bset.c 26.7 KB
Newer Older
K
Kent Overstreet 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Code for working with individual keys, and sorted sets of keys with in a
 * btree node
 *
 * Copyright 2012 Google, Inc.
 */

#include "bcache.h"
#include "btree.h"
#include "debug.h"

#include <linux/random.h>
13
#include <linux/prefetch.h>
K
Kent Overstreet 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

/* Keylists */

void bch_keylist_copy(struct keylist *dest, struct keylist *src)
{
	*dest = *src;

	if (src->list == src->d) {
		size_t n = (uint64_t *) src->top - src->d;
		dest->top = (struct bkey *) &dest->d[n];
		dest->list = dest->d;
	}
}

int bch_keylist_realloc(struct keylist *l, int nptrs, struct cache_set *c)
{
	unsigned oldsize = (uint64_t *) l->top - l->list;
	unsigned newsize = oldsize + 2 + nptrs;
	uint64_t *new;

	/* The journalling code doesn't handle the case where the keys to insert
	 * is bigger than an empty write: If we just return -ENOMEM here,
	 * bio_insert() and bio_invalidate() will insert the keys created so far
	 * and finish the rest when the keylist is empty.
	 */
	if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
		return -ENOMEM;

	newsize = roundup_pow_of_two(newsize);

	if (newsize <= KEYLIST_INLINE ||
	    roundup_pow_of_two(oldsize) == newsize)
		return 0;

	new = krealloc(l->list == l->d ? NULL : l->list,
		       sizeof(uint64_t) * newsize, GFP_NOIO);

	if (!new)
		return -ENOMEM;

	if (l->list == l->d)
		memcpy(new, l->list, sizeof(uint64_t) * KEYLIST_INLINE);

	l->list = new;
	l->top = (struct bkey *) (&l->list[oldsize]);

	return 0;
}

struct bkey *bch_keylist_pop(struct keylist *l)
{
	struct bkey *k = l->bottom;

	if (k == l->top)
		return NULL;

	while (bkey_next(k) != l->top)
		k = bkey_next(k);

	return l->top = k;
}

/* Pointer validation */

bool __bch_ptr_invalid(struct cache_set *c, int level, const struct bkey *k)
{
	unsigned i;
81
	char buf[80];
K
Kent Overstreet 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

	if (level && (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k)))
		goto bad;

	if (!level && KEY_SIZE(k) > KEY_OFFSET(k))
		goto bad;

	if (!KEY_SIZE(k))
		return true;

	for (i = 0; i < KEY_PTRS(k); i++)
		if (ptr_available(c, k, i)) {
			struct cache *ca = PTR_CACHE(c, k, i);
			size_t bucket = PTR_BUCKET_NR(c, k, i);
			size_t r = bucket_remainder(c, PTR_OFFSET(k, i));

			if (KEY_SIZE(k) + r > c->sb.bucket_size ||
			    bucket <  ca->sb.first_bucket ||
			    bucket >= ca->sb.nbuckets)
				goto bad;
		}

	return false;
bad:
106 107
	bch_bkey_to_text(buf, sizeof(buf), k);
	cache_bug(c, "spotted bad key %s: %s", buf, bch_ptr_status(c, k));
K
Kent Overstreet 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
	return true;
}

bool bch_ptr_bad(struct btree *b, const struct bkey *k)
{
	struct bucket *g;
	unsigned i, stale;

	if (!bkey_cmp(k, &ZERO_KEY) ||
	    !KEY_PTRS(k) ||
	    bch_ptr_invalid(b, k))
		return true;

	if (KEY_PTRS(k) && PTR_DEV(k, 0) == PTR_CHECK_DEV)
		return true;

	for (i = 0; i < KEY_PTRS(k); i++)
		if (ptr_available(b->c, k, i)) {
			g = PTR_BUCKET(b->c, k, i);
			stale = ptr_stale(b->c, k, i);

			btree_bug_on(stale > 96, b,
				     "key too stale: %i, need_gc %u",
				     stale, b->c->need_gc);

			btree_bug_on(stale && KEY_DIRTY(k) && KEY_SIZE(k),
				     b, "stale dirty pointer");

			if (stale)
				return true;

