kdb_main.c 69.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
/*
 * Kernel Debugger Architecture Independent Main Code
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
 */

#include <linux/ctype.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/reboot.h>
#include <linux/sched.h>
#include <linux/sysrq.h>
#include <linux/smp.h>
#include <linux/utsname.h>
#include <linux/vmalloc.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/kallsyms.h>
#include <linux/kgdb.h>
#include <linux/kdb.h>
#include <linux/notifier.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/nmi.h>
#include <linux/time.h>
#include <linux/ptrace.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/kdebug.h>
#include <linux/proc_fs.h>
#include <linux/uaccess.h>
#include <linux/slab.h>
#include "kdb_private.h"

#define GREP_LEN 256
char kdb_grep_string[GREP_LEN];
int kdb_grepping_flag;
EXPORT_SYMBOL(kdb_grepping_flag);
int kdb_grep_leading;
int kdb_grep_trailing;

/*
 * Kernel debugger state flags
 */
int kdb_flags;
atomic_t kdb_event;

/*
 * kdb_lock protects updates to kdb_initial_cpu.  Used to
 * single thread processors through the kernel debugger.
 */
int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
int kdb_nextline = 1;
int kdb_state;			/* General KDB state */

struct task_struct *kdb_current_task;
EXPORT_SYMBOL(kdb_current_task);
struct pt_regs *kdb_current_regs;

const char *kdb_diemsg;
static int kdb_go_count;
#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
static unsigned int kdb_continue_catastrophic =
	CONFIG_KDB_CONTINUE_CATASTROPHIC;
#else
static unsigned int kdb_continue_catastrophic;
#endif

/* kdb_commands describes the available commands. */
static kdbtab_t *kdb_commands;
#define KDB_BASE_CMD_MAX 50
static int kdb_max_commands = KDB_BASE_CMD_MAX;
static kdbtab_t kdb_base_commands[50];
#define for_each_kdbcmd(cmd, num)					\
	for ((cmd) = kdb_base_commands, (num) = 0;			\
	     num < kdb_max_commands;					\
	     num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++, num++)

typedef struct _kdbmsg {
	int	km_diag;	/* kdb diagnostic */
	char	*km_msg;	/* Corresponding message text */
} kdbmsg_t;

#define KDBMSG(msgnum, text) \
	{ KDB_##msgnum, text }

static kdbmsg_t kdbmsgs[] = {
	KDBMSG(NOTFOUND, "Command Not Found"),
	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
	       "8 is only allowed on 64 bit systems"),
	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
	KDBMSG(NOTENV, "Cannot find environment variable"),
	KDBMSG(NOENVVALUE, "Environment variable should have value"),
	KDBMSG(NOTIMP, "Command not implemented"),
	KDBMSG(ENVFULL, "Environment full"),
	KDBMSG(ENVBUFFULL, "Environment buffer full"),
	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
#ifdef CONFIG_CPU_XSCALE
	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
#else
	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
#endif
	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
	KDBMSG(BADMODE, "Invalid IDMODE"),
	KDBMSG(BADINT, "Illegal numeric value"),
	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
	KDBMSG(BADREG, "Invalid register name"),
	KDBMSG(BADCPUNUM, "Invalid cpu number"),
	KDBMSG(BADLENGTH, "Invalid length field"),
	KDBMSG(NOBP, "No Breakpoint exists"),
	KDBMSG(BADADDR, "Invalid address"),
};
#undef KDBMSG

static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);


/*
 * Initial environment.   This is all kept static and local to
 * this file.   We don't want to rely on the memory allocation
 * mechanisms in the kernel, so we use a very limited allocate-only
 * heap for new and altered environment variables.  The entire
 * environment is limited to a fixed number of entries (add more
 * to __env[] if required) and a fixed amount of heap (add more to
 * KDB_ENVBUFSIZE if required).
 */

static char *__env[] = {
#if defined(CONFIG_SMP)
 "PROMPT=[%d]kdb> ",
 "MOREPROMPT=[%d]more> ",
#else
 "PROMPT=kdb> ",
 "MOREPROMPT=more> ",
#endif
 "RADIX=16",
 "MDCOUNT=8",			/* lines of md output */
 "BTARGS=9",			/* 9 possible args in bt */
 KDB_PLATFORM_ENV,
 "DTABCOUNT=30",
 "NOSECT=1",
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
 (char *)0,
};

static const int __nenv = (sizeof(__env) / sizeof(char *));

struct task_struct *kdb_curr_task(int cpu)
{
	struct task_struct *p = curr_task(cpu);
#ifdef	_TIF_MCA_INIT
	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
		p = krp->p;
#endif
	return p;
}

/*
 * kdbgetenv - This function will return the character string value of
 *	an environment variable.
 * Parameters:
 *	match	A character string representing an environment variable.
 * Returns:
 *	NULL	No environment variable matches 'match'
 *	char*	Pointer to string value of environment variable.
 */
char *kdbgetenv(const char *match)
{
	char **ep = __env;
	int matchlen = strlen(match);
	int i;

	for (i = 0; i < __nenv; i++) {
		char *e = *ep++;

		if (!e)
			continue;

		if ((strncmp(match, e, matchlen) == 0)
		 && ((e[matchlen] == '\0')
		   || (e[matchlen] == '='))) {
			char *cp = strchr(e, '=');
			return cp ? ++cp : "";
		}
	}
	return NULL;
}

/*
 * kdballocenv - This function is used to allocate bytes for
 *	environment entries.
 * Parameters:
 *	match	A character string representing a numeric value
 * Outputs:
 *	*value  the unsigned long representation of the env variable 'match'
 * Returns:
 *	Zero on success, a kdb diagnostic on failure.
 * Remarks:
 *	We use a static environment buffer (envbuffer) to hold the values
 *	of dynamically generated environment variables (see kdb_set).  Buffer
 *	space once allocated is never free'd, so over time, the amount of space
 *	(currently 512 bytes) will be exhausted if env variables are changed
 *	frequently.
 */
static char *kdballocenv(size_t bytes)
{
#define	KDB_ENVBUFSIZE	512
	static char envbuffer[KDB_ENVBUFSIZE];
	static int envbufsize;
	char *ep = NULL;

	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
		ep = &envbuffer[envbufsize];
		envbufsize += bytes;
	}
	return ep;
}

/*
 * kdbgetulenv - This function will return the value of an unsigned
 *	long-valued environment variable.
 * Parameters:
 *	match	A character string representing a numeric value
 * Outputs:
 *	*value  the unsigned long represntation of the env variable 'match'
 * Returns:
 *	Zero on success, a kdb diagnostic on failure.
 */
static int kdbgetulenv(const char *match, unsigned long *value)
{
	char *ep;

	ep = kdbgetenv(match);
	if (!ep)
		return KDB_NOTENV;
	if (strlen(ep) == 0)
		return KDB_NOENVVALUE;

	*value = simple_strtoul(ep, NULL, 0);

	return 0;
}

/*
 * kdbgetintenv - This function will return the value of an
 *	integer-valued environment variable.
 * Parameters:
 *	match	A character string representing an integer-valued env variable
 * Outputs:
 *	*value  the integer representation of the environment variable 'match'
 * Returns:
 *	Zero on success, a kdb diagnostic on failure.
 */
int kdbgetintenv(const char *match, int *value)
{
	unsigned long val;
	int diag;

	diag = kdbgetulenv(match, &val);
	if (!diag)
		*value = (int) val;
	return diag;
}

/*
 * kdbgetularg - This function will convert a numeric string into an
 *	unsigned long value.
 * Parameters:
 *	arg	A character string representing a numeric value
 * Outputs:
 *	*value  the unsigned long represntation of arg.
 * Returns:
 *	Zero on success, a kdb diagnostic on failure.
 */
int kdbgetularg(const char *arg, unsigned long *value)
{
	char *endp;
	unsigned long val;

	val = simple_strtoul(arg, &endp, 0);

	if (endp == arg) {
		/*
315
		 * Also try base 16, for us folks too lazy to type the
316 317 318 319 320 321 322 323 324 325 326 327
		 * leading 0x...
		 */
		val = simple_strtoul(arg, &endp, 16);
		if (endp == arg)
			return KDB_BADINT;
	}

	*value = val;

	return 0;
}

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
int kdbgetu64arg(const char *arg, u64 *value)
{
	char *endp;
	u64 val;

	val = simple_strtoull(arg, &endp, 0);

	if (endp == arg) {

		val = simple_strtoull(arg, &endp, 16);
		if (endp == arg)
			return KDB_BADINT;
	}

	*value = val;

	return 0;
}

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
/*
 * kdb_set - This function implements the 'set' command.  Alter an
 *	existing environment variable or create a new one.
 */
int kdb_set(int argc, const char **argv)
{
	int i;
	char *ep;
	size_t varlen, vallen;

