if (is_valid_ether_addr(bcm->sprom.et1macaddr))
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
		memcpy(bcm->net_dev->dev_addr, bcm->sprom.et1macaddr, 6);
	else
		memcpy(bcm->net_dev->dev_addr, bcm->sprom.il0macaddr, 6);

	snprintf(bcm->nick, IW_ESSID_MAX_SIZE,
		 "Broadcom %04X", bcm->chip_id);

	assert(err == 0);
out:
	return err;

err_80211_unwind:
	for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
3752 3753 3754
		kfree(bcm->core_80211_ext[i].phy._lo_pairs);
		if (bcm->core_80211_ext[i].phy.dyn_tssi_tbl)
			kfree(bcm->core_80211_ext[i].phy.tssi2dbm);
3755 3756 3757 3758
	}
err_chipset_detach:
	bcm43xx_chipset_detach(bcm);
err_iounmap:
3759
	pci_iounmap(pci_dev, bcm->mmio_addr);
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
err_pci_release:
	pci_release_regions(pci_dev);
err_pci_disable:
	pci_disable_device(pci_dev);
	goto out;
}

/* Do the Hardware IO operations to send the txb */
static inline int bcm43xx_tx(struct bcm43xx_private *bcm,
			     struct ieee80211_txb *txb)
{
	int err = -ENODEV;

3773 3774
	if (bcm43xx_using_pio(bcm))
		err = bcm43xx_pio_tx(bcm, txb);
3775
	else
3776
		err = bcm43xx_dma_tx(bcm, txb);
3777
	bcm->net_dev->trans_start = jiffies;
3778 3779 3780 3781 3782 3783 3784 3785

	return err;
}

static void bcm43xx_ieee80211_set_chan(struct net_device *net_dev,
				       u8 channel)
{
	struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
3786
	struct bcm43xx_radioinfo *radio;
3787 3788
	unsigned long flags;

3789 3790
	mutex_lock(&bcm->mutex);
	spin_lock_irqsave(&bcm->irq_lock, flags);
3791
	if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED) {
3792 3793 3794 3795 3796 3797 3798
		bcm43xx_mac_suspend(bcm);
		bcm43xx_radio_selectchannel(bcm, channel, 0);
		bcm43xx_mac_enable(bcm);
	} else {
		radio = bcm43xx_current_radio(bcm);
		radio->initial_channel = channel;
	}
3799 3800
	spin_unlock_irqrestore(&bcm->irq_lock, flags);
	mutex_unlock(&bcm->mutex);
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
}

/* set_security() callback in struct ieee80211_device */
static void bcm43xx_ieee80211_set_security(struct net_device *net_dev,
					   struct ieee80211_security *sec)
{
	struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
	struct ieee80211_security *secinfo = &bcm->ieee->sec;
	unsigned long flags;
	int keyidx;
	
3812
	dprintk(KERN_INFO PFX "set security called");
3813

3814 3815
	mutex_lock(&bcm->mutex);
	spin_lock_irqsave(&bcm->irq_lock, flags);
3816

3817 3818 3819 3820 3821 3822 3823 3824 3825
	for (keyidx = 0; keyidx<WEP_KEYS; keyidx++)
		if (sec->flags & (1<<keyidx)) {
			secinfo->encode_alg[keyidx] = sec->encode_alg[keyidx];
			secinfo->key_sizes[keyidx] = sec->key_sizes[keyidx];
			memcpy(secinfo->keys[keyidx], sec->keys[keyidx], SCM_KEY_LEN);
		}
	
