core.c 15.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 */
#include <linux/libnvdimm.h>
#include <linux/export.h>
#include <linux/module.h>
16
#include <linux/blkdev.h>
17
#include <linux/device.h>
18
#include <linux/ctype.h>
19
#include <linux/ndctl.h>
20
#include <linux/mutex.h>
21 22
#include <linux/slab.h>
#include "nd-core.h"
23
#include "nd.h"
24

25 26
LIST_HEAD(nvdimm_bus_list);
DEFINE_MUTEX(nvdimm_bus_list_mutex);
27 28
static DEFINE_IDA(nd_ida);

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
void nvdimm_bus_lock(struct device *dev)
{
	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);

	if (!nvdimm_bus)
		return;
	mutex_lock(&nvdimm_bus->reconfig_mutex);
}
EXPORT_SYMBOL(nvdimm_bus_lock);

void nvdimm_bus_unlock(struct device *dev)
{
	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);

	if (!nvdimm_bus)
		return;
	mutex_unlock(&nvdimm_bus->reconfig_mutex);
}
EXPORT_SYMBOL(nvdimm_bus_unlock);

bool is_nvdimm_bus_locked(struct device *dev)
{
	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);

	if (!nvdimm_bus)
		return false;
	return mutex_is_locked(&nvdimm_bus->reconfig_mutex);
}
EXPORT_SYMBOL(is_nvdimm_bus_locked);

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
u64 nd_fletcher64(void *addr, size_t len, bool le)
{
	u32 *buf = addr;
	u32 lo32 = 0;
	u64 hi32 = 0;
	int i;

	for (i = 0; i < len / sizeof(u32); i++) {
		lo32 += le ? le32_to_cpu((__le32) buf[i]) : buf[i];
		hi32 += lo32;
	}

	return hi32 << 32 | lo32;
}
EXPORT_SYMBOL_GPL(nd_fletcher64);

75 76 77 78 79 80 81 82 83
static void nvdimm_bus_release(struct device *dev)
{
	struct nvdimm_bus *nvdimm_bus;

	nvdimm_bus = container_of(dev, struct nvdimm_bus, dev);
	ida_simple_remove(&nd_ida, nvdimm_bus->id);
	kfree(nvdimm_bus);
}

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
struct nvdimm_bus *to_nvdimm_bus(struct device *dev)
{
	struct nvdimm_bus *nvdimm_bus;

	nvdimm_bus = container_of(dev, struct nvdimm_bus, dev);
	WARN_ON(nvdimm_bus->dev.release != nvdimm_bus_release);
	return nvdimm_bus;
}
EXPORT_SYMBOL_GPL(to_nvdimm_bus);

struct nvdimm_bus_descriptor *to_nd_desc(struct nvdimm_bus *nvdimm_bus)
{
	/* struct nvdimm_bus definition is private to libnvdimm */
	return nvdimm_bus->nd_desc;
}
EXPORT_SYMBOL_GPL(to_nd_desc);

101 102 103 104 105 106 107 108 109 110 111 112 113
struct nvdimm_bus *walk_to_nvdimm_bus(struct device *nd_dev)
{
	struct device *dev;

	for (dev = nd_dev; dev; dev = dev->parent)
		if (dev->release == nvdimm_bus_release)
			break;
	dev_WARN_ONCE(nd_dev, !dev, "invalid dev, not on nd bus\n");
	if (dev)
		return to_nvdimm_bus(dev);
	return NULL;
}

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
static bool is_uuid_sep(char sep)
{
	if (sep == '\n' || sep == '-' || sep == ':' || sep == '\0')
		return true;
	return false;
}

static int nd_uuid_parse(struct device *dev, u8 *uuid_out, const char *buf,
		size_t len)
{
	const char *str = buf;
	u8 uuid[16];
	int i;

	for (i = 0; i < 16; i++) {
		if (!isxdigit(str[0]) || !isxdigit(str[1])) {
			dev_dbg(dev, "%s: pos: %d buf[%zd]: %c buf[%zd]: %c\n",
					__func__, i, str - buf, str[0],
					str + 1 - buf, str[1]);
			return -EINVAL;
		}

