iwl-eeprom.c 25.2 KB
Newer Older
1 2 3 4 5 6 7
/******************************************************************************
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
W
Wey-Yi Guy 已提交
8
 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
 * USA
 *
 * The full GNU General Public License is included in this distribution
 * in the file called LICENSE.GPL.
 *
 * Contact Information:
28
 *  Intel Linux Wireless <ilw@linux.intel.com>
29 30 31 32
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 * BSD LICENSE
 *
W
Wey-Yi Guy 已提交
33
 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *  * Neither the name Intel Corporation nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *****************************************************************************/


#include <linux/kernel.h>
#include <linux/module.h>
66
#include <linux/slab.h>
67 68 69 70
#include <linux/init.h>

#include <net/mac80211.h>

71
#include "iwl-commands.h"
72
#include "iwl-dev.h"
73
#include "iwl-core.h"
74
#include "iwl-debug.h"
75
#include "iwl-eeprom.h"
76
#include "iwl-io.h"
77

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
/************************** EEPROM BANDS ****************************
 *
 * The iwl_eeprom_band definitions below provide the mapping from the
 * EEPROM contents to the specific channel number supported for each
 * band.
 *
 * For example, iwl_priv->eeprom.band_3_channels[4] from the band_3
 * definition below maps to physical channel 42 in the 5.2GHz spectrum.
 * The specific geography and calibration information for that channel
 * is contained in the eeprom map itself.
 *
 * During init, we copy the eeprom information and channel map
 * information into priv->channel_info_24/52 and priv->channel_map_24/52
 *
 * channel_map_24/52 provides the index in the channel_info array for a
 * given channel.  We have to have two separate maps as there is channel
 * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
 * band_2
 *
 * A value of 0xff stored in the channel_map indicates that the channel
 * is not supported by the hardware at all.
 *
 * A value of 0xfe in the channel_map indicates that the channel is not
 * valid for Tx with the current hardware.  This means that
 * while the system can tune and receive on a given channel, it may not
 * be able to associate or transmit any frames on that
 * channel.  There is no corresponding channel information for that
 * entry.
 *
 *********************************************************************/

/* 2.4 GHz */
const u8 iwl_eeprom_band_1[14] = {
	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
};

/* 5.2 GHz bands */
static const u8 iwl_eeprom_band_2[] = {	/* 4915-5080MHz */
	183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
};

static const u8 iwl_eeprom_band_3[] = {	/* 5170-5320MHz */
	34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
};

static const u8 iwl_eeprom_band_4[] = {	/* 5500-5700MHz */
	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
};

static const u8 iwl_eeprom_band_5[] = {	/* 5725-5825MHz */
	145, 149, 153, 157, 161, 165
};

131
static const u8 iwl_eeprom_band_6[] = {       /* 2.4 ht40 channel */
132 133 134
	1, 2, 3, 4, 5, 6, 7
};

135
static const u8 iwl_eeprom_band_7[] = {       /* 5.2 ht40 channel */
136 137 138
	36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
};

139 140 141 142 143 144
/******************************************************************************
 *
 * EEPROM related functions
 *
******************************************************************************/

D
Don Fry 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
/*
 * The device's EEPROM semaphore prevents conflicts between driver and uCode
 * when accessing the EEPROM; each access is a series of pulses to/from the
 * EEPROM chip, not a single event, so even reads could conflict if they
 * weren't arbitrated by the semaphore.
 */
static int iwl_eeprom_acquire_semaphore(struct iwl_priv *priv)
{
	u16 count;
	int ret;

	for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
		/* Request semaphore */
		iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
			    CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);

		/* See if we got it */
		ret = iwl_poll_bit(priv, CSR_HW_IF_CONFIG_REG,
				CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
				CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
				EEPROM_SEM_TIMEOUT);
		if (ret >= 0) {
			IWL_DEBUG_EEPROM(priv,
				"Acquired semaphore after %d tries.\n",
				count+1);
			return ret;
		}
	}

	return ret;
}

static void iwl_eeprom_release_semaphore(struct iwl_priv *priv)
{
	iwl_clear_bit(priv, CSR_HW_IF_CONFIG_REG,
		CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);

