e1000_82575.c 76.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Intel(R) Gigabit Ethernet Linux driver
 * Copyright(c) 2007-2014 Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, see <http://www.gnu.org/licenses/>.
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 */
23 24 25 26 27

/* e1000_82575
 * e1000_82576
 */

28 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

30
#include <linux/types.h>
A
Alexander Duyck 已提交
31
#include <linux/if_ether.h>
C
Carolyn Wyborny 已提交
32
#include <linux/i2c.h>
33 34 35

#include "e1000_mac.h"
#include "e1000_82575.h"
36
#include "e1000_i210.h"
37 38 39 40 41 42 43 44 45 46 47

static s32  igb_get_invariants_82575(struct e1000_hw *);
static s32  igb_acquire_phy_82575(struct e1000_hw *);
static void igb_release_phy_82575(struct e1000_hw *);
static s32  igb_acquire_nvm_82575(struct e1000_hw *);
static void igb_release_nvm_82575(struct e1000_hw *);
static s32  igb_check_for_link_82575(struct e1000_hw *);
static s32  igb_get_cfg_done_82575(struct e1000_hw *);
static s32  igb_init_hw_82575(struct e1000_hw *);
static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
A
Alexander Duyck 已提交
48 49
static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
50
static s32  igb_reset_hw_82575(struct e1000_hw *);
A
Alexander Duyck 已提交
51
static s32  igb_reset_hw_82580(struct e1000_hw *);
52
static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
53 54
static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
55
static s32  igb_setup_copper_link_82575(struct e1000_hw *);
56
static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
57 58 59 60 61 62 63 64 65 66
static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
						 u16 *);
static s32  igb_get_phy_id_82575(struct e1000_hw *);
static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
static bool igb_sgmii_active_82575(struct e1000_hw *);
static s32  igb_reset_init_script_82575(struct e1000_hw *);
static s32  igb_read_mac_addr_82575(struct e1000_hw *);
67
static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
68
static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
69 70 71 72
static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
73 74
static const u16 e1000_82580_rxpbs_table[] = {
	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
A
Alexander Duyck 已提交
75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
/**
 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
 *  @hw: pointer to the HW structure
 *
 *  Called to determine if the I2C pins are being used for I2C or as an
 *  external MDIO interface since the two options are mutually exclusive.
 **/
static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
{
	u32 reg = 0;
	bool ext_mdio = false;

	switch (hw->mac.type) {
	case e1000_82575:
	case e1000_82576:
		reg = rd32(E1000_MDIC);
		ext_mdio = !!(reg & E1000_MDIC_DEST);
		break;
	case e1000_82580:
	case e1000_i350:
96
	case e1000_i354:
97 98
	case e1000_i210:
	case e1000_i211:
99 100 101 102 103 104 105 106 107
		reg = rd32(E1000_MDICNFG);
		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
		break;
	default:
		break;
	}
	return ext_mdio;
}

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
/**
 *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
 *  @hw: pointer to the HW structure
 *
 *  Poll the M88E1112 interfaces to see which interface achieved link.
 */
static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;
	u8 port = 0;

	/* Check the copper medium. */
	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
	if (ret_val)
		return ret_val;

	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
	if (ret_val)
		return ret_val;

	if (data & E1000_M88E1112_STATUS_LINK)
		port = E1000_MEDIA_PORT_COPPER;

	/* Check the other medium. */
	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
	if (ret_val)
		return ret_val;

	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
	if (ret_val)
		return ret_val;

	/* reset page to 0 */
	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
	if (ret_val)
		return ret_val;

	if (data & E1000_M88E1112_STATUS_LINK)
		port = E1000_MEDIA_PORT_OTHER;

	/* Determine if a swap needs to happen. */
	if (port && (hw->dev_spec._82575.media_port != port)) {
		hw->dev_spec._82575.media_port = port;
		hw->dev_spec._82575.media_changed = true;
	} else {
		ret_val = igb_check_for_link_82575(hw);
	}

T
Todd Fujinaka 已提交
158
	return 0;
159 160
}

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/**
 *  igb_init_phy_params_82575 - Init PHY func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = 0;
	u32 ctrl_ext;

	if (hw->phy.media_type != e1000_media_type_copper) {
		phy->type = e1000_phy_none;
		goto out;
	}

	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
	phy->reset_delay_us	= 100;

	ctrl_ext = rd32(E1000_CTRL_EXT);

	if (igb_sgmii_active_82575(hw)) {
		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
		ctrl_ext |= E1000_CTRL_I2C_ENA;
	} else {
		phy->ops.reset = igb_phy_hw_reset;
		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
	}

	wr32(E1000_CTRL_EXT, ctrl_ext);
	igb_reset_mdicnfg_82580(hw);

	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
	} else {
		switch (hw->mac.type) {
		case e1000_82580:
		case e1000_i350:
199
		case e1000_i354:
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
			phy->ops.read_reg = igb_read_phy_reg_82580;
			phy->ops.write_reg = igb_write_phy_reg_82580;
			break;
		case e1000_i210:
		case e1000_i211:
			phy->ops.read_reg = igb_read_phy_reg_gs40g;
			phy->ops.write_reg = igb_write_phy_reg_gs40g;
			break;
		default:
			phy->ops.read_reg = igb_read_phy_reg_igp;
			phy->ops.write_reg = igb_write_phy_reg_igp;
		}
	}

	/* set lan id */
	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
			E1000_STATUS_FUNC_SHIFT;

	/* Set phy->phy_addr and phy->id. */
	ret_val = igb_get_phy_id_82575(hw);
	if (ret_val)
		return ret_val;

	/* Verify phy id and set remaining function pointers */
	switch (phy->id) {
225
	case M88E1543_E_PHY_ID:
226 227 228 229
	case I347AT4_E_PHY_ID:
	case M88E1112_E_PHY_ID:
	case M88E1111_I_PHY_ID:
		phy->type		= e1000_phy_m88;
230
		phy->ops.check_polarity	= igb_check_polarity_m88;
231
		phy->ops.get_phy_info	= igb_get_phy_info_m88;
232
		if (phy->id != M88E1111_I_PHY_ID)
233 234 235 236 237
			phy->ops.get_cable_length =
					 igb_get_cable_length_m88_gen2;
		else
			phy->ops.get_cable_length = igb_get_cable_length_m88;
		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
		/* Check if this PHY is confgured for media swap. */
		if (phy->id == M88E1112_E_PHY_ID) {
			u16 data;

			ret_val = phy->ops.write_reg(hw,
						     E1000_M88E1112_PAGE_ADDR,
						     2);
			if (ret_val)
				goto out;

			ret_val = phy->ops.read_reg(hw,
						    E1000_M88E1112_MAC_CTRL_1,
						    &data);
			if (ret_val)
				goto out;

			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
				hw->mac.ops.check_for_link =
						igb_check_for_link_media_swap;
		}
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
		break;
	case IGP03E1000_E_PHY_ID:
		phy->type = e1000_phy_igp_3;
		phy->ops.get_phy_info = igb_get_phy_info_igp;
		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
		break;
	case I82580_I_PHY_ID:
	case I350_I_PHY_ID:
		phy->type = e1000_phy_82580;
		phy->ops.force_speed_duplex =
					 igb_phy_force_speed_duplex_82580;
		phy->ops.get_cable_length = igb_get_cable_length_82580;
		phy->ops.get_phy_info = igb_get_phy_info_82580;
		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
		break;
	case I210_I_PHY_ID:
		phy->type		= e1000_phy_i210;
		phy->ops.check_polarity	= igb_check_polarity_m88;
		phy->ops.get_phy_info	= igb_get_phy_info_m88;
		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
		break;
	default:
		ret_val = -E1000_ERR_PHY;
		goto out;
	}

out:
	return ret_val;
}

298 299 300 301
/**
 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
 *  @hw: pointer to the HW structure
 **/
302
static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
303 304 305 306 307 308 309
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 eecd = rd32(E1000_EECD);
	u16 size;

	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
		     E1000_EECD_SIZE_EX_SHIFT);
310

311 312 313 314 315 316 317 318 319 320 321 322
	/* Added to a constant, "size" becomes the left-shift value
	 * for setting word_size.
	 */
	size += NVM_WORD_SIZE_BASE_SHIFT;

	/* Just in case size is out of range, cap it to the largest
	 * EEPROM size supported
	 */
	if (size > 15)
		size = 15;

	nvm->word_size = 1 << size;
323 324
	nvm->opcode_bits = 8;
	nvm->delay_usec = 1;
325

326 327 328 329 330 331 332 333 334 335 336 337 338 339
	switch (nvm->override) {
	case e1000_nvm_override_spi_large:
		nvm->page_size = 32;
		nvm->address_bits = 16;
		break;
	case e1000_nvm_override_spi_small:
		nvm->page_size = 8;
		nvm->address_bits = 8;
		break;
	default:
		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
				    16 : 8;
		break;
340
	}
341 342 343 344
	if (nvm->word_size == (1 << 15))
		nvm->page_size = 128;

	nvm->type = e1000_nvm_eeprom_spi;
345 346

	/* NVM Function Pointers */
347 348 349 350 351 352 353 354 355 356 357
	nvm->ops.acquire = igb_acquire_nvm_82575;
	nvm->ops.release = igb_release_nvm_82575;
	nvm->ops.write = igb_write_nvm_spi;
	nvm->ops.validate = igb_validate_nvm_checksum;
	nvm->ops.update = igb_update_nvm_checksum;
	if (nvm->word_size < (1 << 15))
		nvm->ops.read = igb_read_nvm_eerd;
	else
		nvm->ops.read = igb_read_nvm_spi;

	/* override generic family function pointers for specific descendants */
358 359 360 361 362
	switch (hw->mac.type) {
	case e1000_82580:
		nvm->ops.validate = igb_validate_nvm_checksum_82580;
		nvm->ops.update = igb_update_nvm_checksum_82580;
		break;
363
	case e1000_i354:
364 365 366 367 368 369 370 371 372 373 374
	case e1000_i350:
		nvm->ops.validate = igb_validate_nvm_checksum_i350;
		nvm->ops.update = igb_update_nvm_checksum_i350;
		break;
	default:
		break;
	}

	return 0;
}

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
/**
 *  igb_init_mac_params_82575 - Init MAC func ptrs.
 *  @hw: pointer to the HW structure
 **/
static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;