	/*
	 * we can be invoked two ways:
	 *   set var=value    argv[1]="var", argv[2]="value"
	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
	 * - if the latter, shift 'em down.
	 */
	if (argc == 3) {
		argv[2] = argv[3];
		argc--;
	}

	if (argc != 2)
		return KDB_ARGCOUNT;

	/*
	 * Check for internal variables
	 */
	if (strcmp(argv[1], "KDBDEBUG") == 0) {
		unsigned int debugflags;
		char *cp;

		debugflags = simple_strtoul(argv[2], &cp, 0);
		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
			kdb_printf("kdb: illegal debug flags '%s'\n",
				    argv[2]);
			return 0;
		}
		kdb_flags = (kdb_flags &
			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
			| (debugflags << KDB_DEBUG_FLAG_SHIFT);

		return 0;
	}

	/*
	 * Tokenizer squashed the '=' sign.  argv[1] is variable
	 * name, argv[2] = value.
	 */
	varlen = strlen(argv[1]);
	vallen = strlen(argv[2]);
	ep = kdballocenv(varlen + vallen + 2);
	if (ep == (char *)0)
		return KDB_ENVBUFFULL;

	sprintf(ep, "%s=%s", argv[1], argv[2]);

	ep[varlen+vallen+1] = '\0';

	for (i = 0; i < __nenv; i++) {
		if (__env[i]
		 && ((strncmp(__env[i], argv[1], varlen) == 0)
		   && ((__env[i][varlen] == '\0')
		    || (__env[i][varlen] == '=')))) {
			__env[i] = ep;
			return 0;
		}
	}

	/*
	 * Wasn't existing variable.  Fit into slot.
	 */
	for (i = 0; i < __nenv-1; i++) {
		if (__env[i] == (char *)0) {
			__env[i] = ep;
			return 0;
		}
	}

	return KDB_ENVFULL;
}

static int kdb_check_regs(void)
{
	if (!kdb_current_regs) {
		kdb_printf("No current kdb registers."
			   "  You may need to select another task\n");
		return KDB_BADREG;
	}
	return 0;
}

/*
 * kdbgetaddrarg - This function is responsible for parsing an
 *	address-expression and returning the value of the expression,
 *	symbol name, and offset to the caller.
 *
 *	The argument may consist of a numeric value (decimal or
 *	hexidecimal), a symbol name, a register name (preceeded by the
 *	percent sign), an environment variable with a numeric value
 *	(preceeded by a dollar sign) or a simple arithmetic expression
 *	consisting of a symbol name, +/-, and a numeric constant value
 *	(offset).
 * Parameters:
 *	argc	- count of arguments in argv
 *	argv	- argument vector
 *	*nextarg - index to next unparsed argument in argv[]
 *	regs	- Register state at time of KDB entry
 * Outputs:
 *	*value	- receives the value of the address-expression
 *	*offset - receives the offset specified, if any
 *	*name   - receives the symbol name, if any
 *	*nextarg - index to next unparsed argument in argv[]
 * Returns:
 *	zero is returned on success, a kdb diagnostic code is
 *      returned on error.
 */
int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
		  unsigned long *value,  long *offset,
		  char **name)
{
	unsigned long addr;
	unsigned long off = 0;
	int positive;
	int diag;
	int found = 0;
	char *symname;
	char symbol = '\0';
	char *cp;
	kdb_symtab_t symtab;

	/*
	 * Process arguments which follow the following syntax:
	 *
	 *  symbol | numeric-address [+/- numeric-offset]
	 *  %register
	 *  $environment-variable
	 */

	if (*nextarg > argc)
		return KDB_ARGCOUNT;

	symname = (char *)argv[*nextarg];

	/*
	 * If there is no whitespace between the symbol
	 * or address and the '+' or '-' symbols, we
	 * remember the character and replace it with a
	 * null so the symbol/value can be properly parsed
	 */
	cp = strpbrk(symname, "+-");
	if (cp != NULL) {
		symbol = *cp;
		*cp++ = '\0';
	}

	if (symname[0] == '$') {
		diag = kdbgetulenv(&symname[1], &addr);
		if (diag)
			return diag;
	} else if (symname[0] == '%') {
		diag = kdb_check_regs();
		if (diag)
			return diag;
		/* Implement register values with % at a later time as it is
		 * arch optional.
		 */
		return KDB_NOTIMP;
	} else {
		found = kdbgetsymval(symname, &symtab);
		if (found) {
			addr = symtab.sym_start;
		} else {
			diag = kdbgetularg(argv[*nextarg], &addr);
			if (diag)
				return diag;
		}
	}

	if (!found)
		found = kdbnearsym(addr, &symtab);

	(*nextarg)++;

	if (name)
		*name = symname;
	if (value)
		*value = addr;
	if (offset && name && *name)
		*offset = addr - symtab.sym_start;

	if ((*nextarg > argc)
	 && (symbol == '\0'))
		return 0;

	/*
	 * check for +/- and offset
	 */

	if (symbol == '\0') {
		if ((argv[*nextarg][0] != '+')
		 && (argv[*nextarg][0] != '-')) {
			/*
			 * Not our argument.  Return.
			 */
			return 0;
		} else {
			positive = (argv[*nextarg][0] == '+');
			(*nextarg)++;
		}
	} else
		positive = (symbol == '+');

	/*
	 * Now there must be an offset!
	 */
	if ((*nextarg > argc)
	 && (symbol == '\0')) {
		return KDB_INVADDRFMT;
	}

	if (!symbol) {
		cp = (char *)argv[*nextarg];
		(*nextarg)++;
	}

	diag = kdbgetularg(cp, &off);
	if (diag)
		return diag;

	if (!positive)
		off = -off;

	if (offset)
		*offset += off;

	if (value)
		*value += off;

	return 0;
}

static void kdb_cmderror(int diag)
{
	int i;

	if (diag >= 0) {
		kdb_printf("no error detected (diagnostic is %d)\n", diag);
		return;
	}

	for (i = 0; i < __nkdb_err; i++) {
		if (kdbmsgs[i].km_diag == diag) {
			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
			return;
		}
	}

	kdb_printf("Unknown diag %d\n", -diag);
}

/*
 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 *	command which defines one command as a set of other commands,
 *	terminated by endefcmd.  kdb_defcmd processes the initial
 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 *	the following commands until 'endefcmd'.
 * Inputs:
 *	argc	argument count
 *	argv	argument vector
 * Returns:
 *	zero for success, a kdb diagnostic if error
 */
struct defcmd_set {
	int count;
	int usable;
	char *name;
	char *usage;
	char *help;
	char **command;
};
static struct defcmd_set *defcmd_set;
static int defcmd_set_count;
static int defcmd_in_progress;

/* Forward references */
static int kdb_exec_defcmd(int argc, const char **argv);

static int kdb_defcmd2(const char *cmdstr, const char *argv0)
{
	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
	char **save_command = s->command;
	if (strcmp(argv0, "endefcmd") == 0) {
		defcmd_in_progress = 0;
		if (!s->count)
			s->usable = 0;
		if (s->usable)
			kdb_register(s->name, kdb_exec_defcmd,
				     s->usage, s->help, 0);
		return 0;
	}
	if (!s->usable)
		return KDB_NOTIMP;
	s->command = kmalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
	if (!s->command) {
		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
			   cmdstr);
		s->usable = 0;
		return KDB_NOTIMP;
	}
	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
	kfree(save_command);
	return 0;
}

static int kdb_defcmd(int argc, const char **argv)
{
	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
	if (defcmd_in_progress) {
		kdb_printf("kdb: nested defcmd detected, assuming missing "
			   "endefcmd\n");
		kdb_defcmd2("endefcmd", "endefcmd");
	}
	if (argc == 0) {
		int i;
		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
				   s->usage, s->help);
			for (i = 0; i < s->count; ++i)
				kdb_printf("%s", s->command[i]);
			kdb_printf("endefcmd\n");
		}
		return 0;
	}
	if (argc != 3)
		return KDB_ARGCOUNT;
	defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
			     GFP_KDB);
	if (!defcmd_set) {
		kdb_printf("Could not allocate new defcmd_set entry for %s\n",
			   argv[1]);
		defcmd_set = save_defcmd_set;
		return KDB_NOTIMP;
	}
	memcpy(defcmd_set, save_defcmd_set,
	       defcmd_set_count * sizeof(*defcmd_set));
	kfree(save_defcmd_set);
	s = defcmd_set + defcmd_set_count;
	memset(s, 0, sizeof(*s));
	s->usable = 1;
	s->name = kdb_strdup(argv[1], GFP_KDB);
	s->usage = kdb_strdup(argv[2], GFP_KDB);
	s->help = kdb_strdup(argv[3], GFP_KDB);
	if (s->usage[0] == '"') {
		strcpy(s->usage, s->usage+1);
		s->usage[strlen(s->usage)-1] = '\0';
	}
	if (s->help[0] == '"') {
		strcpy(s->help, s->help+1);
		s->help[strlen(s->help)-1] = '\0';
	}
	++defcmd_set_count;
	defcmd_in_progress = 1;
	return 0;
}