}

184
static int iwl_eeprom_verify_signature(struct iwl_priv *priv)
185
{
186 187 188
	u32 gp = iwl_read32(priv, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
	int ret = 0;

189
	IWL_DEBUG_EEPROM(priv, "EEPROM signature=0x%08x\n", gp);
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
	switch (gp) {
	case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP:
		if (priv->nvm_device_type != NVM_DEVICE_TYPE_OTP) {
			IWL_ERR(priv, "EEPROM with bad signature: 0x%08x\n",
				gp);
			ret = -ENOENT;
		}
		break;
	case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
	case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
		if (priv->nvm_device_type != NVM_DEVICE_TYPE_EEPROM) {
			IWL_ERR(priv, "OTP with bad signature: 0x%08x\n", gp);
			ret = -ENOENT;
		}
		break;
	case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP:
	default:
		IWL_ERR(priv, "bad EEPROM/OTP signature, type=%s, "
			"EEPROM_GP=0x%08x\n",
			(priv->nvm_device_type == NVM_DEVICE_TYPE_OTP)
			? "OTP" : "EEPROM", gp);
		ret = -ENOENT;
		break;
213
	}
214
	return ret;
215 216
}

217 218
static void iwl_set_otp_access(struct iwl_priv *priv, enum iwl_access_mode mode)
{
219
	iwl_read32(priv, CSR_OTP_GP_REG);
220 221 222

	if (mode == IWL_OTP_ACCESS_ABSOLUTE)
		iwl_clear_bit(priv, CSR_OTP_GP_REG,
223
			      CSR_OTP_GP_REG_OTP_ACCESS_MODE);
224 225
	else
		iwl_set_bit(priv, CSR_OTP_GP_REG,
226
			    CSR_OTP_GP_REG_OTP_ACCESS_MODE);
227 228
}

J
Johannes Berg 已提交
229
static int iwlcore_get_nvm_type(struct iwl_priv *priv, u32 hw_rev)
230 231 232 233 234
{
	u32 otpgp;
	int nvm_type;

	/* OTP only valid for CP/PP and after */
J
Johannes Berg 已提交
235
	switch (hw_rev & CSR_HW_REV_TYPE_MSK) {
W
Wey-Yi Guy 已提交
236 237 238
	case CSR_HW_REV_TYPE_NONE:
		IWL_ERR(priv, "Unknown hardware type\n");
		return -ENOENT;
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
	case CSR_HW_REV_TYPE_5300:
	case CSR_HW_REV_TYPE_5350:
	case CSR_HW_REV_TYPE_5100:
	case CSR_HW_REV_TYPE_5150:
		nvm_type = NVM_DEVICE_TYPE_EEPROM;
		break;
	default:
		otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
		if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT)
			nvm_type = NVM_DEVICE_TYPE_OTP;
		else
			nvm_type = NVM_DEVICE_TYPE_EEPROM;
		break;
	}
	return  nvm_type;
}

static int iwl_init_otp_access(struct iwl_priv *priv)
{
	int ret;

	/* Enable 40MHz radio clock */
261 262 263
	iwl_write32(priv, CSR_GP_CNTRL,
		    iwl_read32(priv, CSR_GP_CNTRL) |
		    CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
264 265

	/* wait for clock to be ready */
266
	ret = iwl_poll_bit(priv, CSR_GP_CNTRL,
267 268 269
				 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
				 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
				 25000);
270 271 272
	if (ret < 0)
		IWL_ERR(priv, "Time out access OTP\n");
	else {
R
Reinette Chatre 已提交
273 274 275 276 277
		iwl_set_bits_prph(priv, APMG_PS_CTRL_REG,
				  APMG_PS_CTRL_VAL_RESET_REQ);
		udelay(5);
		iwl_clear_bits_prph(priv, APMG_PS_CTRL_REG,
				    APMG_PS_CTRL_VAL_RESET_REQ);
278 279 280 281 282