#ifdef CONFIG_BCACHE_EDEBUG
			if (!mutex_trylock(&b->c->bucket_lock))
				continue;

			if (b->level) {
				if (KEY_DIRTY(k) ||
				    g->prio != BTREE_PRIO ||
				    (b->c->gc_mark_valid &&
				     GC_MARK(g) != GC_MARK_METADATA))
					goto bug;

			} else {
				if (g->prio == BTREE_PRIO)
					goto bug;

				if (KEY_DIRTY(k) &&
				    b->c->gc_mark_valid &&
				    GC_MARK(g) != GC_MARK_DIRTY)
					goto bug;
			}
			mutex_unlock(&b->c->bucket_lock);
#endif
		}

	return false;
#ifdef CONFIG_BCACHE_EDEBUG
bug:
	mutex_unlock(&b->c->bucket_lock);
167 168 169 170 171 172

	{
		char buf[80];

		bch_bkey_to_text(buf, sizeof(buf), k);
		btree_bug(b,
K
Kent Overstreet 已提交
173
"inconsistent pointer %s: bucket %zu pin %i prio %i gen %i last_gc %i mark %llu gc_gen %i",
174 175 176
			  buf, PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin),
			  g->prio, g->gen, g->last_gc, GC_MARK(g), g->gc_gen);
	}
K
Kent Overstreet 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
	return true;
#endif
}

/* Key/pointer manipulation */

void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
			      unsigned i)
{
	BUG_ON(i > KEY_PTRS(src));

	/* Only copy the header, key, and one pointer. */
	memcpy(dest, src, 2 * sizeof(uint64_t));
	dest->ptr[0] = src->ptr[i];
	SET_KEY_PTRS(dest, 1);
	/* We didn't copy the checksum so clear that bit. */
	SET_KEY_CSUM(dest, 0);
}

bool __bch_cut_front(const struct bkey *where, struct bkey *k)
{
	unsigned i, len = 0;

	if (bkey_cmp(where, &START_KEY(k)) <= 0)
		return false;

	if (bkey_cmp(where, k) < 0)
		len = KEY_OFFSET(k) - KEY_OFFSET(where);
	else
		bkey_copy_key(k, where);

	for (i = 0; i < KEY_PTRS(k); i++)
		SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);

	BUG_ON(len > KEY_SIZE(k));
	SET_KEY_SIZE(k, len);
	return true;
}

bool __bch_cut_back(const struct bkey *where, struct bkey *k)
{
	unsigned len = 0;

	if (bkey_cmp(where, k) >= 0)
		return false;

	BUG_ON(KEY_INODE(where) != KEY_INODE(k));

	if (bkey_cmp(where, &START_KEY(k)) > 0)
		len = KEY_OFFSET(where) - KEY_START(k);

	bkey_copy_key(k, where);

	BUG_ON(len > KEY_SIZE(k));
	SET_KEY_SIZE(k, len);
	return true;
}

static uint64_t merge_chksums(struct bkey *l, struct bkey *r)
{
	return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) &
		~((uint64_t)1 << 63);
}

/* Tries to merge l and r: l should be lower than r
 * Returns true if we were able to merge. If we did merge, l will be the merged
 * key, r will be untouched.
 */
bool bch_bkey_try_merge(struct btree *b, struct bkey *l, struct bkey *r)
{
	unsigned i;

	if (key_merging_disabled(b->c))
		return false;

	if (KEY_PTRS(l) != KEY_PTRS(r) ||
	    KEY_DIRTY(l) != KEY_DIRTY(r) ||
	    bkey_cmp(l, &START_KEY(r)))
		return false;

	for (i = 0; i < KEY_PTRS(l); i++)
		if (l->ptr[i] + PTR(0, KEY_SIZE(l), 0) != r->ptr[i] ||
		    PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i))
			return false;

	/* Keys with no pointers aren't restricted to one bucket and could
	 * overflow KEY_SIZE
	 */
	if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) {
		SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l));
		SET_KEY_SIZE(l, USHRT_MAX);

		bch_cut_front(l, r);
		return false;
	}

	if (KEY_CSUM(l)) {
		if (KEY_CSUM(r))
			l->ptr[KEY_PTRS(l)] = merge_chksums(l, r);
		else
			SET_KEY_CSUM(l, 0);
	}

	SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r));
	SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r));

	return true;
}

/* Binary tree stuff for auxiliary search trees */

static unsigned inorder_next(unsigned j, unsigned size)
{
	if (j * 2 + 1 < size) {
		j = j * 2 + 1;

		while (j * 2 < size)
			j *= 2;
	} else
		j >>= ffz(j) + 1;

	return j;
}

static unsigned inorder_prev(unsigned j, unsigned size)
{
	if (j * 2 < size) {
		j = j * 2;

		while (j * 2 + 1 < size)
			j = j * 2 + 1;
	} else
		j >>= ffs(j);

	return j;
}

/* I have no idea why this code works... and I'm the one who wrote it
 *
 * However, I do know what it does:
 * Given a binary tree constructed in an array (i.e. how you normally implement
 * a heap), it converts a node in the tree - referenced by array index - to the
 * index it would have if you did an inorder traversal.
 *
 * Also tested for every j, size up to size somewhere around 6 million.
 *
 * The binary tree starts at array index 1, not 0
 * extra is a function of size:
 *   extra = (size - rounddown_pow_of_two(size - 1)) << 1;
 */
static unsigned __to_inorder(unsigned j, unsigned size, unsigned extra)
{
	unsigned b = fls(j);
	unsigned shift = fls(size - 1) - b;

	j  ^= 1U << (b - 1);
	j <<= 1;
	j  |= 1;
	j <<= shift;

	if (j > extra)
		j -= (j - extra) >> 1;

	return j;
}

static unsigned to_inorder(unsigned j, struct bset_tree *t)
{
	return __to_inorder(j, t->size, t->extra);
}

static unsigned __inorder_to_tree(unsigned j, unsigned size, unsigned extra)
{
	unsigned shift;

	if (j > extra)
		j += j - extra;

	shift = ffs(j);

	j >>= shift;
	j  |= roundup_pow_of_two(size) >> shift;

	return j;
}

static unsigned inorder_to_tree(unsigned j, struct bset_tree *t)
{
	return __inorder_to_tree(j, t->size, t->extra);
}

#if 0
void inorder_test(void)
{
	unsigned long done = 0;
	ktime_t start = ktime_get();

	for (unsigned size = 2;
	     size < 65536000;
	     size++) {
		unsigned extra = (size - rounddown_pow_of_two(size - 1)) << 1;
		unsigned i = 1, j = rounddown_pow_of_two(size - 1);

		if (!(size % 4096))
			printk(KERN_NOTICE "loop %u, %llu per us\n", size,
			       done / ktime_us_delta(ktime_get(), start));

		while (1) {
			if (__inorder_to_tree(i, size, extra) != j)
				panic("size %10u j %10u i %10u", size, j, i);

			if (__to_inorder(j, size, extra) != i)
				panic("size %10u j %10u i %10u", size, j, i);

			if (j == rounddown_pow_of_two(size) - 1)
				break;

			BUG_ON(inorder_prev(inorder_next(j, size), size) != j);

			j = inorder_next(j, size);
			i++;
		}

		done += size - 1;
	}
}
#endif

/*
 * Cacheline/offset <-> bkey pointer arithmatic:
 *
 * t->tree is a binary search tree in an array; each node corresponds to a key
 * in one cacheline in t->set (BSET_CACHELINE bytes).
 *
 * This means we don't have to store the full index of the key that a node in
 * the binary tree points to; to_inorder() gives us the cacheline, and then
 * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
 *
 * cacheline_to_bkey() and friends abstract out all the pointer arithmatic to
 * make this work.
 *
 * To construct the bfloat for an arbitrary key we need to know what the key
 * immediately preceding it is: we have to check if the two keys differ in the
 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
 * of the previous key so we can walk backwards to it from t->tree[j]'s key.
 */

static struct bkey *cacheline_to_bkey(struct bset_tree *t, unsigned cacheline,
				      unsigned offset)
{
	return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
}

static unsigned bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
{
	return ((void *) k - (void *) t->data) / BSET_CACHELINE;
}

static unsigned bkey_to_cacheline_offset(struct bkey *k)
{
	return ((size_t) k & (BSET_CACHELINE - 1)) / sizeof(uint64_t);
}

static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned j)
{
	return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
}

static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned j)
{
	return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
}