/*
 * kdb_exec_defcmd - Execute the set of commands associated with this
 *	defcmd name.
 * Inputs:
 *	argc	argument count
 *	argv	argument vector
 * Returns:
 *	zero for success, a kdb diagnostic if error
 */
static int kdb_exec_defcmd(int argc, const char **argv)
{
	int i, ret;
	struct defcmd_set *s;
	if (argc != 0)
		return KDB_ARGCOUNT;
	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
		if (strcmp(s->name, argv[0]) == 0)
			break;
	}
	if (i == defcmd_set_count) {
		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
			   argv[0]);
		return KDB_NOTIMP;
	}
	for (i = 0; i < s->count; ++i) {
		/* Recursive use of kdb_parse, do not use argv after
		 * this point */
		argv = NULL;
		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
		ret = kdb_parse(s->command[i]);
		if (ret)
			return ret;
	}
	return 0;
}

/* Command history */
#define KDB_CMD_HISTORY_COUNT	32
#define CMD_BUFLEN		200	/* kdb_printf: max printline
					 * size == 256 */
static unsigned int cmd_head, cmd_tail;
static unsigned int cmdptr;
static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
static char cmd_cur[CMD_BUFLEN];

/*
 * The "str" argument may point to something like  | grep xyz
 */
static void parse_grep(const char *str)
{
	int	len;
	char	*cp = (char *)str, *cp2;

	/* sanity check: we should have been called with the \ first */
	if (*cp != '|')
		return;
	cp++;
	while (isspace(*cp))
		cp++;
	if (strncmp(cp, "grep ", 5)) {
		kdb_printf("invalid 'pipe', see grephelp\n");
		return;
	}
	cp += 5;
	while (isspace(*cp))
		cp++;
	cp2 = strchr(cp, '\n');
	if (cp2)
		*cp2 = '\0'; /* remove the trailing newline */
	len = strlen(cp);
	if (len == 0) {
		kdb_printf("invalid 'pipe', see grephelp\n");
		return;
	}
	/* now cp points to a nonzero length search string */
	if (*cp == '"') {
		/* allow it be "x y z" by removing the "'s - there must
		   be two of them */
		cp++;
		cp2 = strchr(cp, '"');
		if (!cp2) {
			kdb_printf("invalid quoted string, see grephelp\n");
			return;
		}
		*cp2 = '\0'; /* end the string where the 2nd " was */
	}
	kdb_grep_leading = 0;
	if (*cp == '^') {
		kdb_grep_leading = 1;
		cp++;
	}
	len = strlen(cp);
	kdb_grep_trailing = 0;
	if (*(cp+len-1) == '$') {
		kdb_grep_trailing = 1;
		*(cp+len-1) = '\0';
	}
	len = strlen(cp);
	if (!len)
		return;
	if (len >= GREP_LEN) {
		kdb_printf("search string too long\n");
		return;
	}
	strcpy(kdb_grep_string, cp);
	kdb_grepping_flag++;
	return;
}

/*
 * kdb_parse - Parse the command line, search the command table for a
 *	matching command and invoke the command function.  This
 *	function may be called recursively, if it is, the second call
 *	will overwrite argv and cbuf.  It is the caller's
 *	responsibility to save their argv if they recursively call
 *	kdb_parse().
 * Parameters:
 *      cmdstr	The input command line to be parsed.
 *	regs	The registers at the time kdb was entered.
 * Returns:
 *	Zero for success, a kdb diagnostic if failure.
 * Remarks:
 *	Limited to 20 tokens.
 *
 *	Real rudimentary tokenization. Basically only whitespace
 *	is considered a token delimeter (but special consideration
 *	is taken of the '=' sign as used by the 'set' command).
 *
 *	The algorithm used to tokenize the input string relies on
 *	there being at least one whitespace (or otherwise useless)
 *	character between tokens as the character immediately following
 *	the token is altered in-place to a null-byte to terminate the
 *	token string.
 */

#define MAXARGC	20

int kdb_parse(const char *cmdstr)
{
	static char *argv[MAXARGC];
	static int argc;
	static char cbuf[CMD_BUFLEN+2];
	char *cp;
	char *cpp, quoted;
	kdbtab_t *tp;
	int i, escaped, ignore_errors = 0, check_grep;

	/*
	 * First tokenize the command string.
	 */
	cp = (char *)cmdstr;
	kdb_grepping_flag = check_grep = 0;

	if (KDB_FLAG(CMD_INTERRUPT)) {
		/* Previous command was interrupted, newline must not
		 * repeat the command */
		KDB_FLAG_CLEAR(CMD_INTERRUPT);
		KDB_STATE_SET(PAGER);
		argc = 0;	/* no repeat */
	}

	if (*cp != '\n' && *cp != '\0') {
		argc = 0;
		cpp = cbuf;
		while (*cp) {
			/* skip whitespace */
			while (isspace(*cp))
				cp++;
			if ((*cp == '\0') || (*cp == '\n') ||
			    (*cp == '#' && !defcmd_in_progress))
				break;
			/* special case: check for | grep pattern */
			if (*cp == '|') {
				check_grep++;
				break;
			}
			if (cpp >= cbuf + CMD_BUFLEN) {
				kdb_printf("kdb_parse: command buffer "
					   "overflow, command ignored\n%s\n",
					   cmdstr);
				return KDB_NOTFOUND;
			}
			if (argc >= MAXARGC - 1) {
				kdb_printf("kdb_parse: too many arguments, "
					   "command ignored\n%s\n", cmdstr);
				return KDB_NOTFOUND;
			}
			argv[argc++] = cpp;
			escaped = 0;
			quoted = '\0';
			/* Copy to next unquoted and unescaped
			 * whitespace or '=' */
			while (*cp && *cp != '\n' &&
			       (escaped || quoted || !isspace(*cp))) {
				if (cpp >= cbuf + CMD_BUFLEN)
					break;
				if (escaped) {
					escaped = 0;
					*cpp++ = *cp++;
					continue;
				}
				if (*cp == '\\') {
					escaped = 1;
					++cp;
					continue;
				}
				if (*cp == quoted)
					quoted = '\0';
				else if (*cp == '\'' || *cp == '"')
					quoted = *cp;
				*cpp = *cp++;
				if (*cpp == '=' && !quoted)
					break;
				++cpp;
			}
			*cpp++ = '\0';	/* Squash a ws or '=' character */
		}
	}
	if (!argc)
		return 0;
	if (check_grep)
		parse_grep(cp);
	if (defcmd_in_progress) {
		int result = kdb_defcmd2(cmdstr, argv[0]);
		if (!defcmd_in_progress) {
			argc = 0;	/* avoid repeat on endefcmd */
			*(argv[0]) = '\0';
		}
		return result;
	}
	if (argv[0][0] == '-' && argv[0][1] &&
	    (argv[0][1] < '0' || argv[0][1] > '9')) {
		ignore_errors = 1;
		++argv[0];
	}

	for_each_kdbcmd(tp, i) {
		if (tp->cmd_name) {
			/*
			 * If this command is allowed to be abbreviated,
			 * check to see if this is it.
			 */

			if (tp->cmd_minlen
			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
				if (strncmp(argv[0],
					    tp->cmd_name,
					    tp->cmd_minlen) == 0) {
					break;
				}
			}

			if (strcmp(argv[0], tp->cmd_name) == 0)
				break;
		}
	}

	/*
	 * If we don't find a command by this name, see if the first
	 * few characters of this match any of the known commands.
	 * e.g., md1c20 should match md.
	 */
	if (i == kdb_max_commands) {
		for_each_kdbcmd(tp, i) {
			if (tp->cmd_name) {
				if (strncmp(argv[0],
					    tp->cmd_name,
					    strlen(tp->cmd_name)) == 0) {
					break;
				}
			}
		}
	}

	if (i < kdb_max_commands) {
		int result;
		KDB_STATE_SET(CMD);
		result = (*tp->cmd_func)(argc-1, (const char **)argv);
		if (result && ignore_errors && result > KDB_CMD_GO)
			result = 0;
		KDB_STATE_CLEAR(CMD);
		switch (tp->cmd_repeat) {
		case KDB_REPEAT_NONE:
			argc = 0;
			if (argv[0])
				*(argv[0]) = '\0';
			break;
		case KDB_REPEAT_NO_ARGS:
			argc = 1;
			if (argv[1])
				*(argv[1]) = '\0';
			break;
		case KDB_REPEAT_WITH_ARGS:
			break;
		}
		return result;
	}