		/*
		 * CSR auto clock gate disable bit -
		 * this is only applicable for HW with OTP shadow RAM
		 */
283
		if (priv->cfg->base_params->shadow_ram_support)
284 285
			iwl_set_bit(priv, CSR_DBG_LINK_PWR_MGMT_REG,
				CSR_RESET_LINK_PWR_MGMT_DISABLED);
286 287 288 289
	}
	return ret;
}

290
static int iwl_read_otp_word(struct iwl_priv *priv, u16 addr, __le16 *eeprom_data)
291 292 293 294 295
{
	int ret = 0;
	u32 r;
	u32 otpgp;

296 297
	iwl_write32(priv, CSR_EEPROM_REG,
		    CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
298
	ret = iwl_poll_bit(priv, CSR_EEPROM_REG,
299 300 301
				 CSR_EEPROM_REG_READ_VALID_MSK,
				 CSR_EEPROM_REG_READ_VALID_MSK,
				 IWL_EEPROM_ACCESS_TIMEOUT);
302 303 304 305
	if (ret < 0) {
		IWL_ERR(priv, "Time out reading OTP[%d]\n", addr);
		return ret;
	}
306
	r = iwl_read32(priv, CSR_EEPROM_REG);
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
	/* check for ECC errors: */
	otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
	if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) {
		/* stop in this case */
		/* set the uncorrectable OTP ECC bit for acknowledgement */
		iwl_set_bit(priv, CSR_OTP_GP_REG,
			CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
		IWL_ERR(priv, "Uncorrectable OTP ECC error, abort OTP read\n");
		return -EINVAL;
	}
	if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) {
		/* continue in this case */
		/* set the correctable OTP ECC bit for acknowledgement */
		iwl_set_bit(priv, CSR_OTP_GP_REG,
				CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK);
		IWL_ERR(priv, "Correctable OTP ECC error, continue read\n");
	}
324
	*eeprom_data = cpu_to_le16(r >> 16);
325 326 327 328 329 330 331 332
	return 0;
}

/*
 * iwl_is_otp_empty: check for empty OTP
 */
static bool iwl_is_otp_empty(struct iwl_priv *priv)
{
333 334
	u16 next_link_addr = 0;
	__le16 link_value;
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
	bool is_empty = false;

	/* locate the beginning of OTP link list */
	if (!iwl_read_otp_word(priv, next_link_addr, &link_value)) {
		if (!link_value) {
			IWL_ERR(priv, "OTP is empty\n");
			is_empty = true;
		}
	} else {
		IWL_ERR(priv, "Unable to read first block of OTP list.\n");
		is_empty = true;
	}

	return is_empty;
}


/*
 * iwl_find_otp_image: find EEPROM image in OTP
 *   finding the OTP block that contains the EEPROM image.
 *   the last valid block on the link list (the block _before_ the last block)
 *   is the block we should read and used to configure the device.
 *   If all the available OTP blocks are full, the last block will be the block
 *   we should read and used to configure the device.
 *   only perform this operation if shadow RAM is disabled
 */
static int iwl_find_otp_image(struct iwl_priv *priv,
					u16 *validblockaddr)
{
364 365
	u16 next_link_addr = 0, valid_addr;
	__le16 link_value = 0;
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
	int usedblocks = 0;

	/* set addressing mode to absolute to traverse the link list */
	iwl_set_otp_access(priv, IWL_OTP_ACCESS_ABSOLUTE);

	/* checking for empty OTP or error */
	if (iwl_is_otp_empty(priv))
		return -EINVAL;