	if (sec->flags & SEC_ACTIVE_KEY) {
		secinfo->active_key = sec->active_key;
3826
		dprintk(", .active_key = %d", sec->active_key);
3827 3828 3829
	}
	if (sec->flags & SEC_UNICAST_GROUP) {
		secinfo->unicast_uses_group = sec->unicast_uses_group;
3830
		dprintk(", .unicast_uses_group = %d", sec->unicast_uses_group);
3831 3832 3833
	}
	if (sec->flags & SEC_LEVEL) {
		secinfo->level = sec->level;
3834
		dprintk(", .level = %d", sec->level);
3835 3836 3837
	}
	if (sec->flags & SEC_ENABLED) {
		secinfo->enabled = sec->enabled;
3838
		dprintk(", .enabled = %d", sec->enabled);
3839 3840 3841
	}
	if (sec->flags & SEC_ENCRYPT) {
		secinfo->encrypt = sec->encrypt;
3842
		dprintk(", .encrypt = %d", sec->encrypt);
3843
	}
3844 3845
	if (sec->flags & SEC_AUTH_MODE) {
		secinfo->auth_mode = sec->auth_mode;
3846
		dprintk(", .auth_mode = %d", sec->auth_mode);
3847
	}
3848
	dprintk("\n");
3849 3850
	if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED &&
	    !bcm->ieee->host_encrypt) {
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
		if (secinfo->enabled) {
			/* upload WEP keys to hardware */
			char null_address[6] = { 0 };
			u8 algorithm = 0;
			for (keyidx = 0; keyidx<WEP_KEYS; keyidx++) {
				if (!(sec->flags & (1<<keyidx)))
					continue;
				switch (sec->encode_alg[keyidx]) {
					case SEC_ALG_NONE: algorithm = BCM43xx_SEC_ALGO_NONE; break;
					case SEC_ALG_WEP:
						algorithm = BCM43xx_SEC_ALGO_WEP;
						if (secinfo->key_sizes[keyidx] == 13)
							algorithm = BCM43xx_SEC_ALGO_WEP104;
						break;
					case SEC_ALG_TKIP:
						FIXME();
						algorithm = BCM43xx_SEC_ALGO_TKIP;
						break;
					case SEC_ALG_CCMP:
						FIXME();
						algorithm = BCM43xx_SEC_ALGO_AES;
						break;
					default:
						assert(0);
						break;
				}
				bcm43xx_key_write(bcm, keyidx, algorithm, sec->keys[keyidx], secinfo->key_sizes[keyidx], &null_address[0]);
				bcm->key[keyidx].enabled = 1;
				bcm->key[keyidx].algorithm = algorithm;
			}
		} else
				bcm43xx_clear_keys(bcm);
	}
3884 3885
	spin_unlock_irqrestore(&bcm->irq_lock, flags);
	mutex_unlock(&bcm->mutex);
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
}

/* hard_start_xmit() callback in struct ieee80211_device */
static int bcm43xx_ieee80211_hard_start_xmit(struct ieee80211_txb *txb,
					     struct net_device *net_dev,
					     int pri)
{
	struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
	int err = -ENODEV;
	unsigned long flags;

3897
	spin_lock_irqsave(&bcm->irq_lock, flags);
3898
	if (likely(bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED))
3899
		err = bcm43xx_tx(bcm, txb);
3900
	spin_unlock_irqrestore(&bcm->irq_lock, flags);
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912

	return err;
}

static struct net_device_stats * bcm43xx_net_get_stats(struct net_device *net_dev)
{
	return &(bcm43xx_priv(net_dev)->ieee->stats);
}

static void bcm43xx_net_tx_timeout(struct net_device *net_dev)
{
	struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
3913
	unsigned long flags;
3914

3915
	spin_lock_irqsave(&bcm->irq_lock, flags);
3916
	bcm43xx_controller_restart(bcm, "TX timeout");
3917
	spin_unlock_irqrestore(&bcm->irq_lock, flags);
3918 3919 3920 3921 3922 3923 3924 3925 3926
}

#ifdef CONFIG_NET_POLL_CONTROLLER
static void bcm43xx_net_poll_controller(struct net_device *net_dev)
{
	struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
	unsigned long flags;

	local_irq_save(flags);
3927 3928
	if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED)
		bcm43xx_interrupt_handler(bcm->irq, bcm, NULL);
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
	local_irq_restore(flags);
}
#endif /* CONFIG_NET_POLL_CONTROLLER */

static int bcm43xx_net_open(struct net_device *net_dev)
{
	struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);

	return bcm43xx_init_board(bcm);
}

static int bcm43xx_net_stop(struct net_device *net_dev)
{
	struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
3943
	int err;
3944 3945

	ieee80211softmac_stop(net_dev);
3946
	err = bcm43xx_disable_interrupts_sync(bcm);
3947
	assert(!err);
3948 3949 3950 3951 3952
	bcm43xx_free_board(bcm);

	return 0;
}

3953 3954
static int bcm43xx_init_private(struct bcm43xx_private *bcm,
				struct net_device *net_dev,
3955
				struct pci_dev *pci_dev)
3956
{
3957 3958
	int err;