	/*
	 * If the input with which we were presented does not
	 * map to an existing command, attempt to parse it as an
	 * address argument and display the result.   Useful for
	 * obtaining the address of a variable, or the nearest symbol
	 * to an address contained in a register.
	 */
	{
		unsigned long value;
		char *name = NULL;
		long offset;
		int nextarg = 0;

		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
				  &value, &offset, &name)) {
			return KDB_NOTFOUND;
		}

		kdb_printf("%s = ", argv[0]);
		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
		kdb_printf("\n");
		return 0;
	}
}


static int handle_ctrl_cmd(char *cmd)
{
#define CTRL_P	16
#define CTRL_N	14

	/* initial situation */
	if (cmd_head == cmd_tail)
		return 0;
	switch (*cmd) {
	case CTRL_P:
		if (cmdptr != cmd_tail)
			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
		return 1;
	case CTRL_N:
		if (cmdptr != cmd_head)
			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
		return 1;
	}
	return 0;
}

/*
 * kdb_reboot - This function implements the 'reboot' command.  Reboot
 *	the system immediately, or loop for ever on failure.
 */
static int kdb_reboot(int argc, const char **argv)
{
	emergency_restart();
	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
	while (1)
		cpu_relax();
	/* NOTREACHED */
	return 0;
}

static void kdb_dumpregs(struct pt_regs *regs)
{
	int old_lvl = console_loglevel;
	console_loglevel = 15;
1078
	kdb_trap_printk++;
1079
	show_regs(regs);
1080
	kdb_trap_printk--;
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
	kdb_printf("\n");
	console_loglevel = old_lvl;
}

void kdb_set_current_task(struct task_struct *p)
{
	kdb_current_task = p;

	if (kdb_task_has_cpu(p)) {
		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
		return;
	}
	kdb_current_regs = NULL;
}

/*
 * kdb_local - The main code for kdb.  This routine is invoked on a
 *	specific processor, it is not global.  The main kdb() routine
 *	ensures that only one processor at a time is in this routine.
 *	This code is called with the real reason code on the first
 *	entry to a kdb session, thereafter it is called with reason
 *	SWITCH, even if the user goes back to the original cpu.
 * Inputs:
 *	reason		The reason KDB was invoked
 *	error		The hardware-defined error code
 *	regs		The exception frame at time of fault/breakpoint.
 *	db_result	Result code from the break or debug point.
 * Returns:
 *	0	KDB was invoked for an event which it wasn't responsible
 *	1	KDB handled the event for which it was invoked.
 *	KDB_CMD_GO	User typed 'go'.
 *	KDB_CMD_CPU	User switched to another cpu.
 *	KDB_CMD_SS	Single step.
 *	KDB_CMD_SSB	Single step until branch.
 */
static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
		     kdb_dbtrap_t db_result)
{
	char *cmdbuf;
	int diag;
	struct task_struct *kdb_current =
		kdb_curr_task(raw_smp_processor_id());

	KDB_DEBUG_STATE("kdb_local 1", reason);
	kdb_go_count = 0;
	if (reason == KDB_REASON_DEBUG) {
		/* special case below */
	} else {
		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
			   kdb_current, kdb_current->pid);
#if defined(CONFIG_SMP)
		kdb_printf("on processor %d ", raw_smp_processor_id());
#endif
	}

	switch (reason) {
	case KDB_REASON_DEBUG:
	{
		/*
		 * If re-entering kdb after a single step
		 * command, don't print the message.
		 */
		switch (db_result) {
		case KDB_DB_BPT:
			kdb_printf("\nEntering kdb (0x%p, pid %d) ",
				   kdb_current, kdb_current->pid);
#if defined(CONFIG_SMP)
			kdb_printf("on processor %d ", raw_smp_processor_id());
#endif
			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
				   instruction_pointer(regs));
			break;
		case KDB_DB_SSB:
			/*
			 * In the midst of ssb command. Just return.
			 */
			KDB_DEBUG_STATE("kdb_local 3", reason);
			return KDB_CMD_SSB;	/* Continue with SSB command */

			break;
		case KDB_DB_SS:
			break;
		case KDB_DB_SSBPT:
			KDB_DEBUG_STATE("kdb_local 4", reason);
			return 1;	/* kdba_db_trap did the work */
		default:
			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
				   db_result);
			break;
		}

	}
		break;
	case KDB_REASON_ENTER:
		if (KDB_STATE(KEYBOARD))
			kdb_printf("due to Keyboard Entry\n");
		else
			kdb_printf("due to KDB_ENTER()\n");
		break;
	case KDB_REASON_KEYBOARD:
		KDB_STATE_SET(KEYBOARD);
		kdb_printf("due to Keyboard Entry\n");
		break;
	case KDB_REASON_ENTER_SLAVE:
		/* drop through, slaves only get released via cpu switch */
	case KDB_REASON_SWITCH:
		kdb_printf("due to cpu switch\n");
		break;
	case KDB_REASON_OOPS:
		kdb_printf("Oops: %s\n", kdb_diemsg);
		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
			   instruction_pointer(regs));
		kdb_dumpregs(regs);
		break;
	case KDB_REASON_NMI:
		kdb_printf("due to NonMaskable Interrupt @ "
			   kdb_machreg_fmt "\n",
			   instruction_pointer(regs));
		kdb_dumpregs(regs);
		break;
	case KDB_REASON_SSTEP:
	case KDB_REASON_BREAK:
		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
			   reason == KDB_REASON_BREAK ?
			   "Breakpoint" : "SS trap", instruction_pointer(regs));
		/*
		 * Determine if this breakpoint is one that we
		 * are interested in.
		 */
		if (db_result != KDB_DB_BPT) {
			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
				   db_result);
			KDB_DEBUG_STATE("kdb_local 6", reason);
			return 0;	/* Not for us, dismiss it */
		}
		break;
	case KDB_REASON_RECURSE:
		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
			   instruction_pointer(regs));
		break;
	default:
		kdb_printf("kdb: unexpected reason code: %d\n", reason);
		KDB_DEBUG_STATE("kdb_local 8", reason);
		return 0;	/* Not for us, dismiss it */
	}

	while (1) {
		/*
		 * Initialize pager context.
		 */
		kdb_nextline = 1;
		KDB_STATE_CLEAR(SUPPRESS);

		cmdbuf = cmd_cur;
		*cmdbuf = '\0';
		*(cmd_hist[cmd_head]) = '\0';

		if (KDB_FLAG(ONLY_DO_DUMP)) {
			/* kdb is off but a catastrophic error requires a dump.
			 * Take the dump and reboot.
			 * Turn on logging so the kdb output appears in the log
			 * buffer in the dump.
			 */
			const char *setargs[] = { "set", "LOGGING", "1" };
			kdb_set(2, setargs);
			kdb_reboot(0, NULL);
			/*NOTREACHED*/
		}

do_full_getstr:
#if defined(CONFIG_SMP)
		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
			 raw_smp_processor_id());
#else
		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
#endif
		if (defcmd_in_progress)
			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);

		/*
		 * Fetch command from keyboard
		 */
		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
		if (*cmdbuf != '\n') {
			if (*cmdbuf < 32) {
				if (cmdptr == cmd_head) {
					strncpy(cmd_hist[cmd_head], cmd_cur,
						CMD_BUFLEN);
					*(cmd_hist[cmd_head] +
					  strlen(cmd_hist[cmd_head])-1) = '\0';
				}
				if (!handle_ctrl_cmd(cmdbuf))
					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
				cmdbuf = cmd_cur;
				goto do_full_getstr;
			} else {
				strncpy(cmd_hist[cmd_head], cmd_cur,
					CMD_BUFLEN);
			}

			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
			if (cmd_head == cmd_tail)
				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
		}

		cmdptr = cmd_head;
		diag = kdb_parse(cmdbuf);
		if (diag == KDB_NOTFOUND) {
			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
			diag = 0;
		}
		if (diag == KDB_CMD_GO
		 || diag == KDB_CMD_CPU
		 || diag == KDB_CMD_SS
		 || diag == KDB_CMD_SSB
		 || diag == KDB_CMD_KGDB)
			break;

		if (diag)
			kdb_cmderror(diag);
	}
	KDB_DEBUG_STATE("kdb_local 9", diag);
	return diag;
}


/*
 * kdb_print_state - Print the state data for the current processor
 *	for debugging.
 * Inputs:
 *	text		Identifies the debug point
 *	value		Any integer value to be printed, e.g. reason code.
 */
void kdb_print_state(const char *text, int value)
{
	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
		   kdb_state);
}