	/* Set mta register count */
	mac->mta_reg_count = 128;
	/* Set rar entry count */
	switch (mac->type) {
	case e1000_82576:
		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
		break;
	case e1000_82580:
		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
		break;
	case e1000_i350:
395
	case e1000_i354:
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
		break;
	default:
		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
		break;
	}
	/* reset */
	if (mac->type >= e1000_82580)
		mac->ops.reset_hw = igb_reset_hw_82580;
	else
		mac->ops.reset_hw = igb_reset_hw_82575;

	if (mac->type >= e1000_i210) {
		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;

	} else {
		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
	}

	/* Set if part includes ASF firmware */
	mac->asf_firmware_present = true;
	/* Set if manageability features are enabled. */
	mac->arc_subsystem_valid =
		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
			? true : false;
	/* enable EEE on i350 parts and later parts */
	if (mac->type >= e1000_i350)
		dev_spec->eee_disable = false;
	else
		dev_spec->eee_disable = true;
428 429 430
	/* Allow a single clear of the SW semaphore on I210 and newer */
	if (mac->type >= e1000_i210)
		dev_spec->clear_semaphore_once = true;
431 432 433 434 435 436
	/* physical interface link setup */
	mac->ops.setup_physical_interface =
		(hw->phy.media_type == e1000_media_type_copper)
			? igb_setup_copper_link_82575
			: igb_setup_serdes_link_82575;

437 438 439 440 441 442 443 444 445 446 447 448 449
	if (mac->type == e1000_82580) {
		switch (hw->device_id) {
		/* feature not supported on these id's */
		case E1000_DEV_ID_DH89XXCC_SGMII:
		case E1000_DEV_ID_DH89XXCC_SERDES:
		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
		case E1000_DEV_ID_DH89XXCC_SFP:
			break;
		default:
			hw->dev_spec._82575.mas_capable = true;
			break;
		}
	}
450 451 452
	return 0;
}

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
/**
 *  igb_set_sfp_media_type_82575 - derives SFP module media type.
 *  @hw: pointer to the HW structure
 *
 *  The media type is chosen based on SFP module.
 *  compatibility flags retrieved from SFP ID EEPROM.
 **/
static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
{
	s32 ret_val = E1000_ERR_CONFIG;
	u32 ctrl_ext = 0;
	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
	u8 tranceiver_type = 0;
	s32 timeout = 3;

	/* Turn I2C interface ON and power on sfp cage */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);

	wrfl();

	/* Read SFP module data */
	while (timeout) {
		ret_val = igb_read_sfp_data_byte(hw,
			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
			&tranceiver_type);
		if (ret_val == 0)
			break;
		msleep(100);
		timeout--;
	}
	if (ret_val != 0)
		goto out;

	ret_val = igb_read_sfp_data_byte(hw,
			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
			(u8 *)eth_flags);
	if (ret_val != 0)
		goto out;

	/* Check if there is some SFP module plugged and powered */
	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
		dev_spec->module_plugged = true;
		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
			hw->phy.media_type = e1000_media_type_internal_serdes;
		} else if (eth_flags->e100_base_fx) {
			dev_spec->sgmii_active = true;
			hw->phy.media_type = e1000_media_type_internal_serdes;
		} else if (eth_flags->e1000_base_t) {
			dev_spec->sgmii_active = true;
			hw->phy.media_type = e1000_media_type_copper;
		} else {
			hw->phy.media_type = e1000_media_type_unknown;
			hw_dbg("PHY module has not been recognized\n");
			goto out;
		}
	} else {
		hw->phy.media_type = e1000_media_type_unknown;
	}
	ret_val = 0;
out:
	/* Restore I2C interface setting */
	wr32(E1000_CTRL_EXT, ctrl_ext);
	return ret_val;
}

522 523 524
static s32 igb_get_invariants_82575(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
525
	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
526 527
	s32 ret_val;
	u32 ctrl_ext = 0;
528
	u32 link_mode = 0;
529 530 531 532 533 534 535

	switch (hw->device_id) {
	case E1000_DEV_ID_82575EB_COPPER:
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		mac->type = e1000_82575;
		break;
A
Alexander Duyck 已提交
536
	case E1000_DEV_ID_82576:
537
	case E1000_DEV_ID_82576_NS:
538
	case E1000_DEV_ID_82576_NS_SERDES:
A
Alexander Duyck 已提交
539 540
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
541
	case E1000_DEV_ID_82576_QUAD_COPPER:
542
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
543
	case E1000_DEV_ID_82576_SERDES_QUAD:
A
Alexander Duyck 已提交
544 545
		mac->type = e1000_82576;
		break;
A
Alexander Duyck 已提交
546 547
	case E1000_DEV_ID_82580_COPPER:
	case E1000_DEV_ID_82580_FIBER:
548
	case E1000_DEV_ID_82580_QUAD_FIBER:
A
Alexander Duyck 已提交
549 550 551
	case E1000_DEV_ID_82580_SERDES:
	case E1000_DEV_ID_82580_SGMII:
	case E1000_DEV_ID_82580_COPPER_DUAL:
552 553
	case E1000_DEV_ID_DH89XXCC_SGMII:
	case E1000_DEV_ID_DH89XXCC_SERDES:
G
Gasparakis, Joseph 已提交
554 555
	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
	case E1000_DEV_ID_DH89XXCC_SFP:
A
Alexander Duyck 已提交
556 557
		mac->type = e1000_82580;
		break;
558 559 560 561 562 563
	case E1000_DEV_ID_I350_COPPER:
	case E1000_DEV_ID_I350_FIBER:
	case E1000_DEV_ID_I350_SERDES:
	case E1000_DEV_ID_I350_SGMII:
		mac->type = e1000_i350;
		break;
564 565 566 567
	case E1000_DEV_ID_I210_COPPER:
	case E1000_DEV_ID_I210_FIBER:
	case E1000_DEV_ID_I210_SERDES:
	case E1000_DEV_ID_I210_SGMII:
568 569
	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
570 571 572 573 574
		mac->type = e1000_i210;
		break;
	case E1000_DEV_ID_I211_COPPER:
		mac->type = e1000_i211;
		break;
575 576 577 578 579
	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
	case E1000_DEV_ID_I354_SGMII:
	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
		mac->type = e1000_i354;
		break;
580 581 582 583 584
	default:
		return -E1000_ERR_MAC_INIT;
	}

	/* Set media type */
585
	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
586 587 588 589 590
	 * based on the EEPROM. We cannot rely upon device ID. There
	 * is no distinguishable difference between fiber and internal
	 * SerDes mode on the 82575. There can be an external PHY attached
	 * on the SGMII interface. For this, we'll set sgmii_active to true.
	 */
591
	hw->phy.media_type = e1000_media_type_copper;
592
	dev_spec->sgmii_active = false;
593
	dev_spec->module_plugged = false;
594 595

	ctrl_ext = rd32(E1000_CTRL_EXT);
596 597 598

	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
	switch (link_mode) {
A
Alexander Duyck 已提交
599
	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
600
		hw->phy.media_type = e1000_media_type_internal_serdes;
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
		break;
	case E1000_CTRL_EXT_LINK_MODE_SGMII:
		/* Get phy control interface type set (MDIO vs. I2C)*/
		if (igb_sgmii_uses_mdio_82575(hw)) {
			hw->phy.media_type = e1000_media_type_copper;
			dev_spec->sgmii_active = true;
			break;
		}
		/* fall through for I2C based SGMII */
	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
		/* read media type from SFP EEPROM */
		ret_val = igb_set_sfp_media_type_82575(hw);
		if ((ret_val != 0) ||
		    (hw->phy.media_type == e1000_media_type_unknown)) {
			/* If media type was not identified then return media
			 * type defined by the CTRL_EXT settings.
			 */
			hw->phy.media_type = e1000_media_type_internal_serdes;

			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
				hw->phy.media_type = e1000_media_type_copper;
				dev_spec->sgmii_active = true;
			}

			break;
		}

		/* do not change link mode for 100BaseFX */
		if (dev_spec->eth_flags.e100_base_fx)
			break;

		/* change current link mode setting */
		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;

		if (hw->phy.media_type == e1000_media_type_copper)
			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
		else
			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;

		wr32(E1000_CTRL_EXT, ctrl_ext);

642 643 644
		break;
	default:
		break;
645
	}
646

647 648 649 650
	/* mac initialization and operations */
	ret_val = igb_init_mac_params_82575(hw);
	if (ret_val)
		goto out;
651 652

	/* NVM initialization */
653
	ret_val = igb_init_nvm_params_82575(hw);
654 655 656 657 658 659 660 661 662
	switch (hw->mac.type) {
	case e1000_i210:
	case e1000_i211:
		ret_val = igb_init_nvm_params_i210(hw);
		break;
	default:
		break;
	}

663 664
	if (ret_val)
		goto out;
665

666 667 668 669
	/* if part supports SR-IOV then initialize mailbox parameters */
	switch (mac->type) {
	case e1000_82576:
	case e1000_i350:
670
		igb_init_mbx_params_pf(hw);
671 672 673 674
		break;
	default:
		break;
	}
675

676
	/* setup PHY parameters */
677
	ret_val = igb_init_phy_params_82575(hw);
678

679 680
out:
	return ret_val;
681 682 683
}

/**
684
 *  igb_acquire_phy_82575 - Acquire rights to access PHY
685 686 687 688 689 690 691
 *  @hw: pointer to the HW structure
 *
 *  Acquire access rights to the correct PHY.  This is a
 *  function pointer entry point called by the api module.
 **/
static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
{
692
	u16 mask = E1000_SWFW_PHY0_SM;
693

694 695
	if (hw->bus.func == E1000_FUNC_1)
		mask = E1000_SWFW_PHY1_SM;
696 697 698 699
	else if (hw->bus.func == E1000_FUNC_2)
		mask = E1000_SWFW_PHY2_SM;
	else if (hw->bus.func == E1000_FUNC_3)
		mask = E1000_SWFW_PHY3_SM;
700