		uuid[i] = (hex_to_bin(str[0]) << 4) | hex_to_bin(str[1]);
		str += 2;
		if (is_uuid_sep(*str))
			str++;
	}

	memcpy(uuid_out, uuid, sizeof(uuid));
	return 0;
}

/**
 * nd_uuid_store: common implementation for writing 'uuid' sysfs attributes
 * @dev: container device for the uuid property
 * @uuid_out: uuid buffer to replace
 * @buf: raw sysfs buffer to parse
 *
 * Enforce that uuids can only be changed while the device is disabled
 * (driver detached)
 * LOCKING: expects device_lock() is held on entry
 */
int nd_uuid_store(struct device *dev, u8 **uuid_out, const char *buf,
		size_t len)
{
	u8 uuid[16];
	int rc;

	if (dev->driver)
		return -EBUSY;

	rc = nd_uuid_parse(dev, uuid, buf, len);
	if (rc)
		return rc;

	kfree(*uuid_out);
	*uuid_out = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
	if (!(*uuid_out))
		return -ENOMEM;

	return 0;
}

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
ssize_t nd_sector_size_show(unsigned long current_lbasize,
		const unsigned long *supported, char *buf)
{
	ssize_t len = 0;
	int i;

	for (i = 0; supported[i]; i++)
		if (current_lbasize == supported[i])
			len += sprintf(buf + len, "[%ld] ", supported[i]);
		else
			len += sprintf(buf + len, "%ld ", supported[i]);
	len += sprintf(buf + len, "\n");
	return len;
}

ssize_t nd_sector_size_store(struct device *dev, const char *buf,
		unsigned long *current_lbasize, const unsigned long *supported)
{
	unsigned long lbasize;
	int rc, i;

	if (dev->driver)
		return -EBUSY;

	rc = kstrtoul(buf, 0, &lbasize);
	if (rc)
		return rc;

	for (i = 0; supported[i]; i++)
		if (lbasize == supported[i])
			break;

	if (supported[i]) {
		*current_lbasize = lbasize;
		return 0;
	} else {
		return -EINVAL;
	}
}

D
Dan Williams 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
void __nd_iostat_start(struct bio *bio, unsigned long *start)
{
	struct gendisk *disk = bio->bi_bdev->bd_disk;
	const int rw = bio_data_dir(bio);
	int cpu = part_stat_lock();

	*start = jiffies;
	part_round_stats(cpu, &disk->part0);
	part_stat_inc(cpu, &disk->part0, ios[rw]);
	part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio));
	part_inc_in_flight(&disk->part0, rw);
	part_stat_unlock();
}
EXPORT_SYMBOL(__nd_iostat_start);

void nd_iostat_end(struct bio *bio, unsigned long start)
{
	struct gendisk *disk = bio->bi_bdev->bd_disk;
	unsigned long duration = jiffies - start;
	const int rw = bio_data_dir(bio);
	int cpu = part_stat_lock();

	part_stat_add(cpu, &disk->part0, ticks[rw], duration);
	part_round_stats(cpu, &disk->part0);
	part_dec_in_flight(&disk->part0, rw);
	part_stat_unlock();
}
EXPORT_SYMBOL(nd_iostat_end);

246 247 248 249 250 251 252 253 254 255 256 257 258 259
static ssize_t commands_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	int cmd, len = 0;
	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
	struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc;

	for_each_set_bit(cmd, &nd_desc->dsm_mask, BITS_PER_LONG)
		len += sprintf(buf + len, "%s ", nvdimm_bus_cmd_name(cmd));
	len += sprintf(buf + len, "\n");
	return len;
}
static DEVICE_ATTR_RO(commands);

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
static const char *nvdimm_bus_provider(struct nvdimm_bus *nvdimm_bus)
{
	struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc;
	struct device *parent = nvdimm_bus->dev.parent;

	if (nd_desc->provider_name)
		return nd_desc->provider_name;
	else if (parent)
		return dev_name(parent);
	else
		return "unknown";
}

static ssize_t provider_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);

	return sprintf(buf, "%s\n", nvdimm_bus_provider(nvdimm_bus));
}
static DEVICE_ATTR_RO(provider);