3959
	bcm43xx_set_status(bcm, BCM43xx_STAT_UNINIT);
3960 3961 3962 3963 3964
	bcm->ieee = netdev_priv(net_dev);
	bcm->softmac = ieee80211_priv(net_dev);
	bcm->softmac->set_channel = bcm43xx_ieee80211_set_chan;

	bcm->irq_savedstate = BCM43xx_IRQ_INITIAL;
3965
	bcm->mac_suspended = 1;
3966 3967
	bcm->pci_dev = pci_dev;
	bcm->net_dev = net_dev;
3968
	bcm->bad_frames_preempt = modparam_bad_frames_preempt;
3969
	spin_lock_init(&bcm->irq_lock);
3970
	spin_lock_init(&bcm->leds_lock);
3971
	mutex_init(&bcm->mutex);
3972 3973 3974 3975 3976
	tasklet_init(&bcm->isr_tasklet,
		     (void (*)(unsigned long))bcm43xx_interrupt_tasklet,
		     (unsigned long)bcm);
	tasklet_disable_nosync(&bcm->isr_tasklet);
	if (modparam_pio) {
3977
		bcm->__using_pio = 1;
3978
	} else {
3979 3980 3981
		err = pci_set_dma_mask(pci_dev, DMA_30BIT_MASK);
		err |= pci_set_consistent_dma_mask(pci_dev, DMA_30BIT_MASK);
		if (err) {
3982
#ifdef CONFIG_BCM43XX_PIO
3983
			printk(KERN_WARNING PFX "DMA not supported. Falling back to PIO.\n");
3984 3985 3986 3987 3988 3989
			bcm->__using_pio = 1;
#else
			printk(KERN_ERR PFX "FATAL: DMA not supported and PIO not configured. "
					    "Recompile the driver with PIO support, please.\n");
			return -ENODEV;
#endif /* CONFIG_BCM43XX_PIO */
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
		}
	}
	bcm->rts_threshold = BCM43xx_DEFAULT_RTS_THRESHOLD;

	/* default to sw encryption for now */
	bcm->ieee->host_build_iv = 0;
	bcm->ieee->host_encrypt = 1;
	bcm->ieee->host_decrypt = 1;
	
	bcm->ieee->iw_mode = BCM43xx_INITIAL_IWMODE;
	bcm->ieee->tx_headroom = sizeof(struct bcm43xx_txhdr);
	bcm->ieee->set_security = bcm43xx_ieee80211_set_security;
	bcm->ieee->hard_start_xmit = bcm43xx_ieee80211_hard_start_xmit;
4003 4004

	return 0;
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
}

static int __devinit bcm43xx_init_one(struct pci_dev *pdev,
				      const struct pci_device_id *ent)
{
	struct net_device *net_dev;
	struct bcm43xx_private *bcm;
	int err;

#ifdef CONFIG_BCM947XX
	if ((pdev->bus->number == 0) && (pdev->device != 0x0800))
		return -ENODEV;
#endif

#ifdef DEBUG_SINGLE_DEVICE_ONLY
	if (strcmp(pci_name(pdev), DEBUG_SINGLE_DEVICE_ONLY))
		return -ENODEV;
#endif

	net_dev = alloc_ieee80211softmac(sizeof(*bcm));
	if (!net_dev) {
		printk(KERN_ERR PFX
		       "could not allocate ieee80211 device %s\n",
		       pci_name(pdev));
		err = -ENOMEM;
		goto out;
	}
	/* initialize the net_device struct */
	SET_MODULE_OWNER(net_dev);
	SET_NETDEV_DEV(net_dev, &pdev->dev);

	net_dev->open = bcm43xx_net_open;
	net_dev->stop = bcm43xx_net_stop;
	net_dev->get_stats = bcm43xx_net_get_stats;
	net_dev->tx_timeout = bcm43xx_net_tx_timeout;
#ifdef CONFIG_NET_POLL_CONTROLLER
	net_dev->poll_controller = bcm43xx_net_poll_controller;
#endif
	net_dev->wireless_handlers = &bcm43xx_wx_handlers_def;
	net_dev->irq = pdev->irq;
4045
	SET_ETHTOOL_OPS(net_dev, &bcm43xx_ethtool_ops);
4046 4047 4048 4049

	/* initialize the bcm43xx_private struct */
	bcm = bcm43xx_priv(net_dev);
	memset(bcm, 0, sizeof(*bcm));
4050
	err = bcm43xx_init_private(bcm, net_dev, pdev);
4051
	if (err)
4052
		goto err_free_netdev;
4053 4054 4055 4056 4057

	pci_set_drvdata(pdev, net_dev);

	err = bcm43xx_attach_board(bcm);
	if (err)
4058
		goto err_free_netdev;
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097

	err = register_netdev(net_dev);
	if (err) {
		printk(KERN_ERR PFX "Cannot register net device, "
		       "aborting.\n");
		err = -ENOMEM;
		goto err_detach_board;
	}

	bcm43xx_debugfs_add_device(bcm);

	assert(err == 0);
out:
	return err;

err_detach_board:
	bcm43xx_detach_board(bcm);
err_free_netdev:
	free_ieee80211softmac(net_dev);
	goto out;
}

static void __devexit bcm43xx_remove_one(struct pci_dev *pdev)
{
	struct net_device *net_dev = pci_get_drvdata(pdev);
	struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);

	bcm43xx_debugfs_remove_device(bcm);
	unregister_netdev(net_dev);
	bcm43xx_detach_board(bcm);
	free_ieee80211softmac(net_dev);
}