701
	return hw->mac.ops.acquire_swfw_sync(hw, mask);
702 703 704
}

/**
705
 *  igb_release_phy_82575 - Release rights to access PHY
706 707 708 709 710 711 712
 *  @hw: pointer to the HW structure
 *
 *  A wrapper to release access rights to the correct PHY.  This is a
 *  function pointer entry point called by the api module.
 **/
static void igb_release_phy_82575(struct e1000_hw *hw)
{
713 714 715 716
	u16 mask = E1000_SWFW_PHY0_SM;

	if (hw->bus.func == E1000_FUNC_1)
		mask = E1000_SWFW_PHY1_SM;
717 718 719 720
	else if (hw->bus.func == E1000_FUNC_2)
		mask = E1000_SWFW_PHY2_SM;
	else if (hw->bus.func == E1000_FUNC_3)
		mask = E1000_SWFW_PHY3_SM;
721

722
	hw->mac.ops.release_swfw_sync(hw, mask);
723 724 725
}

/**
726
 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
727 728 729 730 731 732 733 734 735 736
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the PHY register at offset using the serial gigabit media independent
 *  interface and stores the retrieved information in data.
 **/
static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
					  u16 *data)
{
737
	s32 ret_val = -E1000_ERR_PARAM;
738 739

	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
740
		hw_dbg("PHY Address %u is out of range\n", offset);
741
		goto out;
742 743
	}

744 745 746
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;
747

748
	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
749

750 751 752 753
	hw->phy.ops.release(hw);

out:
	return ret_val;
754 755 756
}

/**
757
 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
758 759 760 761 762 763 764 765 766 767
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Writes the data to PHY register at the offset using the serial gigabit
 *  media independent interface.
 **/
static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
					   u16 data)
{
768 769
	s32 ret_val = -E1000_ERR_PARAM;

770 771

	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
772
		hw_dbg("PHY Address %d is out of range\n", offset);
773
		goto out;
774 775
	}

776 777 778
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;
779

780
	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
781

782 783 784 785
	hw->phy.ops.release(hw);

out:
	return ret_val;
786 787 788
}

/**
789
 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
790 791
 *  @hw: pointer to the HW structure
 *
792
 *  Retrieves the PHY address and ID for both PHY's which do and do not use
793 794 795 796 797 798 799
 *  sgmi interface.
 **/
static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32  ret_val = 0;
	u16 phy_id;
800
	u32 ctrl_ext;
801
	u32 mdic;
802

803 804 805 806
	/* Extra read required for some PHY's on i354 */
	if (hw->mac.type == e1000_i354)
		igb_get_phy_id(hw);

807
	/* For SGMII PHYs, we try the list of possible addresses until
808 809 810 811 812 813 814 815 816 817 818
	 * we find one that works.  For non-SGMII PHYs
	 * (e.g. integrated copper PHYs), an address of 1 should
	 * work.  The result of this function should mean phy->phy_addr
	 * and phy->id are set correctly.
	 */
	if (!(igb_sgmii_active_82575(hw))) {
		phy->addr = 1;
		ret_val = igb_get_phy_id(hw);
		goto out;
	}

819 820 821 822 823 824 825 826 827 828
	if (igb_sgmii_uses_mdio_82575(hw)) {
		switch (hw->mac.type) {
		case e1000_82575:
		case e1000_82576:
			mdic = rd32(E1000_MDIC);
			mdic &= E1000_MDIC_PHY_MASK;
			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
			break;
		case e1000_82580:
		case e1000_i350:
829
		case e1000_i354:
830 831
		case e1000_i210:
		case e1000_i211:
832 833 834 835 836 837 838 839 840 841 842 843
			mdic = rd32(E1000_MDICNFG);
			mdic &= E1000_MDICNFG_PHY_MASK;
			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
			break;
		default:
			ret_val = -E1000_ERR_PHY;
			goto out;
		}
		ret_val = igb_get_phy_id(hw);
		goto out;
	}

844 845 846 847 848 849
	/* Power on sgmii phy if it is disabled */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
	wrfl();
	msleep(300);

850
	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
851 852 853 854 855
	 * Therefore, we need to test 1-7
	 */
	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
		if (ret_val == 0) {
856 857
			hw_dbg("Vendor ID 0x%08X read at address %u\n",
			       phy_id, phy->addr);
858
			/* At the time of this writing, The M88 part is
859 860 861 862 863
			 * the only supported SGMII PHY product.
			 */
			if (phy_id == M88_VENDOR)
				break;
		} else {
864
			hw_dbg("PHY address %u was unreadable\n", phy->addr);
865 866 867 868 869 870 871 872
		}
	}

	/* A valid PHY type couldn't be found. */
	if (phy->addr == 8) {
		phy->addr = 0;
		ret_val = -E1000_ERR_PHY;
		goto out;
873 874
	} else {
		ret_val = igb_get_phy_id(hw);
875 876
	}

877 878
	/* restore previous sfp cage power state */
	wr32(E1000_CTRL_EXT, ctrl_ext);
879 880 881 882 883 884

out:
	return ret_val;
}

/**
885
 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
886 887 888 889 890 891 892 893
 *  @hw: pointer to the HW structure
 *
 *  Resets the PHY using the serial gigabit media independent interface.
 **/
static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
{
	s32 ret_val;

894
	/* This isn't a true "hard" reset, but is the only reset
895 896 897
	 * available to us at this time.
	 */

898
	hw_dbg("Soft resetting SGMII attached PHY...\n");
899

900
	/* SFP documentation requires the following to configure the SPF module
901 902
	 * to work on SGMII.  No further documentation is given.
	 */
A
Alexander Duyck 已提交
903
	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
904 905 906 907 908 909 910 911 912 913
	if (ret_val)
		goto out;

	ret_val = igb_phy_sw_reset(hw);

out:
	return ret_val;
}

/**
914
 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU D0 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

A
Alexander Duyck 已提交
932
	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
933 934 935 936 937
	if (ret_val)
		goto out;

	if (active) {
		data |= IGP02E1000_PM_D0_LPLU;
A
Alexander Duyck 已提交
938
		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
939
						 data);
940 941 942 943
		if (ret_val)
			goto out;

		/* When LPLU is enabled, we should disable SmartSpeed */
A
Alexander Duyck 已提交
944
		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
945
						&data);
946
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
A
Alexander Duyck 已提交
947
		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
948
						 data);
949 950 951 952
		if (ret_val)
			goto out;
	} else {
		data &= ~IGP02E1000_PM_D0_LPLU;
A
Alexander Duyck 已提交
953
		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
954
						 data);
955
		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
956 957 958 959 960
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
		 * SmartSpeed, so performance is maintained.
		 */
		if (phy->smart_speed == e1000_smart_speed_on) {
A
Alexander Duyck 已提交
961
			ret_val = phy->ops.read_reg(hw,
962
					IGP01E1000_PHY_PORT_CONFIG, &data);
963 964 965 966
			if (ret_val)
				goto out;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
A
Alexander Duyck 已提交
967
			ret_val = phy->ops.write_reg(hw,
968
					IGP01E1000_PHY_PORT_CONFIG, data);
969 970 971
			if (ret_val)
				goto out;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
A
Alexander Duyck 已提交
972
			ret_val = phy->ops.read_reg(hw,
973
					IGP01E1000_PHY_PORT_CONFIG, &data);
974 975 976 977
			if (ret_val)
				goto out;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
A
Alexander Duyck 已提交
978
			ret_val = phy->ops.write_reg(hw,
979
					IGP01E1000_PHY_PORT_CONFIG, data);
980 981 982 983 984 985 986 987 988
			if (ret_val)
				goto out;
		}
	}

out:
	return ret_val;
}

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
/**
 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU D0 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	u16 data;

	data = rd32(E1000_82580_PHY_POWER_MGMT);

	if (active) {
		data |= E1000_82580_PM_D0_LPLU;

		/* When LPLU is enabled, we should disable SmartSpeed */
		data &= ~E1000_82580_PM_SPD;
	} else {
		data &= ~E1000_82580_PM_D0_LPLU;

1017
		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
		 * SmartSpeed, so performance is maintained.
		 */
		if (phy->smart_speed == e1000_smart_speed_on)
			data |= E1000_82580_PM_SPD;
		else if (phy->smart_speed == e1000_smart_speed_off)
			data &= ~E1000_82580_PM_SPD; }

	wr32(E1000_82580_PHY_POWER_MGMT, data);
T
Todd Fujinaka 已提交
1028
	return 0;
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
}

/**
 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
 *  @hw: pointer to the HW structure
 *  @active: boolean used to enable/disable lplu
 *
 *  Success returns 0, Failure returns 1
 *
 *  The low power link up (lplu) state is set to the power management level D3
 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
 *  is used during Dx states where the power conservation is most important.
 *  During driver activity, SmartSpeed should be enabled so performance is
 *  maintained.
 **/
1045
static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1046 1047 1048 1049 1050 1051 1052 1053
{
	struct e1000_phy_info *phy = &hw->phy;
	u16 data;

	data = rd32(E1000_82580_PHY_POWER_MGMT);

	if (!active) {
		data &= ~E1000_82580_PM_D3_LPLU;
1054
		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
		 * SmartSpeed, so performance is maintained.
		 */
		if (phy->smart_speed == e1000_smart_speed_on)
			data |= E1000_82580_PM_SPD;
		else if (phy->smart_speed == e1000_smart_speed_off)
			data &= ~E1000_82580_PM_SPD;
	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
		data |= E1000_82580_PM_D3_LPLU;
		/* When LPLU is enabled, we should disable SmartSpeed */
		data &= ~E1000_82580_PM_SPD;
	}

	wr32(E1000_82580_PHY_POWER_MGMT, data);
T
Todd Fujinaka 已提交
1072
	return 0;
1073 1074
}

1075
/**
1076
 *  igb_acquire_nvm_82575 - Request for access to EEPROM
1077 1078
 *  @hw: pointer to the HW structure
 *
1079
 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1080 1081 1082 1083 1084 1085 1086 1087
 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
 *  Return successful if access grant bit set, else clear the request for
 *  EEPROM access and return -E1000_ERR_NVM (-1).
 **/
static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
{
	s32 ret_val;