	/*
	 * start traverse link list
	 * until reach the max number of OTP blocks
	 * different devices have different number of OTP blocks
	 */
	do {
		/* save current valid block address
		 * check for more block on the link list
		 */
		valid_addr = next_link_addr;
385
		next_link_addr = le16_to_cpu(link_value) * sizeof(u16);
386
		IWL_DEBUG_EEPROM(priv, "OTP blocks %d addr 0x%x\n",
387 388 389 390 391
			       usedblocks, next_link_addr);
		if (iwl_read_otp_word(priv, next_link_addr, &link_value))
			return -EINVAL;
		if (!link_value) {
			/*
392
			 * reach the end of link list, return success and
393 394 395
			 * set address point to the starting address
			 * of the image
			 */
396 397 398 399
			*validblockaddr = valid_addr;
			/* skip first 2 bytes (link list pointer) */
			*validblockaddr += 2;
			return 0;
400 401 402
		}
		/* more in the link list, continue */
		usedblocks++;
403
	} while (usedblocks <= priv->cfg->base_params->max_ll_items);
404 405

	/* OTP has no valid blocks */
406
	IWL_DEBUG_EEPROM(priv, "OTP has no valid blocks\n");
407
	return -EINVAL;
408 409
}

410 411 412 413 414 415 416 417 418 419 420 421
const u8 *iwl_eeprom_query_addr(const struct iwl_priv *priv, size_t offset)
{
	return priv->cfg->ops->lib->eeprom_ops.query_addr(priv, offset);
}

u16 iwl_eeprom_query16(const struct iwl_priv *priv, size_t offset)
{
	if (!priv->eeprom)
		return 0;
	return (u16)priv->eeprom[offset] | ((u16)priv->eeprom[offset + 1] << 8);
}

422 423 424 425 426 427 428
/**
 * iwl_eeprom_init - read EEPROM contents
 *
 * Load the EEPROM contents from adapter into priv->eeprom
 *
 * NOTE:  This routine uses the non-debug IO access functions.
 */
J
Johannes Berg 已提交
429
int iwl_eeprom_init(struct iwl_priv *priv, u32 hw_rev)
430
{
431
	__le16 *e;
432
	u32 gp = iwl_read32(priv, CSR_EEPROM_GP);
433
	int sz;
434 435
	int ret;
	u16 addr;
436 437
	u16 validblockaddr = 0;
	u16 cache_addr = 0;
438

J
Johannes Berg 已提交
439
	priv->nvm_device_type = iwlcore_get_nvm_type(priv, hw_rev);
W
Wey-Yi Guy 已提交
440 441
	if (priv->nvm_device_type == -ENOENT)
		return -ENOENT;
442
	/* allocate eeprom */
443
	sz = priv->cfg->base_params->eeprom_size;
444
	IWL_DEBUG_EEPROM(priv, "NVM size = %d\n", sz);
445 446 447 448 449
	priv->eeprom = kzalloc(sz, GFP_KERNEL);
	if (!priv->eeprom) {
		ret = -ENOMEM;
		goto alloc_err;
	}
450
	e = (__le16 *)priv->eeprom;
451

452
	priv->cfg->ops->lib->apm_ops.init(priv);
453

454
	ret = iwl_eeprom_verify_signature(priv);
455
	if (ret < 0) {
456
		IWL_ERR(priv, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
457 458
		ret = -ENOENT;
		goto err;
459 460 461
	}

	/* Make sure driver (instead of uCode) is allowed to read EEPROM */
D
Don Fry 已提交
462
	ret = iwl_eeprom_acquire_semaphore(priv);
463
	if (ret < 0) {
464
		IWL_ERR(priv, "Failed to acquire EEPROM semaphore.\n");
465 466
		ret = -ENOENT;
		goto err;
467
	}
468