/* Hard-reset the chip. Do not call this directly.
 * Use bcm43xx_controller_restart()
 */
static void bcm43xx_chip_reset(void *_bcm)
{
	struct bcm43xx_private *bcm = _bcm;
4098
	struct bcm43xx_phyinfo *phy;
4099 4100
	int err;

4101
	mutex_lock(&(bcm)->mutex);
4102 4103
	phy = bcm43xx_current_phy(bcm);
	err = bcm43xx_select_wireless_core(bcm, phy->type);
4104
	mutex_unlock(&(bcm)->mutex);
4105

4106 4107
	printk(KERN_ERR PFX "Controller restart%s\n",
	       (err == 0) ? "ed" : " failed");
4108 4109 4110 4111
}

/* Hard-reset the chip.
 * This can be called from interrupt or process context.
4112
 */
4113 4114
void bcm43xx_controller_restart(struct bcm43xx_private *bcm, const char *reason)
{
4115
	assert(bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED);
4116
	bcm43xx_set_status(bcm, BCM43xx_STAT_RESTARTING);
4117 4118
	printk(KERN_ERR PFX "Controller RESET (%s) ...\n", reason);
	INIT_WORK(&bcm->restart_work, bcm43xx_chip_reset, bcm);
4119
	schedule_work(&bcm->restart_work);
4120 4121 4122 4123 4124 4125 4126 4127
}

#ifdef CONFIG_PM

static int bcm43xx_suspend(struct pci_dev *pdev, pm_message_t state)
{
	struct net_device *net_dev = pci_get_drvdata(pdev);
	struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
4128
	int err;
4129 4130 4131 4132

	dprintk(KERN_INFO PFX "Suspending...\n");

	netif_device_detach(net_dev);
4133 4134 4135
	bcm->was_initialized = 0;
	if (bcm43xx_status(bcm) == BCM43xx_STAT_INITIALIZED) {
		bcm->was_initialized = 1;
4136
		ieee80211softmac_stop(net_dev);
4137
		err = bcm43xx_disable_interrupts_sync(bcm);
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
		if (unlikely(err)) {
			dprintk(KERN_ERR PFX "Suspend failed.\n");
			return -EAGAIN;
		}
		bcm->firmware_norelease = 1;
		bcm43xx_free_board(bcm);
		bcm->firmware_norelease = 0;
	}
	bcm43xx_chipset_detach(bcm);

	pci_save_state(pdev);
	pci_disable_device(pdev);
	pci_set_power_state(pdev, pci_choose_state(pdev, state));

	dprintk(KERN_INFO PFX "Device suspended.\n");

	return 0;
}

static int bcm43xx_resume(struct pci_dev *pdev)
{
	struct net_device *net_dev = pci_get_drvdata(pdev);
	struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
	int err = 0;

	dprintk(KERN_INFO PFX "Resuming...\n");

	pci_set_power_state(pdev, 0);
	pci_enable_device(pdev);
	pci_restore_state(pdev);

	bcm43xx_chipset_attach(bcm);
4170
	if (bcm->was_initialized)
4171 4172 4173 4174 4175 4176
		err = bcm43xx_init_board(bcm);
	if (err) {
		printk(KERN_ERR PFX "Resume failed!\n");
		return err;
	}
	netif_device_attach(net_dev);
4177

4178 4179 4180 4181 4182 4183 4184 4185
	dprintk(KERN_INFO PFX "Device resumed.\n");

	return 0;
}

#endif				/* CONFIG_PM */

static struct pci_driver bcm43xx_pci_driver = {
4186
	.name = KBUILD_MODNAME,
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
	.id_table = bcm43xx_pci_tbl,
	.probe = bcm43xx_init_one,
	.remove = __devexit_p(bcm43xx_remove_one),
#ifdef CONFIG_PM
	.suspend = bcm43xx_suspend,
	.resume = bcm43xx_resume,
#endif				/* CONFIG_PM */
};

static int __init bcm43xx_init(void)
{
4198
	printk(KERN_INFO KBUILD_MODNAME " driver\n");
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
	bcm43xx_debugfs_init();
	return pci_register_driver(&bcm43xx_pci_driver);
}

static void __exit bcm43xx_exit(void)
{
	pci_unregister_driver(&bcm43xx_pci_driver);
	bcm43xx_debugfs_exit();
}

module_init(bcm43xx_init)
module_exit(bcm43xx_exit)