/*
 * For the write set - the one we're currently inserting keys into - we don't
 * maintain a full search tree, we just keep a simple lookup table in t->prev.
 */
static struct bkey *table_to_bkey(struct bset_tree *t, unsigned cacheline)
{
	return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
}

static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
{
#ifdef CONFIG_X86_64
	asm("shrd %[shift],%[high],%[low]"
	    : [low] "+Rm" (low)
	    : [high] "R" (high),
	    [shift] "ci" (shift)
	    : "cc");
#else
	low >>= shift;
	low  |= (high << 1) << (63U - shift);
#endif
	return low;
}

static inline unsigned bfloat_mantissa(const struct bkey *k,
				       struct bkey_float *f)
{
	const uint64_t *p = &k->low - (f->exponent >> 6);
	return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
}

static void make_bfloat(struct bset_tree *t, unsigned j)
{
	struct bkey_float *f = &t->tree[j];
	struct bkey *m = tree_to_bkey(t, j);
	struct bkey *p = tree_to_prev_bkey(t, j);

	struct bkey *l = is_power_of_2(j)
		? t->data->start
		: tree_to_prev_bkey(t, j >> ffs(j));

	struct bkey *r = is_power_of_2(j + 1)
		? node(t->data, t->data->keys - bkey_u64s(&t->end))
		: tree_to_bkey(t, j >> (ffz(j) + 1));

	BUG_ON(m < l || m > r);
	BUG_ON(bkey_next(p) != m);

	if (KEY_INODE(l) != KEY_INODE(r))
		f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
	else
		f->exponent = fls64(r->low ^ l->low);

	f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);

	/*
	 * Setting f->exponent = 127 flags this node as failed, and causes the
	 * lookup code to fall back to comparing against the original key.
	 */

	if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
		f->mantissa = bfloat_mantissa(m, f) - 1;
	else
		f->exponent = 127;
}

static void bset_alloc_tree(struct btree *b, struct bset_tree *t)
{
	if (t != b->sets) {
		unsigned j = roundup(t[-1].size,
				     64 / sizeof(struct bkey_float));

		t->tree = t[-1].tree + j;
		t->prev = t[-1].prev + j;
	}

	while (t < b->sets + MAX_BSETS)
		t++->size = 0;
}

static void bset_build_unwritten_tree(struct btree *b)
{
	struct bset_tree *t = b->sets + b->nsets;

	bset_alloc_tree(b, t);

	if (t->tree != b->sets->tree + bset_tree_space(b)) {
		t->prev[0] = bkey_to_cacheline_offset(t->data->start);
		t->size = 1;
	}
}

static void bset_build_written_tree(struct btree *b)
{
	struct bset_tree *t = b->sets + b->nsets;
	struct bkey *k = t->data->start;
	unsigned j, cacheline = 1;

	bset_alloc_tree(b, t);

	t->size = min_t(unsigned,
			bkey_to_cacheline(t, end(t->data)),
			b->sets->tree + bset_tree_space(b) - t->tree);

	if (t->size < 2) {
		t->size = 0;
		return;
	}

	t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;

	/* First we figure out where the first key in each cacheline is */
	for (j = inorder_next(0, t->size);
	     j;
	     j = inorder_next(j, t->size)) {
		while (bkey_to_cacheline(t, k) != cacheline)
			k = bkey_next(k);

		t->prev[j] = bkey_u64s(k);
		k = bkey_next(k);
		cacheline++;
		t->tree[j].m = bkey_to_cacheline_offset(k);
	}

	while (bkey_next(k) != end(t->data))
		k = bkey_next(k);

	t->end = *k;

	/* Then we build the tree */
	for (j = inorder_next(0, t->size);
	     j;
	     j = inorder_next(j, t->size))
		make_bfloat(t, j);
}

void bch_bset_fix_invalidated_key(struct btree *b, struct bkey *k)
{
	struct bset_tree *t;
	unsigned inorder, j = 1;

	for (t = b->sets; t <= &b->sets[b->nsets]; t++)
		if (k < end(t->data))
			goto found_set;