469
	if (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP) {
470

471 472 473 474
		ret = iwl_init_otp_access(priv);
		if (ret) {
			IWL_ERR(priv, "Failed to initialize OTP access.\n");
			ret = -ENOENT;
475
			goto done;
476
		}
477 478 479
		iwl_write32(priv, CSR_EEPROM_GP,
			    iwl_read32(priv, CSR_EEPROM_GP) &
			    ~CSR_EEPROM_GP_IF_OWNER_MSK);
480 481

		iwl_set_bit(priv, CSR_OTP_GP_REG,
482 483
			     CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK |
			     CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
484
		/* traversing the linked list if no shadow ram supported */
485
		if (!priv->cfg->base_params->shadow_ram_support) {
486 487
			if (iwl_find_otp_image(priv, &validblockaddr)) {
				ret = -ENOENT;
488 489
				goto done;
			}
490 491 492
		}
		for (addr = validblockaddr; addr < validblockaddr + sz;
		     addr += sizeof(u16)) {
493
			__le16 eeprom_data;
494 495 496

			ret = iwl_read_otp_word(priv, addr, &eeprom_data);
			if (ret)
497
				goto done;
498 499
			e[cache_addr / 2] = eeprom_data;
			cache_addr += sizeof(u16);
500 501 502 503 504 505
		}
	} else {
		/* eeprom is an array of 16bit values */
		for (addr = 0; addr < sz; addr += sizeof(u16)) {
			u32 r;

506 507
			iwl_write32(priv, CSR_EEPROM_REG,
				    CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
508

509 510
			ret = iwl_poll_bit(priv, CSR_EEPROM_REG,
						  CSR_EEPROM_REG_READ_VALID_MSK,
511 512 513 514 515 516
						  CSR_EEPROM_REG_READ_VALID_MSK,
						  IWL_EEPROM_ACCESS_TIMEOUT);
			if (ret < 0) {
				IWL_ERR(priv, "Time out reading EEPROM[%d]\n", addr);
				goto done;
			}
517
			r = iwl_read32(priv, CSR_EEPROM_REG);
518
			e[addr / 2] = cpu_to_le16(r >> 16);
519 520
		}
	}
521

522
	IWL_DEBUG_EEPROM(priv, "NVM Type: %s, version: 0x%x\n",
523 524 525 526
		       (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP)
		       ? "OTP" : "EEPROM",
		       iwl_eeprom_query16(priv, EEPROM_VERSION));

527 528
	ret = 0;
done:
D
Don Fry 已提交
529
	iwl_eeprom_release_semaphore(priv);
530

531 532
err:
	if (ret)
533
		iwl_eeprom_free(priv);
534
	/* Reset chip to save power until we load uCode during "up". */
J
Johannes Berg 已提交
535
	iwl_apm_stop(priv);
536
alloc_err:
537 538 539
	return ret;
}

540 541
void iwl_eeprom_free(struct iwl_priv *priv)
{
542
	kfree(priv->eeprom);
543 544 545
	priv->eeprom = NULL;
}