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
static int flush_namespaces(struct device *dev, void *data)
{
	device_lock(dev);
	device_unlock(dev);
	return 0;
}

static int flush_regions_dimms(struct device *dev, void *data)
{
	device_lock(dev);
	device_unlock(dev);
	device_for_each_child(dev, NULL, flush_namespaces);
	return 0;
}

static ssize_t wait_probe_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	nd_synchronize();
	device_for_each_child(dev, NULL, flush_regions_dimms);
	return sprintf(buf, "1\n");
}
static DEVICE_ATTR_RO(wait_probe);

306
static struct attribute *nvdimm_bus_attributes[] = {
307
	&dev_attr_commands.attr,
308
	&dev_attr_wait_probe.attr,
309 310 311 312 313 314 315 316 317
	&dev_attr_provider.attr,
	NULL,
};

struct attribute_group nvdimm_bus_attribute_group = {
	.attrs = nvdimm_bus_attributes,
};
EXPORT_SYMBOL_GPL(nvdimm_bus_attribute_group);

318 319
struct nvdimm_bus *__nvdimm_bus_register(struct device *parent,
		struct nvdimm_bus_descriptor *nd_desc, struct module *module)
320 321 322 323 324 325 326
{
	struct nvdimm_bus *nvdimm_bus;
	int rc;

	nvdimm_bus = kzalloc(sizeof(*nvdimm_bus), GFP_KERNEL);
	if (!nvdimm_bus)
		return NULL;
327
	INIT_LIST_HEAD(&nvdimm_bus->list);
328
	INIT_LIST_HEAD(&nvdimm_bus->poison_list);
329
	init_waitqueue_head(&nvdimm_bus->probe_wait);
330
	nvdimm_bus->id = ida_simple_get(&nd_ida, 0, 0, GFP_KERNEL);
331
	mutex_init(&nvdimm_bus->reconfig_mutex);
332 333 334 335 336
	if (nvdimm_bus->id < 0) {
		kfree(nvdimm_bus);
		return NULL;
	}
	nvdimm_bus->nd_desc = nd_desc;
337
	nvdimm_bus->module = module;
338 339
	nvdimm_bus->dev.parent = parent;
	nvdimm_bus->dev.release = nvdimm_bus_release;
340
	nvdimm_bus->dev.groups = nd_desc->attr_groups;
341 342 343 344
	dev_set_name(&nvdimm_bus->dev, "ndbus%d", nvdimm_bus->id);
	rc = device_register(&nvdimm_bus->dev);
	if (rc) {
		dev_dbg(&nvdimm_bus->dev, "registration failed: %d\n", rc);
345
		goto err;
346 347
	}

348 349 350 351 352 353 354 355
	rc = nvdimm_bus_create_ndctl(nvdimm_bus);
	if (rc)
		goto err;

	mutex_lock(&nvdimm_bus_list_mutex);
	list_add_tail(&nvdimm_bus->list, &nvdimm_bus_list);
	mutex_unlock(&nvdimm_bus_list_mutex);

356
	return nvdimm_bus;
357 358 359
 err:
	put_device(&nvdimm_bus->dev);
	return NULL;
360
}
361
EXPORT_SYMBOL_GPL(__nvdimm_bus_register);
362

363 364 365 366 367 368 369 370 371 372 373 374
static void set_badblock(struct gendisk *disk, sector_t s, int num)
{
	struct device *dev = disk->driverfs_dev;

	dev_dbg(dev, "Found a poison range (0x%llx, 0x%llx)\n",
			(u64) s * 512, (u64) num * 512);
	/* this isn't an error as the hardware will still throw an exception */
	if (disk_set_badblocks(disk, s, num))
		dev_info_once(dev, "%s: failed for sector %llx\n",
				__func__, (u64) s);
}