	BUG();
found_set:
	if (!t->size || !bset_written(b, t))
		return;

	inorder = bkey_to_cacheline(t, k);

	if (k == t->data->start)
		goto fix_left;

	if (bkey_next(k) == end(t->data)) {
		t->end = *k;
		goto fix_right;
	}

	j = inorder_to_tree(inorder, t);

	if (j &&
	    j < t->size &&
	    k == tree_to_bkey(t, j))
fix_left:	do {
			make_bfloat(t, j);
			j = j * 2;
		} while (j < t->size);

	j = inorder_to_tree(inorder + 1, t);

	if (j &&
	    j < t->size &&
	    k == tree_to_prev_bkey(t, j))
fix_right:	do {
			make_bfloat(t, j);
			j = j * 2 + 1;
		} while (j < t->size);
}

void bch_bset_fix_lookup_table(struct btree *b, struct bkey *k)
{
	struct bset_tree *t = &b->sets[b->nsets];
	unsigned shift = bkey_u64s(k);
	unsigned j = bkey_to_cacheline(t, k);

	/* We're getting called from btree_split() or btree_gc, just bail out */
	if (!t->size)
		return;

	/* k is the key we just inserted; we need to find the entry in the
	 * lookup table for the first key that is strictly greater than k:
	 * it's either k's cacheline or the next one
	 */
	if (j < t->size &&
	    table_to_bkey(t, j) <= k)
		j++;

	/* Adjust all the lookup table entries, and find a new key for any that
	 * have gotten too big
	 */
	for (; j < t->size; j++) {
		t->prev[j] += shift;

		if (t->prev[j] > 7) {
			k = table_to_bkey(t, j - 1);

			while (k < cacheline_to_bkey(t, j, 0))
				k = bkey_next(k);

			t->prev[j] = bkey_to_cacheline_offset(k);
		}
	}

	if (t->size == b->sets->tree + bset_tree_space(b) - t->tree)
		return;

	/* Possibly add a new entry to the end of the lookup table */

	for (k = table_to_bkey(t, t->size - 1);
	     k != end(t->data);
	     k = bkey_next(k))
		if (t->size == bkey_to_cacheline(t, k)) {
			t->prev[t->size] = bkey_to_cacheline_offset(k);
			t->size++;
		}
}

void bch_bset_init_next(struct btree *b)
{
	struct bset *i = write_block(b);

	if (i != b->sets[0].data) {
		b->sets[++b->nsets].data = i;
		i->seq = b->sets[0].data->seq;
	} else
		get_random_bytes(&i->seq, sizeof(uint64_t));

	i->magic	= bset_magic(b->c);
	i->version	= 0;
	i->keys		= 0;

	bset_build_unwritten_tree(b);
}

struct bset_search_iter {
	struct bkey *l, *r;
};

static struct bset_search_iter bset_search_write_set(struct btree *b,
						     struct bset_tree *t,
						     const struct bkey *search)
{
	unsigned li = 0, ri = t->size;

	BUG_ON(!b->nsets &&
	       t->size < bkey_to_cacheline(t, end(t->data)));

	while (li + 1 != ri) {
		unsigned m = (li + ri) >> 1;

		if (bkey_cmp(table_to_bkey(t, m), search) > 0)
			ri = m;
		else
			li = m;
	}

	return (struct bset_search_iter) {
		table_to_bkey(t, li),
		ri < t->size ? table_to_bkey(t, ri) : end(t->data)
	};
}

static struct bset_search_iter bset_search_tree(struct btree *b,
						struct bset_tree *t,
						const struct bkey *search)
{
	struct bkey *l, *r;
	struct bkey_float *f;
	unsigned inorder, j, n = 1;

	do {
		unsigned p = n << 4;
		p &= ((int) (p - t->size)) >> 31;

		prefetch(&t->tree[p]);

		j = n;
		f = &t->tree[j];

		/*
		 * n = (f->mantissa > bfloat_mantissa())
		 *	? j * 2
		 *	: j * 2 + 1;
		 *
		 * We need to subtract 1 from f->mantissa for the sign bit trick
		 * to work  - that's done in make_bfloat()
		 */
		if (likely(f->exponent != 127))
			n = j * 2 + (((unsigned)
				      (f->mantissa -
				       bfloat_mantissa(search, f))) >> 31);
		else
			n = (bkey_cmp(tree_to_bkey(t, j), search) > 0)
				? j * 2
				: j * 2 + 1;
	} while (n < t->size);

	inorder = to_inorder(j, t);