546
static void iwl_init_band_reference(const struct iwl_priv *priv,
547 548 549
			int eep_band, int *eeprom_ch_count,
			const struct iwl_eeprom_channel **eeprom_ch_info,
			const u8 **eeprom_ch_index)
550
{
551 552 553
	u32 offset = priv->cfg->ops->lib->
			eeprom_ops.regulatory_bands[eep_band - 1];
	switch (eep_band) {
554 555
	case 1:		/* 2.4GHz band */
		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
556 557
		*eeprom_ch_info = (struct iwl_eeprom_channel *)
				iwl_eeprom_query_addr(priv, offset);
558 559 560 561
		*eeprom_ch_index = iwl_eeprom_band_1;
		break;
	case 2:		/* 4.9GHz band */
		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
562 563
		*eeprom_ch_info = (struct iwl_eeprom_channel *)
				iwl_eeprom_query_addr(priv, offset);
564 565 566 567
		*eeprom_ch_index = iwl_eeprom_band_2;
		break;
	case 3:		/* 5.2GHz band */
		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
568 569
		*eeprom_ch_info = (struct iwl_eeprom_channel *)
				iwl_eeprom_query_addr(priv, offset);
570 571 572 573
		*eeprom_ch_index = iwl_eeprom_band_3;
		break;
	case 4:		/* 5.5GHz band */
		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
574 575
		*eeprom_ch_info = (struct iwl_eeprom_channel *)
				iwl_eeprom_query_addr(priv, offset);
576 577 578 579
		*eeprom_ch_index = iwl_eeprom_band_4;
		break;
	case 5:		/* 5.7GHz band */
		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
580 581
		*eeprom_ch_info = (struct iwl_eeprom_channel *)
				iwl_eeprom_query_addr(priv, offset);
582 583
		*eeprom_ch_index = iwl_eeprom_band_5;
		break;
584
	case 6:		/* 2.4GHz ht40 channels */
585
		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
586 587
		*eeprom_ch_info = (struct iwl_eeprom_channel *)
				iwl_eeprom_query_addr(priv, offset);
588 589
		*eeprom_ch_index = iwl_eeprom_band_6;
		break;
590
	case 7:		/* 5 GHz ht40 channels */
591
		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
592 593
		*eeprom_ch_info = (struct iwl_eeprom_channel *)
				iwl_eeprom_query_addr(priv, offset);
594 595 596 597 598 599 600 601 602 603 604
		*eeprom_ch_index = iwl_eeprom_band_7;
		break;
	default:
		BUG();
		return;
	}
}

#define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
			    ? # x " " : "")
/**
605
 * iwl_mod_ht40_chan_info - Copy ht40 channel info into driver's priv.
606 607 608
 *
 * Does not set up a command, or touch hardware.
 */
609
static int iwl_mod_ht40_chan_info(struct iwl_priv *priv,
610
			      enum ieee80211_band band, u16 channel,
611
			      const struct iwl_eeprom_channel *eeprom_ch,
612
			      u8 clear_ht40_extension_channel)
613 614 615 616
{
	struct iwl_channel_info *ch_info;

	ch_info = (struct iwl_channel_info *)
617
			iwl_get_channel_info(priv, band, channel);
618 619 620 621

	if (!is_channel_valid(ch_info))
		return -1;

622
	IWL_DEBUG_EEPROM(priv, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
623
			" Ad-Hoc %ssupported\n",
624 625 626 627 628 629 630 631 632 633 634 635 636 637
			ch_info->channel,
			is_channel_a_band(ch_info) ?
			"5.2" : "2.4",
			CHECK_AND_PRINT(IBSS),
			CHECK_AND_PRINT(ACTIVE),
			CHECK_AND_PRINT(RADAR),
			CHECK_AND_PRINT(WIDE),
			CHECK_AND_PRINT(DFS),
			eeprom_ch->flags,
			eeprom_ch->max_power_avg,
			((eeprom_ch->flags & EEPROM_CHANNEL_IBSS)
			 && !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ?
			"" : "not ");

638 639 640
	ch_info->ht40_eeprom = *eeprom_ch;
	ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
	ch_info->ht40_flags = eeprom_ch->flags;
641 642
	if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
		ch_info->ht40_extension_channel &= ~clear_ht40_extension_channel;
643 644 645 646 647 648 649 650 651 652 653 654 655 656

	return 0;
}

#define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
			    ? # x " " : "")

/**
 * iwl_init_channel_map - Set up driver's info for all possible channels
 */
int iwl_init_channel_map(struct iwl_priv *priv)
{
	int eeprom_ch_count = 0;
	const u8 *eeprom_ch_index = NULL;
657
	const struct iwl_eeprom_channel *eeprom_ch_info = NULL;
658 659 660 661
	int band, ch;
	struct iwl_channel_info *ch_info;

	if (priv->channel_count) {
662
		IWL_DEBUG_EEPROM(priv, "Channel map already initialized.\n");
663 664 665
		return 0;
	}