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
/**
 * __add_badblock_range() - Convert a physical address range to bad sectors
 * @disk:	the disk associated with the namespace
 * @ns_offset:	namespace offset where the error range begins (in bytes)
 * @len:	number of bytes of poison to be added
 *
 * This assumes that the range provided with (ns_offset, len) is within
 * the bounds of physical addresses for this namespace, i.e. lies in the
 * interval [ns_start, ns_start + ns_size)
 */
static int __add_badblock_range(struct gendisk *disk, u64 ns_offset, u64 len)
{
	unsigned int sector_size = queue_logical_block_size(disk->queue);
	sector_t start_sector;
	u64 num_sectors;
	u32 rem;
	int rc;

	start_sector = div_u64(ns_offset, sector_size);
	num_sectors = div_u64_rem(len, sector_size, &rem);
	if (rem)
		num_sectors++;

	if (!disk->bb) {
		rc = disk_alloc_badblocks(disk);
		if (rc)
			return rc;
	}

	if (unlikely(num_sectors > (u64)INT_MAX)) {
		u64 remaining = num_sectors;
		sector_t s = start_sector;

		while (remaining) {
			int done = min_t(u64, remaining, INT_MAX);

411
			set_badblock(disk, s, done);
412 413 414 415
			remaining -= done;
			s += done;
		}
	} else
416 417 418
		set_badblock(disk, start_sector, num_sectors);

	return 0;
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
}

/**
 * nvdimm_namespace_add_poison() - Convert a list of poison ranges to badblocks
 * @disk:	the gendisk associated with the namespace where badblocks
 *		will be stored
 * @offset:	offset at the start of the namespace before 'sector 0'
 * @ndns:	the namespace containing poison ranges
 *
 * The poison list generated during NFIT initialization may contain multiple,
 * possibly overlapping ranges in the SPA (System Physical Address) space.
 * Compare each of these ranges to the namespace currently being initialized,
 * and add badblocks to the gendisk for all matching sub-ranges
 *
 * Return:
 * 0 - Success
 */
int nvdimm_namespace_add_poison(struct gendisk *disk, resource_size_t offset,
		struct nd_namespace_common *ndns)
{
	struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
	struct nd_region *nd_region = to_nd_region(ndns->dev.parent);
	struct nvdimm_bus *nvdimm_bus;
	struct list_head *poison_list;
	u64 ns_start, ns_end, ns_size;
	struct nd_poison *pl;
	int rc;

	ns_size = nvdimm_namespace_capacity(ndns) - offset;
	ns_start = nsio->res.start + offset;
	ns_end = nsio->res.end;

	nvdimm_bus = to_nvdimm_bus(nd_region->dev.parent);
	poison_list = &nvdimm_bus->poison_list;
	if (list_empty(poison_list))
		return 0;

	list_for_each_entry(pl, poison_list, list) {
		u64 pl_end = pl->start + pl->length - 1;

		/* Discard intervals with no intersection */
		if (pl_end < ns_start)
			continue;
		if (pl->start > ns_end)
			continue;
		/* Deal with any overlap after start of the namespace */
		if (pl->start >= ns_start) {
			u64 start = pl->start;
			u64 len;

			if (pl_end <= ns_end)
				len = pl->length;
			else
				len = ns_start + ns_size - pl->start;

			rc = __add_badblock_range(disk, start - ns_start, len);
			if (rc)
				return rc;
			continue;
		}
		/* Deal with overlap for poison starting before the namespace */
		if (pl->start < ns_start) {
			u64 len;

			if (pl_end < ns_end)
				len = pl->start + pl->length - ns_start;
			else
				len = ns_size;

			rc = __add_badblock_range(disk, 0, len);
			if (rc)
				return rc;
		}
	}

	return 0;
}
EXPORT_SYMBOL_GPL(nvdimm_namespace_add_poison);

static int __add_poison(struct nvdimm_bus *nvdimm_bus, u64 addr, u64 length)
{
	struct nd_poison *pl;

	pl = kzalloc(sizeof(*pl), GFP_KERNEL);
	if (!pl)
		return -ENOMEM;

	pl->start = addr;
	pl->length = length;
	list_add_tail(&pl->list, &nvdimm_bus->poison_list);

	return 0;
}

int nvdimm_bus_add_poison(struct nvdimm_bus *nvdimm_bus, u64 addr, u64 length)
{
	struct nd_poison *pl;

	if (list_empty(&nvdimm_bus->poison_list))
		return __add_poison(nvdimm_bus, addr, length);