1088
	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1089 1090 1091 1092 1093 1094
	if (ret_val)
		goto out;

	ret_val = igb_acquire_nvm(hw);

	if (ret_val)
1095
		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1096 1097 1098 1099 1100 1101

out:
	return ret_val;
}

/**
1102
 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1103 1104 1105 1106 1107 1108 1109 1110
 *  @hw: pointer to the HW structure
 *
 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
 *  then release the semaphores acquired.
 **/
static void igb_release_nvm_82575(struct e1000_hw *hw)
{
	igb_release_nvm(hw);
1111
	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1112 1113 1114
}

/**
1115
 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
 *  @hw: pointer to the HW structure
 *  @mask: specifies which semaphore to acquire
 *
 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 *  will also specify which port we're acquiring the lock for.
 **/
static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;
	u32 swmask = mask;
	u32 fwmask = mask << 16;
	s32 ret_val = 0;
	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */

	while (i < timeout) {
		if (igb_get_hw_semaphore(hw)) {
			ret_val = -E1000_ERR_SWFW_SYNC;
			goto out;
		}

		swfw_sync = rd32(E1000_SW_FW_SYNC);
		if (!(swfw_sync & (fwmask | swmask)))
			break;

1140
		/* Firmware currently using resource (fwmask)
1141 1142 1143 1144 1145 1146 1147 1148
		 * or other software thread using resource (swmask)
		 */
		igb_put_hw_semaphore(hw);
		mdelay(5);
		i++;
	}

	if (i == timeout) {
1149
		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
		ret_val = -E1000_ERR_SWFW_SYNC;
		goto out;
	}

	swfw_sync |= swmask;
	wr32(E1000_SW_FW_SYNC, swfw_sync);

	igb_put_hw_semaphore(hw);

out:
	return ret_val;
}

/**
1164
 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
 *  @hw: pointer to the HW structure
 *  @mask: specifies which semaphore to acquire
 *
 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 *  will also specify which port we're releasing the lock for.
 **/
static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;

1175 1176
	while (igb_get_hw_semaphore(hw) != 0)
		; /* Empty */
1177 1178 1179 1180 1181 1182 1183 1184 1185

	swfw_sync = rd32(E1000_SW_FW_SYNC);
	swfw_sync &= ~mask;
	wr32(E1000_SW_FW_SYNC, swfw_sync);

	igb_put_hw_semaphore(hw);
}

/**
1186
 *  igb_get_cfg_done_82575 - Read config done bit
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
 *  @hw: pointer to the HW structure
 *
 *  Read the management control register for the config done bit for
 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
 *  to read the config done bit, so an error is *ONLY* logged and returns
 *  0.  If we were to return with error, EEPROM-less silicon
 *  would not be able to be reset or change link.
 **/
static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
{
	s32 timeout = PHY_CFG_TIMEOUT;
	u32 mask = E1000_NVM_CFG_DONE_PORT_0;

	if (hw->bus.func == 1)
		mask = E1000_NVM_CFG_DONE_PORT_1;
A
Alexander Duyck 已提交
1202 1203 1204 1205
	else if (hw->bus.func == E1000_FUNC_2)
		mask = E1000_NVM_CFG_DONE_PORT_2;
	else if (hw->bus.func == E1000_FUNC_3)
		mask = E1000_NVM_CFG_DONE_PORT_3;
1206 1207 1208 1209

	while (timeout) {
		if (rd32(E1000_EEMNGCTL) & mask)
			break;
1210
		usleep_range(1000, 2000);
1211 1212 1213
		timeout--;
	}
	if (!timeout)
1214
		hw_dbg("MNG configuration cycle has not completed.\n");
1215 1216 1217 1218 1219 1220

	/* If EEPROM is not marked present, init the PHY manually */
	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
	    (hw->phy.type == e1000_phy_igp_3))
		igb_phy_init_script_igp3(hw);

T
Todd Fujinaka 已提交
1221
	return 0;
1222 1223
}

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
/**
 *  igb_get_link_up_info_82575 - Get link speed/duplex info
 *  @hw: pointer to the HW structure
 *  @speed: stores the current speed
 *  @duplex: stores the current duplex
 *
 *  This is a wrapper function, if using the serial gigabit media independent
 *  interface, use PCS to retrieve the link speed and duplex information.
 *  Otherwise, use the generic function to get the link speed and duplex info.
 **/
static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
					u16 *duplex)
{
	s32 ret_val;

	if (hw->phy.media_type != e1000_media_type_copper)
		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
							       duplex);
	else
		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
								    duplex);

	return ret_val;
}

1249
/**
1250
 *  igb_check_for_link_82575 - Check for link
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
 *  @hw: pointer to the HW structure
 *
 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
 *  use the generic interface for determining link.
 **/
static s32 igb_check_for_link_82575(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 speed, duplex;

1261
	if (hw->phy.media_type != e1000_media_type_copper) {
1262
		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1263
							     &duplex);
1264
		/* Use this flag to determine if link needs to be checked or
1265 1266 1267 1268
		 * not.  If  we have link clear the flag so that we do not
		 * continue to check for link.
		 */
		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1269 1270 1271 1272 1273 1274 1275 1276 1277

		/* Configure Flow Control now that Auto-Neg has completed.
		 * First, we need to restore the desired flow control
		 * settings because we may have had to re-autoneg with a
		 * different link partner.
		 */
		ret_val = igb_config_fc_after_link_up(hw);
		if (ret_val)
			hw_dbg("Error configuring flow control\n");
1278
	} else {
1279
		ret_val = igb_check_for_copper_link(hw);
1280
	}
1281 1282 1283

	return ret_val;
}
1284

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
/**
 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
 *  @hw: pointer to the HW structure
 **/
void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
{
	u32 reg;


	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
	    !igb_sgmii_active_82575(hw))
		return;

	/* Enable PCS to turn on link */
	reg = rd32(E1000_PCS_CFG0);
	reg |= E1000_PCS_CFG_PCS_EN;
	wr32(E1000_PCS_CFG0, reg);

	/* Power up the laser */
	reg = rd32(E1000_CTRL_EXT);
	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
	wr32(E1000_CTRL_EXT, reg);

	/* flush the write to verify completion */
	wrfl();
1310
	usleep_range(1000, 2000);
1311 1312
}

1313
/**
1314
 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1315 1316 1317 1318
 *  @hw: pointer to the HW structure
 *  @speed: stores the current speed
 *  @duplex: stores the current duplex
 *
1319
 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1320 1321 1322 1323 1324 1325
 *  duplex, then store the values in the pointers provided.
 **/
static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
						u16 *duplex)
{
	struct e1000_mac_info *mac = &hw->mac;
1326
	u32 pcs, status;
1327 1328 1329 1330 1331 1332

	/* Set up defaults for the return values of this function */
	mac->serdes_has_link = false;
	*speed = 0;
	*duplex = 0;

1333
	/* Read the PCS Status register for link state. For non-copper mode,
1334 1335 1336 1337 1338
	 * the status register is not accurate. The PCS status register is
	 * used instead.
	 */
	pcs = rd32(E1000_PCS_LSTAT);

1339
	/* The link up bit determines when link is up on autoneg. The sync ok
1340 1341 1342 1343 1344 1345 1346
	 * gets set once both sides sync up and agree upon link. Stable link
	 * can be determined by checking for both link up and link sync ok
	 */
	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
		mac->serdes_has_link = true;

		/* Detect and store PCS speed */
1347
		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1348
			*speed = SPEED_1000;
1349
		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1350
			*speed = SPEED_100;
1351
		else
1352 1353 1354
			*speed = SPEED_10;

		/* Detect and store PCS duplex */
1355
		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1356
			*duplex = FULL_DUPLEX;
1357
		else
1358
			*duplex = HALF_DUPLEX;
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369

	/* Check if it is an I354 2.5Gb backplane connection. */
		if (mac->type == e1000_i354) {
			status = rd32(E1000_STATUS);
			if ((status & E1000_STATUS_2P5_SKU) &&
			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
				*speed = SPEED_2500;
				*duplex = FULL_DUPLEX;
				hw_dbg("2500 Mbs, ");
				hw_dbg("Full Duplex\n");
			}
1370
		}
1371

1372 1373 1374 1375 1376
	}

	return 0;
}

A
Alexander Duyck 已提交
1377
/**
1378
 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1379 1380
 *  @hw: pointer to the HW structure
 *
A
Alexander Duyck 已提交
1381 1382
 *  In the case of fiber serdes, shut down optics and PCS on driver unload
 *  when management pass thru is not enabled.
1383
 **/
1384
void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1385
{
A
Alexander Duyck 已提交
1386 1387
	u32 reg;

1388
	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1389
	    igb_sgmii_active_82575(hw))
A
Alexander Duyck 已提交
1390 1391
		return;

1392
	if (!igb_enable_mng_pass_thru(hw)) {
A
Alexander Duyck 已提交
1393 1394 1395 1396 1397 1398 1399
		/* Disable PCS to turn off link */
		reg = rd32(E1000_PCS_CFG0);
		reg &= ~E1000_PCS_CFG_PCS_EN;
		wr32(E1000_PCS_CFG0, reg);

		/* shutdown the laser */
		reg = rd32(E1000_CTRL_EXT);
1400
		reg |= E1000_CTRL_EXT_SDP3_DATA;
A
Alexander Duyck 已提交
1401 1402 1403 1404
		wr32(E1000_CTRL_EXT, reg);

		/* flush the write to verify completion */
		wrfl();
1405
		usleep_range(1000, 2000);
A
Alexander Duyck 已提交
1406
	}
1407 1408 1409
}

/**
1410
 *  igb_reset_hw_82575 - Reset hardware
1411 1412 1413 1414 1415 1416 1417
 *  @hw: pointer to the HW structure
 *
 *  This resets the hardware into a known state.  This is a
 *  function pointer entry point called by the api module.
 **/
static s32 igb_reset_hw_82575(struct e1000_hw *hw)
{
1418
	u32 ctrl;
1419 1420
	s32 ret_val;