	/*
	 * n would have been the node we recursed to - the low bit tells us if
	 * we recursed left or recursed right.
	 */
	if (n & 1) {
		l = cacheline_to_bkey(t, inorder, f->m);

		if (++inorder != t->size) {
			f = &t->tree[inorder_next(j, t->size)];
			r = cacheline_to_bkey(t, inorder, f->m);
		} else
			r = end(t->data);
	} else {
		r = cacheline_to_bkey(t, inorder, f->m);

		if (--inorder) {
			f = &t->tree[inorder_prev(j, t->size)];
			l = cacheline_to_bkey(t, inorder, f->m);
		} else
			l = t->data->start;
	}

	return (struct bset_search_iter) {l, r};
}

struct bkey *__bch_bset_search(struct btree *b, struct bset_tree *t,
			       const struct bkey *search)
{
	struct bset_search_iter i;

	/*
	 * First, we search for a cacheline, then lastly we do a linear search
	 * within that cacheline.
	 *
	 * To search for the cacheline, there's three different possibilities:
	 *  * The set is too small to have a search tree, so we just do a linear
	 *    search over the whole set.
	 *  * The set is the one we're currently inserting into; keeping a full
	 *    auxiliary search tree up to date would be too expensive, so we
	 *    use a much simpler lookup table to do a binary search -
	 *    bset_search_write_set().
	 *  * Or we use the auxiliary search tree we constructed earlier -
	 *    bset_search_tree()
	 */

	if (unlikely(!t->size)) {
		i.l = t->data->start;
		i.r = end(t->data);
	} else if (bset_written(b, t)) {
		/*
		 * Each node in the auxiliary search tree covers a certain range
		 * of bits, and keys above and below the set it covers might
		 * differ outside those bits - so we have to special case the
		 * start and end - handle that here:
		 */

		if (unlikely(bkey_cmp(search, &t->end) >= 0))
			return end(t->data);

		if (unlikely(bkey_cmp(search, t->data->start) < 0))
			return t->data->start;

		i = bset_search_tree(b, t, search);
	} else
		i = bset_search_write_set(b, t, search);

#ifdef CONFIG_BCACHE_EDEBUG
	BUG_ON(bset_written(b, t) &&
	       i.l != t->data->start &&
	       bkey_cmp(tree_to_prev_bkey(t,
		  inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
			search) > 0);

	BUG_ON(i.r != end(t->data) &&
	       bkey_cmp(i.r, search) <= 0);
#endif

	while (likely(i.l != i.r) &&
	       bkey_cmp(i.l, search) <= 0)
		i.l = bkey_next(i.l);

	return i.l;
}

/* Btree iterator */

static inline bool btree_iter_cmp(struct btree_iter_set l,
				  struct btree_iter_set r)
{
	int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k));

	return c ? c > 0 : l.k < r.k;
}

static inline bool btree_iter_end(struct btree_iter *iter)
{
	return !iter->used;
}

void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
			 struct bkey *end)
{
	if (k != end)
		BUG_ON(!heap_add(iter,
				 ((struct btree_iter_set) { k, end }),
				 btree_iter_cmp));
}

struct bkey *__bch_btree_iter_init(struct btree *b, struct btree_iter *iter,
			       struct bkey *search, struct bset_tree *start)
{
	struct bkey *ret = NULL;
	iter->size = ARRAY_SIZE(iter->data);
	iter->used = 0;

	for (; start <= &b->sets[b->nsets]; start++) {
		ret = bch_bset_search(b, start, search);
		bch_btree_iter_push(iter, ret, end(start->data));
	}

	return ret;
}

struct bkey *bch_btree_iter_next(struct btree_iter *iter)
{
	struct btree_iter_set unused;
	struct bkey *ret = NULL;

	if (!btree_iter_end(iter)) {
		ret = iter->data->k;
		iter->data->k = bkey_next(iter->data->k);

		if (iter->data->k > iter->data->end) {
894
			WARN_ONCE(1, "bset was corrupt!\n");
K
Kent Overstreet 已提交
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
			iter->data->k = iter->data->end;
		}