	/*
	 * There is a chance this is a duplicate, check for those first.
	 * This will be the common case as ARS_STATUS returns all known
	 * errors in the SPA space, and we can't query it per region
	 */
	list_for_each_entry(pl, &nvdimm_bus->poison_list, list)
		if (pl->start == addr) {
			/* If length has changed, update this list entry */
			if (pl->length != length)
				pl->length = length;
			return 0;
		}

	/*
	 * If not a duplicate or a simple length update, add the entry as is,
	 * as any overlapping ranges will get resolved when the list is consumed
	 * and converted to badblocks
	 */
	return __add_poison(nvdimm_bus, addr, length);
}
EXPORT_SYMBOL_GPL(nvdimm_bus_add_poison);

static void free_poison_list(struct list_head *poison_list)
{
	struct nd_poison *pl, *next;

	list_for_each_entry_safe(pl, next, poison_list, list) {
		list_del(&pl->list);
		kfree(pl);
	}
	list_del_init(poison_list);
}

553 554 555 556 557 558 559 560 561 562 563
static int child_unregister(struct device *dev, void *data)
{
	/*
	 * the singular ndctl class device per bus needs to be
	 * "device_destroy"ed, so skip it here
	 *
	 * i.e. remove classless children
	 */
	if (dev->class)
		/* pass */;
	else
564
		nd_device_unregister(dev, ND_SYNC);
565 566 567
	return 0;
}

568 569 570 571
void nvdimm_bus_unregister(struct nvdimm_bus *nvdimm_bus)
{
	if (!nvdimm_bus)
		return;
572 573 574 575 576

	mutex_lock(&nvdimm_bus_list_mutex);
	list_del_init(&nvdimm_bus->list);
	mutex_unlock(&nvdimm_bus_list_mutex);

577
	nd_synchronize();
578
	device_for_each_child(&nvdimm_bus->dev, NULL, child_unregister);
579
	free_poison_list(&nvdimm_bus->poison_list);
580 581
	nvdimm_bus_destroy_ndctl(nvdimm_bus);

582 583 584 585
	device_unregister(&nvdimm_bus->dev);
}
EXPORT_SYMBOL_GPL(nvdimm_bus_unregister);

586 587 588
#ifdef CONFIG_BLK_DEV_INTEGRITY
int nd_integrity_init(struct gendisk *disk, unsigned long meta_size)
{
589
	struct blk_integrity bi;
590

591 592 593
	if (meta_size == 0)
		return 0;

594
	bi.profile = NULL;
595 596 597
	bi.tuple_size = meta_size;
	bi.tag_size = meta_size;

598
	blk_integrity_register(disk, &bi);
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	blk_queue_max_integrity_segments(disk->queue, 1);

	return 0;
}
EXPORT_SYMBOL(nd_integrity_init);

#else /* CONFIG_BLK_DEV_INTEGRITY */
int nd_integrity_init(struct gendisk *disk, unsigned long meta_size)
{
	return 0;
}
EXPORT_SYMBOL(nd_integrity_init);

#endif

614 615
static __init int libnvdimm_init(void)
{
616 617 618 619 620 621 622 623
	int rc;

	rc = nvdimm_bus_init();
	if (rc)
		return rc;
	rc = nvdimm_init();
	if (rc)
		goto err_dimm;
624 625 626
	rc = nd_region_init();
	if (rc)
		goto err_region;
627
	return 0;
628 629
 err_region:
	nvdimm_exit();
630 631 632
 err_dimm:
	nvdimm_bus_exit();
	return rc;
633 634 635 636 637
}

static __exit void libnvdimm_exit(void)
{
	WARN_ON(!list_empty(&nvdimm_bus_list));
638
	nd_region_exit();
639
	nvdimm_exit();
640 641 642
	nvdimm_bus_exit();
}

643 644
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Intel Corporation");
645 646
subsys_initcall(libnvdimm_init);
module_exit(libnvdimm_exit);