666
	IWL_DEBUG_EEPROM(priv, "Initializing regulatory info from EEPROM\n");
667 668 669 670 671 672 673 674

	priv->channel_count =
	    ARRAY_SIZE(iwl_eeprom_band_1) +
	    ARRAY_SIZE(iwl_eeprom_band_2) +
	    ARRAY_SIZE(iwl_eeprom_band_3) +
	    ARRAY_SIZE(iwl_eeprom_band_4) +
	    ARRAY_SIZE(iwl_eeprom_band_5);

675 676
	IWL_DEBUG_EEPROM(priv, "Parsing data for %d channels.\n",
			priv->channel_count);
677 678 679 680

	priv->channel_info = kzalloc(sizeof(struct iwl_channel_info) *
				     priv->channel_count, GFP_KERNEL);
	if (!priv->channel_info) {
681
		IWL_ERR(priv, "Could not allocate channel_info\n");
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
		priv->channel_count = 0;
		return -ENOMEM;
	}

	ch_info = priv->channel_info;

	/* Loop through the 5 EEPROM bands adding them in order to the
	 * channel map we maintain (that contains additional information than
	 * what just in the EEPROM) */
	for (band = 1; band <= 5; band++) {

		iwl_init_band_reference(priv, band, &eeprom_ch_count,
					&eeprom_ch_info, &eeprom_ch_index);

		/* Loop through each band adding each of the channels */
		for (ch = 0; ch < eeprom_ch_count; ch++) {
			ch_info->channel = eeprom_ch_index[ch];
			ch_info->band = (band == 1) ? IEEE80211_BAND_2GHZ :
			    IEEE80211_BAND_5GHZ;

			/* permanently store EEPROM's channel regulatory flags
			 *   and max power in channel info database. */
			ch_info->eeprom = eeprom_ch_info[ch];

			/* Copy the run-time flags so they are there even on
			 * invalid channels */
			ch_info->flags = eeprom_ch_info[ch].flags;
709
			/* First write that ht40 is not enabled, and then enable
710
			 * one by one */
711
			ch_info->ht40_extension_channel =
712
					IEEE80211_CHAN_NO_HT40;
713 714

			if (!(is_channel_valid(ch_info))) {
715 716
				IWL_DEBUG_EEPROM(priv,
					       "Ch. %d Flags %x [%sGHz] - "
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
					       "No traffic\n",
					       ch_info->channel,
					       ch_info->flags,
					       is_channel_a_band(ch_info) ?
					       "5.2" : "2.4");
				ch_info++;
				continue;
			}

			/* Initialize regulatory-based run-time data */
			ch_info->max_power_avg = ch_info->curr_txpow =
			    eeprom_ch_info[ch].max_power_avg;
			ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
			ch_info->min_power = 0;

732 733
			IWL_DEBUG_EEPROM(priv, "Ch. %d [%sGHz] "
				       "%s%s%s%s%s%s(0x%02x %ddBm):"
734
				       " Ad-Hoc %ssupported\n",
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
				       ch_info->channel,
				       is_channel_a_band(ch_info) ?
				       "5.2" : "2.4",
				       CHECK_AND_PRINT_I(VALID),
				       CHECK_AND_PRINT_I(IBSS),
				       CHECK_AND_PRINT_I(ACTIVE),
				       CHECK_AND_PRINT_I(RADAR),
				       CHECK_AND_PRINT_I(WIDE),
				       CHECK_AND_PRINT_I(DFS),
				       eeprom_ch_info[ch].flags,
				       eeprom_ch_info[ch].max_power_avg,
				       ((eeprom_ch_info[ch].
					 flags & EEPROM_CHANNEL_IBSS)
					&& !(eeprom_ch_info[ch].
					     flags & EEPROM_CHANNEL_RADAR))
				       ? "" : "not ");

			ch_info++;
		}
	}

756
	/* Check if we do have HT40 channels */
757
	if (priv->cfg->ops->lib->eeprom_ops.regulatory_bands[5] ==
758
	    EEPROM_REGULATORY_BAND_NO_HT40 &&
759
	    priv->cfg->ops->lib->eeprom_ops.regulatory_bands[6] ==
760
	    EEPROM_REGULATORY_BAND_NO_HT40)
761 762
		return 0;