1421
	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1422 1423 1424 1425
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = igb_disable_pcie_master(hw);
	if (ret_val)
1426
		hw_dbg("PCI-E Master disable polling has failed.\n");
1427

1428 1429
	/* set the completion timeout for interface */
	ret_val = igb_set_pcie_completion_timeout(hw);
1430
	if (ret_val)
1431 1432
		hw_dbg("PCI-E Set completion timeout has failed.\n");

1433
	hw_dbg("Masking off all interrupts\n");
1434 1435 1436 1437 1438 1439
	wr32(E1000_IMC, 0xffffffff);

	wr32(E1000_RCTL, 0);
	wr32(E1000_TCTL, E1000_TCTL_PSP);
	wrfl();

1440
	usleep_range(10000, 20000);
1441 1442 1443

	ctrl = rd32(E1000_CTRL);

1444
	hw_dbg("Issuing a global reset to MAC\n");
1445 1446 1447 1448
	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);

	ret_val = igb_get_auto_rd_done(hw);
	if (ret_val) {
1449
		/* When auto config read does not complete, do not
1450 1451 1452
		 * return with an error. This can happen in situations
		 * where there is no eeprom and prevents getting link.
		 */
1453
		hw_dbg("Auto Read Done did not complete\n");
1454 1455 1456 1457 1458 1459 1460 1461
	}

	/* If EEPROM is not present, run manual init scripts */
	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
		igb_reset_init_script_82575(hw);

	/* Clear any pending interrupt events. */
	wr32(E1000_IMC, 0xffffffff);
1462
	rd32(E1000_ICR);
1463

1464 1465
	/* Install any alternate MAC address into RAR0 */
	ret_val = igb_check_alt_mac_addr(hw);
1466 1467 1468 1469 1470

	return ret_val;
}

/**
1471
 *  igb_init_hw_82575 - Initialize hardware
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
 *  @hw: pointer to the HW structure
 *
 *  This inits the hardware readying it for operation.
 **/
static s32 igb_init_hw_82575(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	u16 i, rar_count = mac->rar_entry_count;

1482 1483 1484 1485 1486 1487 1488
	if ((hw->mac.type >= e1000_i210) &&
	    !(igb_get_flash_presence_i210(hw))) {
		ret_val = igb_pll_workaround_i210(hw);
		if (ret_val)
			return ret_val;
	}

1489 1490 1491
	/* Initialize identification LED */
	ret_val = igb_id_led_init(hw);
	if (ret_val) {
1492
		hw_dbg("Error initializing identification LED\n");
1493 1494 1495 1496
		/* This is not fatal and we should not stop init due to this */
	}

	/* Disabling VLAN filtering */
1497
	hw_dbg("Initializing the IEEE VLAN\n");
1498
	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1499 1500 1501
		igb_clear_vfta_i350(hw);
	else
		igb_clear_vfta(hw);
1502 1503

	/* Setup the receive address */
1504 1505
	igb_init_rx_addrs(hw, rar_count);

1506
	/* Zero out the Multicast HASH table */
1507
	hw_dbg("Zeroing the MTA\n");
1508 1509 1510
	for (i = 0; i < mac->mta_reg_count; i++)
		array_wr32(E1000_MTA, i, 0);

1511 1512 1513 1514 1515
	/* Zero out the Unicast HASH table */
	hw_dbg("Zeroing the UTA\n");
	for (i = 0; i < mac->uta_reg_count; i++)
		array_wr32(E1000_UTA, i, 0);

1516 1517 1518
	/* Setup link and flow control */
	ret_val = igb_setup_link(hw);

1519
	/* Clear all of the statistics registers (clear on read).  It is
1520 1521 1522 1523 1524 1525 1526 1527 1528
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	igb_clear_hw_cntrs_82575(hw);
	return ret_val;
}

/**
1529
 *  igb_setup_copper_link_82575 - Configure copper link settings
1530 1531 1532 1533 1534 1535 1536 1537
 *  @hw: pointer to the HW structure
 *
 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
 *  for link, once link is established calls to configure collision distance
 *  and flow control are called.
 **/
static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
{
1538
	u32 ctrl;
1539
	s32  ret_val;
1540
	u32 phpm_reg;
1541 1542 1543 1544 1545 1546

	ctrl = rd32(E1000_CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	wr32(E1000_CTRL, ctrl);

1547 1548 1549 1550 1551 1552
	/* Clear Go Link Disconnect bit on supported devices */
	switch (hw->mac.type) {
	case e1000_82580:
	case e1000_i350:
	case e1000_i210:
	case e1000_i211:
1553 1554 1555
		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1556 1557 1558
		break;
	default:
		break;
1559 1560
	}

1561 1562 1563 1564 1565
	ret_val = igb_setup_serdes_link_82575(hw);
	if (ret_val)
		goto out;

	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
A
Alexander Duyck 已提交
1566 1567 1568
		/* allow time for SFP cage time to power up phy */
		msleep(300);

1569 1570 1571 1572 1573 1574
		ret_val = hw->phy.ops.reset(hw);
		if (ret_val) {
			hw_dbg("Error resetting the PHY.\n");
			goto out;
		}
	}
1575
	switch (hw->phy.type) {
1576
	case e1000_phy_i210:
1577
	case e1000_phy_m88:
1578 1579 1580
		switch (hw->phy.id) {
		case I347AT4_E_PHY_ID:
		case M88E1112_E_PHY_ID:
1581
		case M88E1543_E_PHY_ID:
1582
		case I210_I_PHY_ID:
1583
			ret_val = igb_copper_link_setup_m88_gen2(hw);
1584 1585
			break;
		default:
1586
			ret_val = igb_copper_link_setup_m88(hw);
1587 1588
			break;
		}
1589 1590 1591 1592
		break;
	case e1000_phy_igp_3:
		ret_val = igb_copper_link_setup_igp(hw);
		break;
A
Alexander Duyck 已提交
1593 1594 1595
	case e1000_phy_82580:
		ret_val = igb_copper_link_setup_82580(hw);
		break;
1596 1597 1598 1599 1600 1601 1602 1603
	default:
		ret_val = -E1000_ERR_PHY;
		break;
	}

	if (ret_val)
		goto out;

1604
	ret_val = igb_setup_copper_link(hw);
1605 1606 1607 1608 1609
out:
	return ret_val;
}

/**
1610
 *  igb_setup_serdes_link_82575 - Setup link for serdes
1611 1612
 *  @hw: pointer to the HW structure
 *
1613 1614 1615 1616
 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
 *  used on copper connections where the serialized gigabit media independent
 *  interface (sgmii), or serdes fiber is being used.  Configures the link
 *  for auto-negotiation or forces speed/duplex.
1617
 **/
1618
static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1619
{
1620
	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
A
Alexander Duyck 已提交
1621
	bool pcs_autoneg;
T
Todd Fujinaka 已提交
1622
	s32 ret_val = 0;
1623
	u16 data;
1624 1625 1626

	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
	    !igb_sgmii_active_82575(hw))
1627 1628
		return ret_val;

1629

1630
	/* On the 82575, SerDes loopback mode persists until it is
1631 1632 1633 1634 1635 1636
	 * explicitly turned off or a power cycle is performed.  A read to
	 * the register does not indicate its status.  Therefore, we ensure
	 * loopback mode is disabled during initialization.
	 */
	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);

1637
	/* power on the sfp cage if present and turn on I2C */
A
Alexander Duyck 已提交
1638 1639
	ctrl_ext = rd32(E1000_CTRL_EXT);
	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1640
	ctrl_ext |= E1000_CTRL_I2C_ENA;
A
Alexander Duyck 已提交
1641
	wr32(E1000_CTRL_EXT, ctrl_ext);
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657

	ctrl_reg = rd32(E1000_CTRL);
	ctrl_reg |= E1000_CTRL_SLU;

	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
		/* set both sw defined pins */
		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;

		/* Set switch control to serdes energy detect */
		reg = rd32(E1000_CONNSW);
		reg |= E1000_CONNSW_ENRGSRC;
		wr32(E1000_CONNSW, reg);
	}

	reg = rd32(E1000_PCS_LCTL);

A
Alexander Duyck 已提交
1658 1659
	/* default pcs_autoneg to the same setting as mac autoneg */
	pcs_autoneg = hw->mac.autoneg;
1660

A
Alexander Duyck 已提交
1661 1662 1663 1664 1665
	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
	case E1000_CTRL_EXT_LINK_MODE_SGMII:
		/* sgmii mode lets the phy handle forcing speed/duplex */
		pcs_autoneg = true;
		/* autoneg time out should be disabled for SGMII mode */
1666
		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
A
Alexander Duyck 已提交
1667 1668 1669 1670 1671
		break;
	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
		/* disable PCS autoneg and support parallel detect only */
		pcs_autoneg = false;
	default:
1672 1673 1674 1675
		if (hw->mac.type == e1000_82575 ||
		    hw->mac.type == e1000_82576) {
			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
			if (ret_val) {
C
Carolyn Wyborny 已提交
1676
				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1677 1678 1679 1680 1681 1682 1683
				return ret_val;
			}

			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
				pcs_autoneg = false;
		}

1684
		/* non-SGMII modes only supports a speed of 1000/Full for the
A
Alexander Duyck 已提交
1685 1686 1687
		 * link so it is best to just force the MAC and let the pcs
		 * link either autoneg or be forced to 1000/Full
		 */
1688
		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1689
				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
A
Alexander Duyck 已提交
1690 1691 1692 1693

		/* set speed of 1000/Full if speed/duplex is forced */
		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
		break;
1694 1695
	}

1696
	wr32(E1000_CTRL, ctrl_reg);
1697

1698
	/* New SerDes mode allows for forcing speed or autonegotiating speed
1699 1700 1701 1702 1703 1704 1705
	 * at 1gb. Autoneg should be default set by most drivers. This is the
	 * mode that will be compatible with older link partners and switches.
	 * However, both are supported by the hardware and some drivers/tools.
	 */
	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);

A
Alexander Duyck 已提交
1706
	if (pcs_autoneg) {
1707
		/* Set PCS register for autoneg */
A
Alexander Duyck 已提交
1708
		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1709
		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730

		/* Disable force flow control for autoneg */
		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;