/*
 * kdb_main_loop - After initial setup and assignment of the
 *	controlling cpu, all cpus are in this loop.  One cpu is in
 *	control and will issue the kdb prompt, the others will spin
 *	until 'go' or cpu switch.
 *
 *	To get a consistent view of the kernel stacks for all
 *	processes, this routine is invoked from the main kdb code via
 *	an architecture specific routine.  kdba_main_loop is
 *	responsible for making the kernel stacks consistent for all
 *	processes, there should be no difference between a blocked
 *	process and a running process as far as kdb is concerned.
 * Inputs:
 *	reason		The reason KDB was invoked
 *	error		The hardware-defined error code
 *	reason2		kdb's current reason code.
 *			Initially error but can change
 *			acording to kdb state.
 *	db_result	Result code from break or debug point.
 *	regs		The exception frame at time of fault/breakpoint.
 *			should always be valid.
 * Returns:
 *	0	KDB was invoked for an event which it wasn't responsible
 *	1	KDB handled the event for which it was invoked.
 */
int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
	      kdb_dbtrap_t db_result, struct pt_regs *regs)
{
	int result = 1;
	/* Stay in kdb() until 'go', 'ss[b]' or an error */
	while (1) {
		/*
		 * All processors except the one that is in control
		 * will spin here.
		 */
		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
		while (KDB_STATE(HOLD_CPU)) {
			/* state KDB is turned off by kdb_cpu to see if the
			 * other cpus are still live, each cpu in this loop
			 * turns it back on.
			 */
			if (!KDB_STATE(KDB))
				KDB_STATE_SET(KDB);
		}

		KDB_STATE_CLEAR(SUPPRESS);
		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
		if (KDB_STATE(LEAVING))
			break;	/* Another cpu said 'go' */
		/* Still using kdb, this processor is in control */
		result = kdb_local(reason2, error, regs, db_result);
		KDB_DEBUG_STATE("kdb_main_loop 3", result);

		if (result == KDB_CMD_CPU)
			break;

		if (result == KDB_CMD_SS) {
			KDB_STATE_SET(DOING_SS);
			break;
		}

		if (result == KDB_CMD_SSB) {
			KDB_STATE_SET(DOING_SS);
			KDB_STATE_SET(DOING_SSB);
			break;
		}

		if (result == KDB_CMD_KGDB) {
			if (!(KDB_STATE(DOING_KGDB) || KDB_STATE(DOING_KGDB2)))
				kdb_printf("Entering please attach debugger "
					   "or use $D#44+ or $3#33\n");
			break;
		}
		if (result && result != 1 && result != KDB_CMD_GO)
			kdb_printf("\nUnexpected kdb_local return code %d\n",
				   result);
		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
		break;
	}
	if (KDB_STATE(DOING_SS))
		KDB_STATE_CLEAR(SSBPT);

	return result;
}

/*
 * kdb_mdr - This function implements the guts of the 'mdr', memory
 * read command.
 *	mdr  <addr arg>,<byte count>
 * Inputs:
 *	addr	Start address
 *	count	Number of bytes
 * Returns:
 *	Always 0.  Any errors are detected and printed by kdb_getarea.
 */
static int kdb_mdr(unsigned long addr, unsigned int count)
{
	unsigned char c;
	while (count--) {
		if (kdb_getarea(c, addr))
			return 0;
		kdb_printf("%02x", c);
		addr++;
	}
	kdb_printf("\n");
	return 0;
}

/*
 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
 *	'md8' 'mdr' and 'mds' commands.
 *
 *	md|mds  [<addr arg> [<line count> [<radix>]]]
 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
 *		where W = is the width (1, 2, 4 or 8) and N is the count.
 *		for eg., md1c20 reads 20 bytes, 1 at a time.
 *	mdr  <addr arg>,<byte count>
 */
static void kdb_md_line(const char *fmtstr, unsigned long addr,
			int symbolic, int nosect, int bytesperword,
			int num, int repeat, int phys)
{
	/* print just one line of data */
	kdb_symtab_t symtab;
	char cbuf[32];
	char *c = cbuf;
	int i;
	unsigned long word;

	memset(cbuf, '\0', sizeof(cbuf));
	if (phys)
		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
	else
		kdb_printf(kdb_machreg_fmt0 " ", addr);

	for (i = 0; i < num && repeat--; i++) {
		if (phys) {
			if (kdb_getphysword(&word, addr, bytesperword))
				break;
		} else if (kdb_getword(&word, addr, bytesperword))
			break;
		kdb_printf(fmtstr, word);
		if (symbolic)
			kdbnearsym(word, &symtab);
		else
			memset(&symtab, 0, sizeof(symtab));
		if (symtab.sym_name) {
			kdb_symbol_print(word, &symtab, 0);
			if (!nosect) {
				kdb_printf("\n");
				kdb_printf("                       %s %s "
					   kdb_machreg_fmt " "
					   kdb_machreg_fmt " "
					   kdb_machreg_fmt, symtab.mod_name,
					   symtab.sec_name, symtab.sec_start,
					   symtab.sym_start, symtab.sym_end);
			}
			addr += bytesperword;
		} else {
			union {
				u64 word;
				unsigned char c[8];
			} wc;
			unsigned char *cp;
#ifdef	__BIG_ENDIAN
			cp = wc.c + 8 - bytesperword;
#else
			cp = wc.c;
#endif
			wc.word = word;
#define printable_char(c) \
	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
			switch (bytesperword) {
			case 8:
				*c++ = printable_char(*cp++);
				*c++ = printable_char(*cp++);
				*c++ = printable_char(*cp++);
				*c++ = printable_char(*cp++);
				addr += 4;
			case 4:
				*c++ = printable_char(*cp++);
				*c++ = printable_char(*cp++);
				addr += 2;
			case 2:
				*c++ = printable_char(*cp++);
				addr++;
			case 1:
				*c++ = printable_char(*cp++);
				addr++;
				break;
			}
#undef printable_char
		}
	}
	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
		   " ", cbuf);
}

static int kdb_md(int argc, const char **argv)
{
	static unsigned long last_addr;
	static int last_radix, last_bytesperword, last_repeat;
	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
	int nosect = 0;
	char fmtchar, fmtstr[64];
	unsigned long addr;
	unsigned long word;
	long offset = 0;
	int symbolic = 0;
	int valid = 0;
	int phys = 0;

	kdbgetintenv("MDCOUNT", &mdcount);
	kdbgetintenv("RADIX", &radix);
	kdbgetintenv("BYTESPERWORD", &bytesperword);

	/* Assume 'md <addr>' and start with environment values */
	repeat = mdcount * 16 / bytesperword;

	if (strcmp(argv[0], "mdr") == 0) {
		if (argc != 2)
			return KDB_ARGCOUNT;
		valid = 1;
	} else if (isdigit(argv[0][2])) {
		bytesperword = (int)(argv[0][2] - '0');
		if (bytesperword == 0) {
			bytesperword = last_bytesperword;
			if (bytesperword == 0)
				bytesperword = 4;
		}
		last_bytesperword = bytesperword;
		repeat = mdcount * 16 / bytesperword;
		if (!argv[0][3])
			valid = 1;
		else if (argv[0][3] == 'c' && argv[0][4]) {
			char *p;
			repeat = simple_strtoul(argv[0] + 4, &p, 10);
			mdcount = ((repeat * bytesperword) + 15) / 16;
			valid = !*p;
		}
		last_repeat = repeat;
	} else if (strcmp(argv[0], "md") == 0)
		valid = 1;
	else if (strcmp(argv[0], "mds") == 0)
		valid = 1;
	else if (strcmp(argv[0], "mdp") == 0) {
		phys = valid = 1;
	}
	if (!valid)
		return KDB_NOTFOUND;

	if (argc == 0) {
		if (last_addr == 0)
			return KDB_ARGCOUNT;
		addr = last_addr;
		radix = last_radix;
		bytesperword = last_bytesperword;
		repeat = last_repeat;
		mdcount = ((repeat * bytesperword) + 15) / 16;
	}

	if (argc) {
		unsigned long val;
		int diag, nextarg = 1;
		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
				     &offset, NULL);
		if (diag)
			return diag;
		if (argc > nextarg+2)
			return KDB_ARGCOUNT;

		if (argc >= nextarg) {
			diag = kdbgetularg(argv[nextarg], &val);
			if (!diag) {
				mdcount = (int) val;
				repeat = mdcount * 16 / bytesperword;
			}
		}
		if (argc >= nextarg+1) {
			diag = kdbgetularg(argv[nextarg+1], &val);
			if (!diag)
				radix = (int) val;
		}
	}

	if (strcmp(argv[0], "mdr") == 0)
		return kdb_mdr(addr, mdcount);

	switch (radix) {
	case 10:
		fmtchar = 'd';
		break;
	case 16:
		fmtchar = 'x';
		break;
	case 8:
		fmtchar = 'o';
		break;
	default:
		return KDB_BADRADIX;
	}

	last_radix = radix;

	if (bytesperword > KDB_WORD_SIZE)
		return KDB_BADWIDTH;

	switch (bytesperword) {
	case 8:
		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
		break;
	case 4:
		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
		break;
	case 2:
		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
		break;
	case 1:
		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
		break;
	default:
		return KDB_BADWIDTH;
	}

	last_repeat = repeat;
	last_bytesperword = bytesperword;

	if (strcmp(argv[0], "mds") == 0) {
		symbolic = 1;
		/* Do not save these changes as last_*, they are temporary mds
		 * overrides.
		 */
		bytesperword = KDB_WORD_SIZE;
		repeat = mdcount;
		kdbgetintenv("NOSECT", &nosect);
	}