763
	/* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
764 765 766 767 768 769 770 771 772 773 774 775 776
	for (band = 6; band <= 7; band++) {
		enum ieee80211_band ieeeband;

		iwl_init_band_reference(priv, band, &eeprom_ch_count,
					&eeprom_ch_info, &eeprom_ch_index);

		/* EEPROM band 6 is 2.4, band 7 is 5 GHz */
		ieeeband =
			(band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;

		/* Loop through each band adding each of the channels */
		for (ch = 0; ch < eeprom_ch_count; ch++) {
			/* Set up driver's info for lower half */
777
			iwl_mod_ht40_chan_info(priv, ieeeband,
778
						eeprom_ch_index[ch],
779 780
						&eeprom_ch_info[ch],
						IEEE80211_CHAN_NO_HT40PLUS);
781 782

			/* Set up driver's info for upper half */
783 784 785 786
			iwl_mod_ht40_chan_info(priv, ieeeband,
						eeprom_ch_index[ch] + 4,
						&eeprom_ch_info[ch],
						IEEE80211_CHAN_NO_HT40MINUS);
787 788 789
		}
	}

790 791 792 793 794 795 796 797
	/* for newer device (6000 series and up)
	 * EEPROM contain enhanced tx power information
	 * driver need to process addition information
	 * to determine the max channel tx power limits
	 */
	if (priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower)
		priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower(priv);

798 799 800 801
	return 0;
}

/*
802
 * iwl_free_channel_map - undo allocations in iwl_init_channel_map
803 804 805 806 807 808 809 810 811 812 813 814
 */
void iwl_free_channel_map(struct iwl_priv *priv)
{
	kfree(priv->channel_info);
	priv->channel_count = 0;
}

/**
 * iwl_get_channel_info - Find driver's private channel info
 *
 * Based on band and channel number.
 */
815 816
const struct iwl_channel_info *iwl_get_channel_info(const struct iwl_priv *priv,
					enum ieee80211_band band, u16 channel)
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
{
	int i;

	switch (band) {
	case IEEE80211_BAND_5GHZ:
		for (i = 14; i < priv->channel_count; i++) {
			if (priv->channel_info[i].channel == channel)
				return &priv->channel_info[i];
		}
		break;
	case IEEE80211_BAND_2GHZ:
		if (channel >= 1 && channel <= 14)
			return &priv->channel_info[channel - 1];
		break;
	default:
		BUG();
	}

	return NULL;
}
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861

void iwl_rf_config(struct iwl_priv *priv)
{
	u16 radio_cfg;

	radio_cfg = iwl_eeprom_query16(priv, EEPROM_RADIO_CONFIG);

	/* write radio config values to register */
	if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) <= EEPROM_RF_CONFIG_TYPE_MAX) {
		iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
			    EEPROM_RF_CFG_TYPE_MSK(radio_cfg) |
			    EEPROM_RF_CFG_STEP_MSK(radio_cfg) |
			    EEPROM_RF_CFG_DASH_MSK(radio_cfg));
		IWL_INFO(priv, "Radio type=0x%x-0x%x-0x%x\n",
			 EEPROM_RF_CFG_TYPE_MSK(radio_cfg),
			 EEPROM_RF_CFG_STEP_MSK(radio_cfg),
			 EEPROM_RF_CFG_DASH_MSK(radio_cfg));
	} else
		WARN_ON(1);

	/* set CSR_HW_CONFIG_REG for uCode use */
	iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
		    CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
		    CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
}