		/* Configure flow control advertisement for autoneg */
		anadv_reg = rd32(E1000_PCS_ANADV);
		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
		switch (hw->fc.requested_mode) {
		case e1000_fc_full:
		case e1000_fc_rx_pause:
			anadv_reg |= E1000_TXCW_ASM_DIR;
			anadv_reg |= E1000_TXCW_PAUSE;
			break;
		case e1000_fc_tx_pause:
			anadv_reg |= E1000_TXCW_ASM_DIR;
			break;
		default:
			break;
		}
		wr32(E1000_PCS_ANADV, anadv_reg);

A
Alexander Duyck 已提交
1731
		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1732
	} else {
A
Alexander Duyck 已提交
1733
		/* Set PCS register for forced link */
1734
		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
A
Alexander Duyck 已提交
1735

1736 1737 1738
		/* Force flow control for forced link */
		reg |= E1000_PCS_LCTL_FORCE_FCTRL;

A
Alexander Duyck 已提交
1739
		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1740
	}
1741

1742 1743
	wr32(E1000_PCS_LCTL, reg);

1744
	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1745
		igb_force_mac_fc(hw);
1746

1747
	return ret_val;
1748 1749 1750
}

/**
1751
 *  igb_sgmii_active_82575 - Return sgmii state
1752 1753 1754 1755 1756 1757 1758 1759
 *  @hw: pointer to the HW structure
 *
 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
 *  which can be enabled for use in the embedded applications.  Simply
 *  return the current state of the sgmii interface.
 **/
static bool igb_sgmii_active_82575(struct e1000_hw *hw)
{
1760 1761
	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
	return dev_spec->sgmii_active;
1762 1763 1764
}

/**
1765
 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1766 1767 1768 1769 1770 1771 1772 1773
 *  @hw: pointer to the HW structure
 *
 *  Inits recommended HW defaults after a reset when there is no EEPROM
 *  detected. This is only for the 82575.
 **/
static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
{
	if (hw->mac.type == e1000_82575) {
1774
		hw_dbg("Running reset init script for 82575\n");
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
		/* SerDes configuration via SERDESCTRL */
		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);

		/* CCM configuration via CCMCTL register */
		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);

		/* PCIe lanes configuration */
		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);

		/* PCIe PLL Configuration */
		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
	}

	return 0;
}

/**
1801
 *  igb_read_mac_addr_82575 - Read device MAC address
1802 1803 1804 1805 1806 1807
 *  @hw: pointer to the HW structure
 **/
static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
{
	s32 ret_val = 0;

1808
	/* If there's an alternate MAC address place it in RAR0
1809 1810 1811 1812 1813 1814 1815 1816
	 * so that it will override the Si installed default perm
	 * address.
	 */
	ret_val = igb_check_alt_mac_addr(hw);
	if (ret_val)
		goto out;

	ret_val = igb_read_mac_addr(hw);
1817

1818
out:
1819 1820 1821
	return ret_val;
}

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
/**
 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, remove the link.
 **/
void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
{
	/* If the management interface is not enabled, then power down */
	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
		igb_power_down_phy_copper(hw);
}

1836
/**
1837
 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1838 1839 1840 1841 1842 1843 1844 1845
 *  @hw: pointer to the HW structure
 *
 *  Clears the hardware counters by reading the counter registers.
 **/
static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
{
	igb_clear_hw_cntrs_base(hw);

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
	rd32(E1000_PRC64);
	rd32(E1000_PRC127);
	rd32(E1000_PRC255);
	rd32(E1000_PRC511);
	rd32(E1000_PRC1023);
	rd32(E1000_PRC1522);
	rd32(E1000_PTC64);
	rd32(E1000_PTC127);
	rd32(E1000_PTC255);
	rd32(E1000_PTC511);
	rd32(E1000_PTC1023);
	rd32(E1000_PTC1522);

	rd32(E1000_ALGNERRC);
	rd32(E1000_RXERRC);
	rd32(E1000_TNCRS);
	rd32(E1000_CEXTERR);
	rd32(E1000_TSCTC);
	rd32(E1000_TSCTFC);

	rd32(E1000_MGTPRC);
	rd32(E1000_MGTPDC);
	rd32(E1000_MGTPTC);

	rd32(E1000_IAC);
	rd32(E1000_ICRXOC);

	rd32(E1000_ICRXPTC);
	rd32(E1000_ICRXATC);
	rd32(E1000_ICTXPTC);
	rd32(E1000_ICTXATC);
	rd32(E1000_ICTXQEC);
	rd32(E1000_ICTXQMTC);
	rd32(E1000_ICRXDMTC);

	rd32(E1000_CBTMPC);
	rd32(E1000_HTDPMC);
	rd32(E1000_CBRMPC);
	rd32(E1000_RPTHC);
	rd32(E1000_HGPTC);
	rd32(E1000_HTCBDPC);
	rd32(E1000_HGORCL);
	rd32(E1000_HGORCH);
	rd32(E1000_HGOTCL);
	rd32(E1000_HGOTCH);
	rd32(E1000_LENERRS);
1892 1893

	/* This register should not be read in copper configurations */
1894 1895
	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
	    igb_sgmii_active_82575(hw))
1896
		rd32(E1000_SCVPC);
1897 1898
}

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
/**
 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
 *  @hw: pointer to the HW structure
 *
 *  After rx enable if managability is enabled then there is likely some
 *  bad data at the start of the fifo and possibly in the DMA fifo.  This
 *  function clears the fifos and flushes any packets that came in as rx was
 *  being enabled.
 **/
void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
{
	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
	int i, ms_wait;

	if (hw->mac.type != e1000_82575 ||
	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
		return;

	/* Disable all RX queues */
	for (i = 0; i < 4; i++) {
		rxdctl[i] = rd32(E1000_RXDCTL(i));
		wr32(E1000_RXDCTL(i),
		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
	}
	/* Poll all queues to verify they have shut down */
	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1925
		usleep_range(1000, 2000);
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
		rx_enabled = 0;
		for (i = 0; i < 4; i++)
			rx_enabled |= rd32(E1000_RXDCTL(i));
		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
			break;
	}

	if (ms_wait == 10)
		hw_dbg("Queue disable timed out after 10ms\n");

	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
	 * incoming packets are rejected.  Set enable and wait 2ms so that
	 * any packet that was coming in as RCTL.EN was set is flushed
	 */
	rfctl = rd32(E1000_RFCTL);
	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);

	rlpml = rd32(E1000_RLPML);
	wr32(E1000_RLPML, 0);

	rctl = rd32(E1000_RCTL);
	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
	temp_rctl |= E1000_RCTL_LPE;

	wr32(E1000_RCTL, temp_rctl);
	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
	wrfl();
1953
	usleep_range(2000, 3000);
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971

	/* Enable RX queues that were previously enabled and restore our
	 * previous state
	 */
	for (i = 0; i < 4; i++)
		wr32(E1000_RXDCTL(i), rxdctl[i]);
	wr32(E1000_RCTL, rctl);
	wrfl();

	wr32(E1000_RLPML, rlpml);
	wr32(E1000_RFCTL, rfctl);

	/* Flush receive errors generated by workaround */
	rd32(E1000_ROC);
	rd32(E1000_RNBC);
	rd32(E1000_MPC);
}

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
/**
 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
 *  @hw: pointer to the HW structure
 *
 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
 *  however the hardware default for these parts is 500us to 1ms which is less
 *  than the 10ms recommended by the pci-e spec.  To address this we need to
 *  increase the value to either 10ms to 200ms for capability version 1 config,
 *  or 16ms to 55ms for version 2.
 **/
static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
{
	u32 gcr = rd32(E1000_GCR);
	s32 ret_val = 0;
	u16 pcie_devctl2;

	/* only take action if timeout value is defaulted to 0 */
	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
		goto out;

1992
	/* if capabilities version is type 1 we can write the
1993 1994 1995 1996 1997 1998 1999
	 * timeout of 10ms to 200ms through the GCR register
	 */
	if (!(gcr & E1000_GCR_CAP_VER2)) {
		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
		goto out;
	}

2000
	/* for version 2 capabilities we need to write the config space
2001 2002 2003 2004
	 * directly in order to set the completion timeout value for
	 * 16ms to 55ms
	 */
	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2005
					&pcie_devctl2);
2006 2007 2008 2009 2010 2011
	if (ret_val)
		goto out;

	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;

	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2012
					 &pcie_devctl2);
2013 2014 2015 2016 2017 2018 2019 2020
out:
	/* disable completion timeout resend */
	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;

	wr32(E1000_GCR, gcr);
	return ret_val;
}

G
Greg Rose 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
/**
 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
 *  @hw: pointer to the hardware struct
 *  @enable: state to enter, either enabled or disabled
 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
 *
 *  enables/disables L2 switch anti-spoofing functionality.
 **/
void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
{
L
Lior Levy 已提交
2031
	u32 reg_val, reg_offset;
G
Greg Rose 已提交
2032 2033 2034

	switch (hw->mac.type) {
	case e1000_82576:
L
Lior Levy 已提交
2035 2036
		reg_offset = E1000_DTXSWC;
		break;
G
Greg Rose 已提交
2037
	case e1000_i350:
2038
	case e1000_i354:
L
Lior Levy 已提交
2039
		reg_offset = E1000_TXSWC;
G
Greg Rose 已提交
2040 2041
		break;
	default:
L
Lior Levy 已提交
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
		return;
	}

	reg_val = rd32(reg_offset);
	if (enable) {
		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
			     E1000_DTXSWC_VLAN_SPOOF_MASK);
		/* The PF can spoof - it has to in order to
		 * support emulation mode NICs
		 */
		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
	} else {
		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
			     E1000_DTXSWC_VLAN_SPOOF_MASK);
G
Greg Rose 已提交
2056
	}
L
Lior Levy 已提交
2057
	wr32(reg_offset, reg_val);
G
Greg Rose 已提交
2058 2059
}