	/* Round address down modulo BYTESPERWORD */

	addr &= ~(bytesperword-1);

	while (repeat > 0) {
		unsigned long a;
		int n, z, num = (symbolic ? 1 : (16 / bytesperword));

		if (KDB_FLAG(CMD_INTERRUPT))
			return 0;
		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
			if (phys) {
				if (kdb_getphysword(&word, a, bytesperword)
						|| word)
					break;
			} else if (kdb_getword(&word, a, bytesperword) || word)
				break;
		}
		n = min(num, repeat);
		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
			    num, repeat, phys);
		addr += bytesperword * n;
		repeat -= n;
		z = (z + num - 1) / num;
		if (z > 2) {
			int s = num * (z-2);
			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
				   " zero suppressed\n",
				addr, addr + bytesperword * s - 1);
			addr += bytesperword * s;
			repeat -= s;
		}
	}
	last_addr = addr;

	return 0;
}

/*
 * kdb_mm - This function implements the 'mm' command.
 *	mm address-expression new-value
 * Remarks:
 *	mm works on machine words, mmW works on bytes.
 */
static int kdb_mm(int argc, const char **argv)
{
	int diag;
	unsigned long addr;
	long offset = 0;
	unsigned long contents;
	int nextarg;
	int width;

	if (argv[0][2] && !isdigit(argv[0][2]))
		return KDB_NOTFOUND;

	if (argc < 2)
		return KDB_ARGCOUNT;

	nextarg = 1;
	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
	if (diag)
		return diag;

	if (nextarg > argc)
		return KDB_ARGCOUNT;
	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
	if (diag)
		return diag;

	if (nextarg != argc + 1)
		return KDB_ARGCOUNT;

	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
	diag = kdb_putword(addr, contents, width);
	if (diag)
		return diag;

	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);

	return 0;
}

/*
 * kdb_go - This function implements the 'go' command.
 *	go [address-expression]
 */
static int kdb_go(int argc, const char **argv)
{
	unsigned long addr;
	int diag;
	int nextarg;
	long offset;

1752 1753 1754 1755 1756 1757
	if (raw_smp_processor_id() != kdb_initial_cpu) {
		kdb_printf("go must execute on the entry cpu, "
			   "please use \"cpu %d\" and then execute go\n",
			   kdb_initial_cpu);
		return KDB_BADCPUNUM;
	}
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
	if (argc == 1) {
		nextarg = 1;
		diag = kdbgetaddrarg(argc, argv, &nextarg,
				     &addr, &offset, NULL);
		if (diag)
			return diag;
	} else if (argc) {
		return KDB_ARGCOUNT;
	}

	diag = KDB_CMD_GO;
	if (KDB_FLAG(CATASTROPHIC)) {
		kdb_printf("Catastrophic error detected\n");
		kdb_printf("kdb_continue_catastrophic=%d, ",
			kdb_continue_catastrophic);
		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
			kdb_printf("type go a second time if you really want "
				   "to continue\n");
			return 0;
		}
		if (kdb_continue_catastrophic == 2) {
			kdb_printf("forcing reboot\n");
			kdb_reboot(0, NULL);
		}
		kdb_printf("attempting to continue\n");
	}
	return diag;
}

/*
 * kdb_rd - This function implements the 'rd' command.
 */
static int kdb_rd(int argc, const char **argv)
{
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
	int len = kdb_check_regs();
#if DBG_MAX_REG_NUM > 0
	int i;
	char *rname;
	int rsize;
	u64 reg64;
	u32 reg32;
	u16 reg16;
	u8 reg8;

	if (len)
		return len;

	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
		rsize = dbg_reg_def[i].size * 2;
		if (rsize > 16)
			rsize = 2;
		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
			len = 0;
			kdb_printf("\n");
		}
		if (len)
			len += kdb_printf("  ");
		switch(dbg_reg_def[i].size * 8) {
		case 8:
			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
			if (!rname)
				break;
			len += kdb_printf("%s: %02x", rname, reg8);
			break;
		case 16:
			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
			if (!rname)
				break;
			len += kdb_printf("%s: %04x", rname, reg16);
			break;
		case 32:
			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
			if (!rname)
				break;
			len += kdb_printf("%s: %08x", rname, reg32);
			break;
		case 64:
			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
			if (!rname)
				break;
			len += kdb_printf("%s: %016llx", rname, reg64);
			break;
		default:
			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
		}
	}
	kdb_printf("\n");
#else
	if (len)
		return len;
1848 1849

	kdb_dumpregs(kdb_current_regs);
1850
#endif
1851 1852 1853 1854 1855 1856 1857
	return 0;
}

/*
 * kdb_rm - This function implements the 'rm' (register modify)  command.
 *	rm register-name new-contents
 * Remarks:
1858
 *	Allows register modification with the same restrictions as gdb
1859 1860 1861
 */
static int kdb_rm(int argc, const char **argv)
{
1862
#if DBG_MAX_REG_NUM > 0
1863
	int diag;
1864 1865 1866 1867 1868 1869
	const char *rname;
	int i;
	u64 reg64;
	u32 reg32;
	u16 reg16;
	u8 reg8;
1870 1871 1872 1873 1874 1875

	if (argc != 2)
		return KDB_ARGCOUNT;
	/*
	 * Allow presence or absence of leading '%' symbol.
	 */
1876 1877 1878
	rname = argv[1];
	if (*rname == '%')
		rname++;
1879

1880
	diag = kdbgetu64arg(argv[2], &reg64);
1881 1882 1883 1884 1885 1886
	if (diag)
		return diag;

	diag = kdb_check_regs();
	if (diag)
		return diag;
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915

	diag = KDB_BADREG;
	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
			diag = 0;
			break;
		}
	}
	if (!diag) {
		switch(dbg_reg_def[i].size * 8) {
		case 8:
			reg8 = reg64;
			dbg_set_reg(i, &reg8, kdb_current_regs);
			break;
		case 16:
			reg16 = reg64;
			dbg_set_reg(i, &reg16, kdb_current_regs);
			break;
		case 32:
			reg32 = reg64;
			dbg_set_reg(i, &reg32, kdb_current_regs);
			break;
		case 64:
			dbg_set_reg(i, &reg64, kdb_current_regs);
			break;
		}
	}
	return diag;
#else
1916
	kdb_printf("ERROR: Register set currently not implemented\n");
1917 1918
    return 0;
#endif
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
}

#if defined(CONFIG_MAGIC_SYSRQ)
/*
 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
 *		sr <magic-sysrq-code>
 */
static int kdb_sr(int argc, const char **argv)
{
	if (argc != 1)
		return KDB_ARGCOUNT;
1931
	kdb_trap_printk++;
1932
	__handle_sysrq(*argv[1], false);
1933
	kdb_trap_printk--;
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

	return 0;
}
#endif	/* CONFIG_MAGIC_SYSRQ */

/*
 * kdb_ef - This function implements the 'regs' (display exception
 *	frame) command.  This command takes an address and expects to
 *	find an exception frame at that address, formats and prints
 *	it.
 *		regs address-expression
 * Remarks:
 *	Not done yet.
 */
static int kdb_ef(int argc, const char **argv)
{
	int diag;
	unsigned long addr;
	long offset;
	int nextarg;

	if (argc != 1)
		return KDB_ARGCOUNT;

	nextarg = 1;
	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
	if (diag)
		return diag;
	show_regs((struct pt_regs *)addr);
	return 0;
}