		if (iter->data->k == iter->data->end)
			heap_pop(iter, unused, btree_iter_cmp);
		else
			heap_sift(iter, 0, btree_iter_cmp);
	}

	return ret;
}

struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
					struct btree *b, ptr_filter_fn fn)
{
	struct bkey *ret;

	do {
		ret = bch_btree_iter_next(iter);
	} while (ret && fn(b, ret));

	return ret;
}

struct bkey *bch_next_recurse_key(struct btree *b, struct bkey *search)
{
	struct btree_iter iter;

	bch_btree_iter_init(b, &iter, search);
	return bch_btree_iter_next_filter(&iter, b, bch_ptr_bad);
}

/* Mergesort */

static void btree_sort_fixup(struct btree_iter *iter)
{
	while (iter->used > 1) {
		struct btree_iter_set *top = iter->data, *i = top + 1;
		struct bkey *k;

		if (iter->used > 2 &&
		    btree_iter_cmp(i[0], i[1]))
			i++;

		for (k = i->k;
		     k != i->end && bkey_cmp(top->k, &START_KEY(k)) > 0;
		     k = bkey_next(k))
			if (top->k > i->k)
				__bch_cut_front(top->k, k);
			else if (KEY_SIZE(k))
				bch_cut_back(&START_KEY(k), top->k);

		if (top->k < i->k || k == i->k)
			break;

		heap_sift(iter, i - top, btree_iter_cmp);
	}
}

static void btree_mergesort(struct btree *b, struct bset *out,
			    struct btree_iter *iter,
			    bool fixup, bool remove_stale)
{
	struct bkey *k, *last = NULL;
	bool (*bad)(struct btree *, const struct bkey *) = remove_stale
		? bch_ptr_bad
		: bch_ptr_invalid;

	while (!btree_iter_end(iter)) {
		if (fixup && !b->level)
			btree_sort_fixup(iter);

		k = bch_btree_iter_next(iter);
		if (bad(b, k))
			continue;

		if (!last) {
			last = out->start;
			bkey_copy(last, k);
		} else if (b->level ||
			   !bch_bkey_try_merge(b, last, k)) {
			last = bkey_next(last);
			bkey_copy(last, k);
		}
	}

	out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;

	pr_debug("sorted %i keys", out->keys);
	bch_check_key_order(b, out);
}

static void __btree_sort(struct btree *b, struct btree_iter *iter,
			 unsigned start, unsigned order, bool fixup)
{
	uint64_t start_time;
	bool remove_stale = !b->written;
	struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOIO,
						     order);
	if (!out) {
		mutex_lock(&b->c->sort_lock);
		out = b->c->sort;
		order = ilog2(bucket_pages(b->c));
	}

	start_time = local_clock();

	btree_mergesort(b, out, iter, fixup, remove_stale);
	b->nsets = start;

	if (!fixup && !start && b->written)
		bch_btree_verify(b, out);

	if (!start && order == b->page_order) {
		/*
		 * Our temporary buffer is the same size as the btree node's
		 * buffer, we can just swap buffers instead of doing a big
		 * memcpy()
		 */

		out->magic	= bset_magic(b->c);
		out->seq	= b->sets[0].data->seq;
		out->version	= b->sets[0].data->version;
		swap(out, b->sets[0].data);

		if (b->c->sort == b->sets[0].data)
			b->c->sort = out;
	} else {
		b->sets[start].data->keys = out->keys;
		memcpy(b->sets[start].data->start, out->start,
		       (void *) end(out) - (void *) out->start);
	}

	if (out == b->c->sort)
		mutex_unlock(&b->c->sort_lock);
	else
		free_pages((unsigned long) out, order);

	if (b->written)
		bset_build_written_tree(b);

	if (!start) {
		spin_lock(&b->c->sort_time_lock);
1038
		bch_time_stats_update(&b->c->sort_time, start_time);
K
Kent Overstreet 已提交
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
		spin_unlock(&b->c->sort_time_lock);
	}
}

void bch_btree_sort_partial(struct btree *b, unsigned start)
{
	size_t oldsize = 0, order = b->page_order, keys = 0;
	struct btree_iter iter;
	__bch_btree_iter_init(b, &iter, NULL, &b->sets[start]);