2060 2061 2062 2063 2064 2065 2066 2067 2068
/**
 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
 *  @hw: pointer to the hardware struct
 *  @enable: state to enter, either enabled or disabled
 *
 *  enables/disables L2 switch loopback functionality.
 **/
void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
{
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
	u32 dtxswc;

	switch (hw->mac.type) {
	case e1000_82576:
		dtxswc = rd32(E1000_DTXSWC);
		if (enable)
			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
		else
			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
		wr32(E1000_DTXSWC, dtxswc);
		break;
2080
	case e1000_i354:
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
	case e1000_i350:
		dtxswc = rd32(E1000_TXSWC);
		if (enable)
			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
		else
			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
		wr32(E1000_TXSWC, dtxswc);
		break;
	default:
		/* Currently no other hardware supports loopback */
		break;
	}
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114

}

/**
 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
 *  @hw: pointer to the hardware struct
 *  @enable: state to enter, either enabled or disabled
 *
 *  enables/disables replication of packets across multiple pools.
 **/
void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
{
	u32 vt_ctl = rd32(E1000_VT_CTL);

	if (enable)
		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
	else
		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;

	wr32(E1000_VT_CTL, vt_ctl);
}

A
Alexander Duyck 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
/**
 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the MDI control register in the PHY at offset and stores the
 *  information read to data.
 **/
static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
{
	s32 ret_val;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;

	ret_val = igb_read_phy_reg_mdic(hw, offset, data);

	hw->phy.ops.release(hw);

out:
	return ret_val;
}

/**
 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write to register at offset
 *
 *  Writes data to MDI control register in the PHY at offset.
 **/
static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
{
	s32 ret_val;


	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;

	ret_val = igb_write_phy_reg_mdic(hw, offset, data);

	hw->phy.ops.release(hw);

out:
	return ret_val;
}

2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
/**
 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
 *  @hw: pointer to the HW structure
 *
 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
 *  the values found in the EEPROM.  This addresses an issue in which these
 *  bits are not restored from EEPROM after reset.
 **/
static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u32 mdicnfg;
G
Gasparakis, Joseph 已提交
2177
	u16 nvm_data = 0;
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201

	if (hw->mac.type != e1000_82580)
		goto out;
	if (!igb_sgmii_active_82575(hw))
		goto out;

	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
				   &nvm_data);
	if (ret_val) {
		hw_dbg("NVM Read Error\n");
		goto out;
	}

	mdicnfg = rd32(E1000_MDICNFG);
	if (nvm_data & NVM_WORD24_EXT_MDIO)
		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
	if (nvm_data & NVM_WORD24_COM_MDIO)
		mdicnfg |= E1000_MDICNFG_COM_MDIO;
	wr32(E1000_MDICNFG, mdicnfg);
out:
	return ret_val;
}

A
Alexander Duyck 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
/**
 *  igb_reset_hw_82580 - Reset hardware
 *  @hw: pointer to the HW structure
 *
 *  This resets function or entire device (all ports, etc.)
 *  to a known state.
 **/
static s32 igb_reset_hw_82580(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	/* BH SW mailbox bit in SW_FW_SYNC */
	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2214
	u32 ctrl;
A
Alexander Duyck 已提交
2215 2216 2217 2218
	bool global_device_reset = hw->dev_spec._82575.global_device_reset;

	hw->dev_spec._82575.global_device_reset = false;

2219 2220 2221 2222 2223 2224
	/* due to hw errata, global device reset doesn't always
	 * work on 82580
	 */
	if (hw->mac.type == e1000_82580)
		global_device_reset = false;

A
Alexander Duyck 已提交
2225 2226 2227
	/* Get current control state. */
	ctrl = rd32(E1000_CTRL);

2228
	/* Prevent the PCI-E bus from sticking if there is no TLP connection
A
Alexander Duyck 已提交
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = igb_disable_pcie_master(hw);
	if (ret_val)
		hw_dbg("PCI-E Master disable polling has failed.\n");

	hw_dbg("Masking off all interrupts\n");
	wr32(E1000_IMC, 0xffffffff);
	wr32(E1000_RCTL, 0);
	wr32(E1000_TCTL, E1000_TCTL_PSP);
	wrfl();

2241
	usleep_range(10000, 11000);
A
Alexander Duyck 已提交
2242 2243 2244

	/* Determine whether or not a global dev reset is requested */
	if (global_device_reset &&
2245
		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
A
Alexander Duyck 已提交
2246 2247 2248 2249 2250 2251 2252 2253 2254
			global_device_reset = false;

	if (global_device_reset &&
		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
		ctrl |= E1000_CTRL_DEV_RST;
	else
		ctrl |= E1000_CTRL_RST;

	wr32(E1000_CTRL, ctrl);
2255
	wrfl();
A
Alexander Duyck 已提交
2256 2257 2258

	/* Add delay to insure DEV_RST has time to complete */
	if (global_device_reset)
2259
		usleep_range(5000, 6000);
A
Alexander Duyck 已提交
2260 2261 2262

	ret_val = igb_get_auto_rd_done(hw);
	if (ret_val) {
2263
		/* When auto config read does not complete, do not
A
Alexander Duyck 已提交
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
		 * return with an error. This can happen in situations
		 * where there is no eeprom and prevents getting link.
		 */
		hw_dbg("Auto Read Done did not complete\n");
	}

	/* clear global device reset status bit */
	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);

	/* Clear any pending interrupt events. */
	wr32(E1000_IMC, 0xffffffff);
2275
	rd32(E1000_ICR);
A
Alexander Duyck 已提交
2276

2277 2278 2279 2280
	ret_val = igb_reset_mdicnfg_82580(hw);
	if (ret_val)
		hw_dbg("Could not reset MDICNFG based on EEPROM\n");

A
Alexander Duyck 已提交
2281 2282 2283 2284 2285
	/* Install any alternate MAC address into RAR0 */
	ret_val = igb_check_alt_mac_addr(hw);

	/* Release semaphore */
	if (global_device_reset)
2286
		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
A
Alexander Duyck 已提交
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304

	return ret_val;
}

/**
 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
 *  @data: data received by reading RXPBS register
 *
 *  The 82580 uses a table based approach for packet buffer allocation sizes.
 *  This function converts the retrieved value into the correct table value
 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
 *  0x0 36  72 144   1   2   4   8  16
 *  0x8 35  70 140 rsv rsv rsv rsv rsv
 */
u16 igb_rxpbs_adjust_82580(u32 data)
{
	u16 ret_val = 0;

T
Todd Fujinaka 已提交
2305
	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
A
Alexander Duyck 已提交
2306 2307 2308 2309 2310
		ret_val = e1000_82580_rxpbs_table[data];

	return ret_val;
}

2311 2312 2313 2314 2315 2316 2317 2318 2319
/**
 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
 *  checksum
 *  @hw: pointer to the HW structure
 *  @offset: offset in words of the checksum protected region
 *
 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 **/
2320 2321
static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
						 u16 offset)
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
{
	s32 ret_val = 0;
	u16 checksum = 0;
	u16 i, nvm_data;

	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
		if (ret_val) {
			hw_dbg("NVM Read Error\n");
			goto out;
		}
		checksum += nvm_data;
	}

	if (checksum != (u16) NVM_SUM) {
		hw_dbg("NVM Checksum Invalid\n");
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

out:
	return ret_val;
}

/**
 *  igb_update_nvm_checksum_with_offset - Update EEPROM
 *  checksum
 *  @hw: pointer to the HW structure
 *  @offset: offset in words of the checksum protected region
 *
 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 *  value to the EEPROM.
 **/
2356
static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
{
	s32 ret_val;
	u16 checksum = 0;
	u16 i, nvm_data;

	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
		if (ret_val) {
			hw_dbg("NVM Read Error while updating checksum.\n");
			goto out;
		}
		checksum += nvm_data;
	}
	checksum = (u16) NVM_SUM - checksum;
	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
				&checksum);
	if (ret_val)
		hw_dbg("NVM Write Error while updating checksum.\n");

out:
	return ret_val;
}

/**
 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Calculates the EEPROM section checksum by reading/adding each word of
 *  the EEPROM and then verifies that the sum of the EEPROM is
 *  equal to 0xBABA.
 **/
static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 eeprom_regions_count = 1;
	u16 j, nvm_data;
	u16 nvm_offset;

	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
	if (ret_val) {
		hw_dbg("NVM Read Error\n");
		goto out;
	}

	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2402
		/* if checksums compatibility bit is set validate checksums
2403 2404
		 * for all 4 ports.
		 */
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
		eeprom_regions_count = 4;
	}

	for (j = 0; j < eeprom_regions_count; j++) {
		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
		ret_val = igb_validate_nvm_checksum_with_offset(hw,
								nvm_offset);
		if (ret_val != 0)
			goto out;
	}

out:
	return ret_val;
}

/**
 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
 *  checksum and writes the value to the EEPROM.
 **/
static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 j, nvm_data;
	u16 nvm_offset;

	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
	if (ret_val) {
C
Carolyn Wyborny 已提交
2436
		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2437 2438 2439 2440 2441 2442 2443 2444 2445
		goto out;
	}

	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
		/* set compatibility bit to validate checksums appropriately */
		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
					&nvm_data);
		if (ret_val) {
C
Carolyn Wyborny 已提交
2446
			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
			goto out;
		}
	}

	for (j = 0; j < 4; j++) {
		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
		if (ret_val)
			goto out;
	}

out:
	return ret_val;
}

/**
 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Calculates the EEPROM section checksum by reading/adding each word of
 *  the EEPROM and then verifies that the sum of the EEPROM is
 *  equal to 0xBABA.
 **/
static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 j;
	u16 nvm_offset;

	for (j = 0; j < 4; j++) {
		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
		ret_val = igb_validate_nvm_checksum_with_offset(hw,
								nvm_offset);
		if (ret_val != 0)
			goto out;
	}

out:
	return ret_val;
}

/**
 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
 *  checksum and writes the value to the EEPROM.
 **/
static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 j;
	u16 nvm_offset;

	for (j = 0; j < 4; j++) {
		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
		if (ret_val != 0)
			goto out;
	}

out:
	return ret_val;
}
2512

M
Matthew Vick 已提交
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
/**
 *  __igb_access_emi_reg - Read/write EMI register
 *  @hw: pointer to the HW structure
 *  @addr: EMI address to program
 *  @data: pointer to value to read/write from/to the EMI address
 *  @read: boolean flag to indicate read or write
 **/
static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
				  u16 *data, bool read)
{
T
Todd Fujinaka 已提交
2523
	s32 ret_val = 0;
M
Matthew Vick 已提交
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547