#if defined(CONFIG_MODULES)
/*
 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
 *	currently loaded kernel modules.
 *	Mostly taken from userland lsmod.
 */
static int kdb_lsmod(int argc, const char **argv)
{
	struct module *mod;

	if (argc != 0)
		return KDB_ARGCOUNT;

	kdb_printf("Module                  Size  modstruct     Used by\n");
	list_for_each_entry(mod, kdb_modules, list) {

		kdb_printf("%-20s%8u  0x%p ", mod->name,
			   mod->core_size, (void *)mod);
#ifdef CONFIG_MODULE_UNLOAD
		kdb_printf("%4d ", module_refcount(mod));
#endif
		if (mod->state == MODULE_STATE_GOING)
			kdb_printf(" (Unloading)");
		else if (mod->state == MODULE_STATE_COMING)
			kdb_printf(" (Loading)");
		else
			kdb_printf(" (Live)");
1993
		kdb_printf(" 0x%p", mod->module_core);
1994 1995 1996 1997 1998

#ifdef CONFIG_MODULE_UNLOAD
		{
			struct module_use *use;
			kdb_printf(" [ ");
1999 2000 2001
			list_for_each_entry(use, &mod->source_list,
					    source_list)
				kdb_printf("%s ", use->target->name);
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
			kdb_printf("]\n");
		}
#endif
	}

	return 0;
}

#endif	/* CONFIG_MODULES */

/*
 * kdb_env - This function implements the 'env' command.  Display the
 *	current environment variables.
 */

static int kdb_env(int argc, const char **argv)
{
	int i;

	for (i = 0; i < __nenv; i++) {
		if (__env[i])
			kdb_printf("%s\n", __env[i]);
	}

	if (KDB_DEBUG(MASK))
		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);

	return 0;
}

#ifdef CONFIG_PRINTK
/*
 * kdb_dmesg - This function implements the 'dmesg' command to display
 *	the contents of the syslog buffer.
 *		dmesg [lines] [adjust]
 */
static int kdb_dmesg(int argc, const char **argv)
{
	char *syslog_data[4], *start, *end, c = '\0', *p;
	int diag, logging, logsize, lines = 0, adjust = 0, n;

	if (argc > 2)
		return KDB_ARGCOUNT;
	if (argc) {
		char *cp;
		lines = simple_strtol(argv[1], &cp, 0);
		if (*cp)
			lines = 0;
		if (argc > 1) {
			adjust = simple_strtoul(argv[2], &cp, 0);
			if (*cp || adjust < 0)
				adjust = 0;
		}
	}

	/* disable LOGGING if set */
	diag = kdbgetintenv("LOGGING", &logging);
	if (!diag && logging) {
		const char *setargs[] = { "set", "LOGGING", "0" };
		kdb_set(2, setargs);
	}

	/* syslog_data[0,1] physical start, end+1.  syslog_data[2,3]
	 * logical start, end+1. */
	kdb_syslog_data(syslog_data);
	if (syslog_data[2] == syslog_data[3])
		return 0;
	logsize = syslog_data[1] - syslog_data[0];
	start = syslog_data[2];
	end = syslog_data[3];
#define KDB_WRAP(p) (((p - syslog_data[0]) % logsize) + syslog_data[0])
	for (n = 0, p = start; p < end; ++p) {
		c = *KDB_WRAP(p);
		if (c == '\n')
			++n;
	}
	if (c != '\n')
		++n;
	if (lines < 0) {
		if (adjust >= n)
			kdb_printf("buffer only contains %d lines, nothing "
				   "printed\n", n);
		else if (adjust - lines >= n)
			kdb_printf("buffer only contains %d lines, last %d "
				   "lines printed\n", n, n - adjust);
		if (adjust) {
			for (; start < end && adjust; ++start) {
				if (*KDB_WRAP(start) == '\n')
					--adjust;
			}
			if (start < end)
				++start;
		}
		for (p = start; p < end && lines; ++p) {
			if (*KDB_WRAP(p) == '\n')
				++lines;
		}
		end = p;
	} else if (lines > 0) {
		int skip = n - (adjust + lines);
		if (adjust >= n) {
			kdb_printf("buffer only contains %d lines, "
				   "nothing printed\n", n);
			skip = n;
		} else if (skip < 0) {
			lines += skip;
			skip = 0;
			kdb_printf("buffer only contains %d lines, first "
				   "%d lines printed\n", n, lines);
		}
		for (; start < end && skip; ++start) {
			if (*KDB_WRAP(start) == '\n')
				--skip;
		}
		for (p = start; p < end && lines; ++p) {
			if (*KDB_WRAP(p) == '\n')
				--lines;
		}
		end = p;
	}
	/* Do a line at a time (max 200 chars) to reduce protocol overhead */
	c = '\n';
	while (start != end) {
		char buf[201];
		p = buf;
		if (KDB_FLAG(CMD_INTERRUPT))
			return 0;
		while (start < end && (c = *KDB_WRAP(start)) &&
		       (p - buf) < sizeof(buf)-1) {
			++start;
			*p++ = c;
			if (c == '\n')
				break;
		}
		*p = '\0';
		kdb_printf("%s", buf);
	}
	if (c != '\n')
		kdb_printf("\n");

	return 0;
}
#endif /* CONFIG_PRINTK */
/*
 * kdb_cpu - This function implements the 'cpu' command.
 *	cpu	[<cpunum>]
 * Returns:
 *	KDB_CMD_CPU for success, a kdb diagnostic if error
 */
static void kdb_cpu_status(void)
{
	int i, start_cpu, first_print = 1;
	char state, prev_state = '?';

	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
	kdb_printf("Available cpus: ");
	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
		if (!cpu_online(i)) {
			state = 'F';	/* cpu is offline */
		} else {
			state = ' ';	/* cpu is responding to kdb */
			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
				state = 'I';	/* idle task */
		}
		if (state != prev_state) {
			if (prev_state != '?') {
				if (!first_print)
					kdb_printf(", ");
				first_print = 0;
				kdb_printf("%d", start_cpu);
				if (start_cpu < i-1)
					kdb_printf("-%d", i-1);
				if (prev_state != ' ')
					kdb_printf("(%c)", prev_state);
			}
			prev_state = state;
			start_cpu = i;
		}
	}
	/* print the trailing cpus, ignoring them if they are all offline */
	if (prev_state != 'F') {
		if (!first_print)
			kdb_printf(", ");
		kdb_printf("%d", start_cpu);
		if (start_cpu < i-1)
			kdb_printf("-%d", i-1);
		if (prev_state != ' ')
			kdb_printf("(%c)", prev_state);
	}
	kdb_printf("\n");
}

static int kdb_cpu(int argc, const char **argv)
{
	unsigned long cpunum;
	int diag;

	if (argc == 0) {
		kdb_cpu_status();
		return 0;
	}

	if (argc != 1)
		return KDB_ARGCOUNT;

	diag = kdbgetularg(argv[1], &cpunum);
	if (diag)
		return diag;

	/*
	 * Validate cpunum
	 */
	if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
		return KDB_BADCPUNUM;

	dbg_switch_cpu = cpunum;

	/*
	 * Switch to other cpu
	 */
	return KDB_CMD_CPU;
}

/* The user may not realize that ps/bta with no parameters does not print idle
 * or sleeping system daemon processes, so tell them how many were suppressed.
 */
void kdb_ps_suppressed(void)
{
	int idle = 0, daemon = 0;
	unsigned long mask_I = kdb_task_state_string("I"),
		      mask_M = kdb_task_state_string("M");
	unsigned long cpu;
	const struct task_struct *p, *g;
	for_each_online_cpu(cpu) {
		p = kdb_curr_task(cpu);
		if (kdb_task_state(p, mask_I))
			++idle;
	}
	kdb_do_each_thread(g, p) {
		if (kdb_task_state(p, mask_M))
			++daemon;
	} kdb_while_each_thread(g, p);
	if (idle || daemon) {
		if (idle)
			kdb_printf("%d idle process%s (state I)%s\n",
				   idle, idle == 1 ? "" : "es",
				   daemon ? " and " : "");
		if (daemon)
			kdb_printf("%d sleeping system daemon (state M) "
				   "process%s", daemon,
				   daemon == 1 ? "" : "es");
		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
	}
}

/*
 * kdb_ps - This function implements the 'ps' command which shows a
 *	list of the active processes.
 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
 */
void kdb_ps1(const struct task_struct *p)
{
	int cpu;
	unsigned long tmp;