	BUG_ON(b->sets[b->nsets].data == write_block(b) &&
	       (b->sets[b->nsets].size || b->nsets));

	if (b->written)
		oldsize = bch_count_data(b);

	if (start) {
		unsigned i;

		for (i = start; i <= b->nsets; i++)
			keys += b->sets[i].data->keys;

K
Kent Overstreet 已提交
1061 1062
		order = roundup_pow_of_two(__set_bytes(b->sets->data,
						       keys)) / PAGE_SIZE;
K
Kent Overstreet 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		if (order)
			order = ilog2(order);
	}

	__btree_sort(b, &iter, start, order, false);

	EBUG_ON(b->written && bch_count_data(b) != oldsize);
}

void bch_btree_sort_and_fix_extents(struct btree *b, struct btree_iter *iter)
{
	BUG_ON(!b->written);
	__btree_sort(b, iter, 0, b->page_order, true);
}

void bch_btree_sort_into(struct btree *b, struct btree *new)
{
	uint64_t start_time = local_clock();

	struct btree_iter iter;
	bch_btree_iter_init(b, &iter, NULL);

	btree_mergesort(b, new->sets->data, &iter, false, true);

	spin_lock(&b->c->sort_time_lock);
1088
	bch_time_stats_update(&b->c->sort_time, start_time);
K
Kent Overstreet 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	spin_unlock(&b->c->sort_time_lock);

	bkey_copy_key(&new->key, &b->key);
	new->sets->size = 0;
}

void bch_btree_sort_lazy(struct btree *b)
{
	if (b->nsets) {
		unsigned i, j, keys = 0, total;

		for (i = 0; i <= b->nsets; i++)
			keys += b->sets[i].data->keys;

		total = keys;

		for (j = 0; j < b->nsets; j++) {
			if (keys * 2 < total ||
			    keys < 1000) {
				bch_btree_sort_partial(b, j);
				return;
			}

			keys -= b->sets[j].data->keys;
		}

		/* Must sort if b->nsets == 3 or we'll overflow */
		if (b->nsets >= (MAX_BSETS - 1) - b->level) {
			bch_btree_sort(b);
			return;
		}
	}

	bset_build_written_tree(b);
}

/* Sysfs stuff */

struct bset_stats {
	size_t nodes;
	size_t sets_written, sets_unwritten;
	size_t bytes_written, bytes_unwritten;
	size_t floats, failed;
};

static int bch_btree_bset_stats(struct btree *b, struct btree_op *op,
			    struct bset_stats *stats)
{
	struct bkey *k;
	unsigned i;

	stats->nodes++;

	for (i = 0; i <= b->nsets; i++) {
		struct bset_tree *t = &b->sets[i];
		size_t bytes = t->data->keys * sizeof(uint64_t);
		size_t j;

		if (bset_written(b, t)) {
			stats->sets_written++;
			stats->bytes_written += bytes;

			stats->floats += t->size - 1;

			for (j = 1; j < t->size; j++)
				if (t->tree[j].exponent == 127)
					stats->failed++;
		} else {
			stats->sets_unwritten++;
			stats->bytes_unwritten += bytes;
		}
	}

	if (b->level) {
		struct btree_iter iter;

		for_each_key_filter(b, k, &iter, bch_ptr_bad) {
			int ret = btree(bset_stats, k, b, op, stats);
			if (ret)
				return ret;
		}
	}

	return 0;
}

int bch_bset_print_stats(struct cache_set *c, char *buf)
{
	struct btree_op op;
	struct bset_stats t;
	int ret;

	bch_btree_op_init_stack(&op);
	memset(&t, 0, sizeof(struct bset_stats));

	ret = btree_root(bset_stats, c, &op, &t);
	if (ret)
		return ret;

	return snprintf(buf, PAGE_SIZE,
			"btree nodes:		%zu\n"
			"written sets:		%zu\n"
			"unwritten sets:		%zu\n"
			"written key bytes:	%zu\n"
			"unwritten key bytes:	%zu\n"
			"floats:			%zu\n"
			"failed:			%zu\n",
			t.nodes,
			t.sets_written, t.sets_unwritten,
			t.bytes_written, t.bytes_unwritten,
			t.floats, t.failed);
}