	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
	if (ret_val)
		return ret_val;

	if (read)
		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
	else
		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);

	return ret_val;
}

/**
 *  igb_read_emi_reg - Read Extended Management Interface register
 *  @hw: pointer to the HW structure
 *  @addr: EMI address to program
 *  @data: value to be read from the EMI address
 **/
s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
{
	return __igb_access_emi_reg(hw, addr, data, true);
}

2548 2549 2550 2551 2552 2553 2554 2555 2556
/**
 *  igb_set_eee_i350 - Enable/disable EEE support
 *  @hw: pointer to the HW structure
 *
 *  Enable/disable EEE based on setting in dev_spec structure.
 *
 **/
s32 igb_set_eee_i350(struct e1000_hw *hw)
{
2557
	u32 ipcnfg, eeer;
2558

2559 2560
	if ((hw->mac.type < e1000_i350) ||
	    (hw->phy.media_type != e1000_media_type_copper))
2561 2562 2563 2564 2565 2566
		goto out;
	ipcnfg = rd32(E1000_IPCNFG);
	eeer = rd32(E1000_EEER);

	/* enable or disable per user setting */
	if (!(hw->dev_spec._82575.eee_disable)) {
2567 2568 2569 2570
		u32 eee_su = rd32(E1000_EEE_SU);

		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2571 2572
			E1000_EEER_LPI_FC);

2573 2574 2575 2576
		/* This bit should not be set in normal operation. */
		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
			hw_dbg("LPI Clock Stop Bit should not be set!\n");

2577 2578 2579 2580 2581 2582 2583 2584 2585
	} else {
		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
			E1000_IPCNFG_EEE_100M_AN);
		eeer &= ~(E1000_EEER_TX_LPI_EN |
			E1000_EEER_RX_LPI_EN |
			E1000_EEER_LPI_FC);
	}
	wr32(E1000_IPCNFG, ipcnfg);
	wr32(E1000_EEER, eeer);
2586 2587
	rd32(E1000_IPCNFG);
	rd32(E1000_EEER);
2588 2589
out:

T
Todd Fujinaka 已提交
2590
	return 0;
2591
}
2592

2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
/**
 *  igb_set_eee_i354 - Enable/disable EEE support
 *  @hw: pointer to the HW structure
 *
 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
 *
 **/
s32 igb_set_eee_i354(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = 0;
	u16 phy_data;

	if ((hw->phy.media_type != e1000_media_type_copper) ||
2607
	    (phy->id != M88E1543_E_PHY_ID))
2608 2609 2610 2611
		goto out;

	if (!hw->dev_spec._82575.eee_disable) {
		/* Switch to PHY page 18. */
2612
		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2613 2614 2615
		if (ret_val)
			goto out;

2616
		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2617 2618 2619 2620
					    &phy_data);
		if (ret_val)
			goto out;

2621 2622
		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2623 2624 2625 2626 2627
					     phy_data);
		if (ret_val)
			goto out;

		/* Return the PHY to page 0. */
2628
		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
		if (ret_val)
			goto out;

		/* Turn on EEE advertisement. */
		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
					     E1000_EEE_ADV_DEV_I354,
					     &phy_data);
		if (ret_val)
			goto out;

		phy_data |= E1000_EEE_ADV_100_SUPPORTED |
			    E1000_EEE_ADV_1000_SUPPORTED;
		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
						E1000_EEE_ADV_DEV_I354,
						phy_data);
	} else {
		/* Turn off EEE advertisement. */
		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
					     E1000_EEE_ADV_DEV_I354,
					     &phy_data);
		if (ret_val)
			goto out;

		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
			      E1000_EEE_ADV_1000_SUPPORTED);
		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
					      E1000_EEE_ADV_DEV_I354,
					      phy_data);
	}

out:
	return ret_val;
}

/**
 *  igb_get_eee_status_i354 - Get EEE status
 *  @hw: pointer to the HW structure
 *  @status: EEE status
 *
 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
 *  been received.
 **/
s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = 0;
	u16 phy_data;

	/* Check if EEE is supported on this device. */
	if ((hw->phy.media_type != e1000_media_type_copper) ||
2679
	    (phy->id != M88E1543_E_PHY_ID))
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
		goto out;

	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
				     E1000_PCS_STATUS_DEV_I354,
				     &phy_data);
	if (ret_val)
		goto out;

	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;

out:
	return ret_val;
}

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
static const u8 e1000_emc_temp_data[4] = {
	E1000_EMC_INTERNAL_DATA,
	E1000_EMC_DIODE1_DATA,
	E1000_EMC_DIODE2_DATA,
	E1000_EMC_DIODE3_DATA
};
static const u8 e1000_emc_therm_limit[4] = {
	E1000_EMC_INTERNAL_THERM_LIMIT,
	E1000_EMC_DIODE1_THERM_LIMIT,
	E1000_EMC_DIODE2_THERM_LIMIT,
	E1000_EMC_DIODE3_THERM_LIMIT
};

2708
#ifdef CONFIG_IGB_HWMON
2709 2710
/**
 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2711 2712 2713
 *  @hw: pointer to hardware structure
 *
 *  Updates the temperatures in mac.thermal_sensor_data
2714
 **/
2715
static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
{
	u16 ets_offset;
	u16 ets_cfg;
	u16 ets_sensor;
	u8  num_sensors;
	u8  sensor_index;
	u8  sensor_location;
	u8  i;
	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;

	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
		return E1000_NOT_IMPLEMENTED;

	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);

	/* Return the internal sensor only if ETS is unsupported */
	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
T
Todd Fujinaka 已提交
2734
		return 0;
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757

	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
	    != NVM_ETS_TYPE_EMC)
		return E1000_NOT_IMPLEMENTED;

	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
	if (num_sensors > E1000_MAX_SENSORS)
		num_sensors = E1000_MAX_SENSORS;

	for (i = 1; i < num_sensors; i++) {
		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
				NVM_ETS_DATA_INDEX_SHIFT);
		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
				   NVM_ETS_DATA_LOC_SHIFT);

		if (sensor_location != 0)
			hw->phy.ops.read_i2c_byte(hw,
					e1000_emc_temp_data[sensor_index],
					E1000_I2C_THERMAL_SENSOR_ADDR,
					&data->sensor[i].temp);
	}
T
Todd Fujinaka 已提交
2758
	return 0;
2759 2760
}

2761 2762
/**
 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2763 2764 2765 2766
 *  @hw: pointer to hardware structure
 *
 *  Sets the thermal sensor thresholds according to the NVM map
 *  and save off the threshold and location values into mac.thermal_sensor_data
2767
 **/
2768
static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
{
	u16 ets_offset;
	u16 ets_cfg;
	u16 ets_sensor;
	u8  low_thresh_delta;
	u8  num_sensors;
	u8  sensor_index;
	u8  sensor_location;
	u8  therm_limit;
	u8  i;
	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;

	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
		return E1000_NOT_IMPLEMENTED;

	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));

	data->sensor[0].location = 0x1;
	data->sensor[0].caution_thresh =
		(rd32(E1000_THHIGHTC) & 0xFF);
	data->sensor[0].max_op_thresh =
		(rd32(E1000_THLOWTC) & 0xFF);

	/* Return the internal sensor only if ETS is unsupported */
	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
T
Todd Fujinaka 已提交
2795
		return 0;
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825

	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
	    != NVM_ETS_TYPE_EMC)
		return E1000_NOT_IMPLEMENTED;

	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
			    NVM_ETS_LTHRES_DELTA_SHIFT);
	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);

	for (i = 1; i <= num_sensors; i++) {
		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
				NVM_ETS_DATA_INDEX_SHIFT);
		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
				   NVM_ETS_DATA_LOC_SHIFT);
		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;

		hw->phy.ops.write_i2c_byte(hw,
			e1000_emc_therm_limit[sensor_index],
			E1000_I2C_THERMAL_SENSOR_ADDR,
			therm_limit);

		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
			data->sensor[i].location = sensor_location;
			data->sensor[i].caution_thresh = therm_limit;
			data->sensor[i].max_op_thresh = therm_limit -
							low_thresh_delta;
		}
	}
T
Todd Fujinaka 已提交
2826
	return 0;
2827 2828
}

2829
#endif
2830 2831 2832
static struct e1000_mac_operations e1000_mac_ops_82575 = {
	.init_hw              = igb_init_hw_82575,
	.check_for_link       = igb_check_for_link_82575,
A
Alexander Duyck 已提交
2833
	.rar_set              = igb_rar_set,
2834
	.read_mac_addr        = igb_read_mac_addr_82575,
2835
	.get_speed_and_duplex = igb_get_link_up_info_82575,
2836 2837 2838 2839
#ifdef CONFIG_IGB_HWMON
	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
#endif
2840 2841 2842
};

static struct e1000_phy_operations e1000_phy_ops_82575 = {
A
Alexander Duyck 已提交
2843
	.acquire              = igb_acquire_phy_82575,
2844
	.get_cfg_done         = igb_get_cfg_done_82575,
A
Alexander Duyck 已提交
2845
	.release              = igb_release_phy_82575,
C
Carolyn Wyborny 已提交
2846 2847
	.write_i2c_byte       = igb_write_i2c_byte,
	.read_i2c_byte        = igb_read_i2c_byte,
2848 2849 2850
};

static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
A
Alexander Duyck 已提交
2851 2852 2853 2854
	.acquire              = igb_acquire_nvm_82575,
	.read                 = igb_read_nvm_eerd,
	.release              = igb_release_nvm_82575,
	.write                = igb_write_nvm_spi,
2855 2856 2857 2858 2859 2860 2861 2862 2863
};

const struct e1000_info e1000_82575_info = {
	.get_invariants = igb_get_invariants_82575,
	.mac_ops = &e1000_mac_ops_82575,
	.phy_ops = &e1000_phy_ops_82575,
	.nvm_ops = &e1000_nvm_ops_82575,
};