	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
		return;

	cpu = kdb_process_cpu(p);
	kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
		   (void *)p, p->pid, p->parent->pid,
		   kdb_task_has_cpu(p), kdb_process_cpu(p),
		   kdb_task_state_char(p),
		   (void *)(&p->thread),
		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
		   p->comm);
	if (kdb_task_has_cpu(p)) {
		if (!KDB_TSK(cpu)) {
			kdb_printf("  Error: no saved data for this cpu\n");
		} else {
			if (KDB_TSK(cpu) != p)
				kdb_printf("  Error: does not match running "
				   "process table (0x%p)\n", KDB_TSK(cpu));
		}
	}
}

static int kdb_ps(int argc, const char **argv)
{
	struct task_struct *g, *p;
	unsigned long mask, cpu;

	if (argc == 0)
		kdb_ps_suppressed();
	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
		(int)(2*sizeof(void *))+2, "Task Addr",
		(int)(2*sizeof(void *))+2, "Thread");
	mask = kdb_task_state_string(argc ? argv[1] : NULL);
	/* Run the active tasks first */
	for_each_online_cpu(cpu) {
		if (KDB_FLAG(CMD_INTERRUPT))
			return 0;
		p = kdb_curr_task(cpu);
		if (kdb_task_state(p, mask))
			kdb_ps1(p);
	}
	kdb_printf("\n");
	/* Now the real tasks */
	kdb_do_each_thread(g, p) {
		if (KDB_FLAG(CMD_INTERRUPT))
			return 0;
		if (kdb_task_state(p, mask))
			kdb_ps1(p);
	} kdb_while_each_thread(g, p);

	return 0;
}

/*
 * kdb_pid - This function implements the 'pid' command which switches
 *	the currently active process.
 *		pid [<pid> | R]
 */
static int kdb_pid(int argc, const char **argv)
{
	struct task_struct *p;
	unsigned long val;
	int diag;

	if (argc > 1)
		return KDB_ARGCOUNT;

	if (argc) {
		if (strcmp(argv[1], "R") == 0) {
			p = KDB_TSK(kdb_initial_cpu);
		} else {
			diag = kdbgetularg(argv[1], &val);
			if (diag)
				return KDB_BADINT;

			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
			if (!p) {
				kdb_printf("No task with pid=%d\n", (pid_t)val);
				return 0;
			}
		}
		kdb_set_current_task(p);
	}
	kdb_printf("KDB current process is %s(pid=%d)\n",
		   kdb_current_task->comm,
		   kdb_current_task->pid);

	return 0;
}

/*
 * kdb_ll - This function implements the 'll' command which follows a
 *	linked list and executes an arbitrary command for each
 *	element.
 */
static int kdb_ll(int argc, const char **argv)
{
	int diag;
	unsigned long addr;
	long offset = 0;
	unsigned long va;
	unsigned long linkoffset;
	int nextarg;
	const char *command;

	if (argc != 3)
		return KDB_ARGCOUNT;

	nextarg = 1;
	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
	if (diag)
		return diag;

	diag = kdbgetularg(argv[2], &linkoffset);
	if (diag)
		return diag;

	/*
	 * Using the starting address as
	 * the first element in the list, and assuming that
	 * the list ends with a null pointer.
	 */

	va = addr;
	command = kdb_strdup(argv[3], GFP_KDB);
	if (!command) {
		kdb_printf("%s: cannot duplicate command\n", __func__);
		return 0;
	}
	/* Recursive use of kdb_parse, do not use argv after this point */
	argv = NULL;

	while (va) {
		char buf[80];

2402 2403 2404
		if (KDB_FLAG(CMD_INTERRUPT))
			return 0;

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
		sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va);
		diag = kdb_parse(buf);
		if (diag)
			return diag;

		addr = va + linkoffset;
		if (kdb_getword(&va, addr, sizeof(va)))
			return 0;
	}
	kfree(command);

	return 0;
}

static int kdb_kgdb(int argc, const char **argv)
{
	return KDB_CMD_KGDB;
}

/*
 * kdb_help - This function implements the 'help' and '?' commands.
 */
static int kdb_help(int argc, const char **argv)
{
	kdbtab_t *kt;
	int i;

	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
	kdb_printf("-----------------------------"
		   "-----------------------------\n");
	for_each_kdbcmd(kt, i) {
		if (kt->cmd_name)
			kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
				   kt->cmd_usage, kt->cmd_help);
		if (KDB_FLAG(CMD_INTERRUPT))
			return 0;
	}
	return 0;
}

/*
 * kdb_kill - This function implements the 'kill' commands.
 */
static int kdb_kill(int argc, const char **argv)
{
	long sig, pid;
	char *endp;
	struct task_struct *p;
	struct siginfo info;

	if (argc != 2)
		return KDB_ARGCOUNT;

	sig = simple_strtol(argv[1], &endp, 0);
	if (*endp)
		return KDB_BADINT;
	if (sig >= 0) {
		kdb_printf("Invalid signal parameter.<-signal>\n");
		return 0;
	}
	sig = -sig;

	pid = simple_strtol(argv[2], &endp, 0);
	if (*endp)
		return KDB_BADINT;
	if (pid <= 0) {
		kdb_printf("Process ID must be large than 0.\n");
		return 0;
	}

	/* Find the process. */
	p = find_task_by_pid_ns(pid, &init_pid_ns);
	if (!p) {
		kdb_printf("The specified process isn't found.\n");
		return 0;
	}
	p = p->group_leader;
	info.si_signo = sig;
	info.si_errno = 0;
	info.si_code = SI_USER;
	info.si_pid = pid;  /* same capabilities as process being signalled */
	info.si_uid = 0;    /* kdb has root authority */
	kdb_send_sig_info(p, &info);
	return 0;
}

struct kdb_tm {
	int tm_sec;	/* seconds */
	int tm_min;	/* minutes */
	int tm_hour;	/* hours */
	int tm_mday;	/* day of the month */
	int tm_mon;	/* month */
	int tm_year;	/* year */
};

static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
{
	/* This will work from 1970-2099, 2100 is not a leap year */
	static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
				 31, 30, 31, 30, 31 };
	memset(tm, 0, sizeof(*tm));
	tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
	tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
		(2 * 365 + 1); /* shift base from 1970 to 1968 */
	tm->tm_min =  tm->tm_sec / 60 % 60;
	tm->tm_hour = tm->tm_sec / 60 / 60;
	tm->tm_sec =  tm->tm_sec % 60;
	tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
	tm->tm_mday %= (4*365+1);
	mon_day[1] = 29;
	while (tm->tm_mday >= mon_day[tm->tm_mon]) {
		tm->tm_mday -= mon_day[tm->tm_mon];
		if (++tm->tm_mon == 12) {
			tm->tm_mon = 0;
			++tm->tm_year;
			mon_day[1] = 28;
		}
	}
	++tm->tm_mday;
}

/*
 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
 * I cannot call that code directly from kdb, it has an unconditional
 * cli()/sti() and calls routines that take locks which can stop the debugger.
 */
static void kdb_sysinfo(struct sysinfo *val)
{
	struct timespec uptime;
	do_posix_clock_monotonic_gettime(&uptime);
	memset(val, 0, sizeof(*val));
	val->uptime = uptime.tv_sec;
	val->loads[0] = avenrun[0];
	val->loads[1] = avenrun[1];
	val->loads[2] = avenrun[2];
	val->procs = nr_threads-1;
	si_meminfo(val);

	return;
}

/*
 * kdb_summary - This function implements the 'summary' command.
 */
static int kdb_summary(int argc, const char **argv)
{
2551
	struct timespec now;
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
	struct kdb_tm tm;
	struct sysinfo val;

	if (argc)
		return KDB_ARGCOUNT;

	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
	kdb_printf("release    %s\n", init_uts_ns.name.release);
	kdb_printf("version    %s\n", init_uts_ns.name.version);
	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
	kdb_printf("ccversion  %s\n", __stringify(CCVERSION));

2566 2567
	now = __current_kernel_time();
	kdb_gmtime(&now, &tm);
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
	kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
		   "tz_minuteswest %d\n",
		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
		tm.tm_hour, tm.tm_min, tm.tm_sec,
		sys_tz.tz_minuteswest);

	kdb_sysinfo(&val);
	kdb_printf("uptime     ");
	if (val.uptime > (24*60*60)) {
		int days = val.uptime / (24*60*60);
		val.uptime %= (24*60*60);
		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
	}
	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);

	/* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */

#define LOAD_INT(x) ((x) >> FSHIFT)
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
#undef LOAD_INT
#undef LOAD_FRAC
	/* Display in kilobytes */
#define K(x) ((x) << (PAGE_SHIFT - 10))
	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
		   "Buffers:        %8lu kB\n",
		   val.totalram, val.freeram, val.bufferram);
	return 0;
}

/*
 * kdb_per_cpu - This function implements the 'per_cpu' command.
 */
static int kdb_per_cpu(int argc, const char **argv)
{
2606 2607 2608
	char fmtstr[64];
	int cpu, diag, nextarg = 1;
	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2609 2610 2611 2612

	if (argc < 1 || argc > 3)
		return KDB_ARGCOUNT;

2613 2614 2615 2616
	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
	if (diag)
		return diag;

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
	if (argc >= 2) {
		diag = kdbgetularg(argv[2], &bytesperword);
		if (diag)
			return diag;
	}
	if (!bytesperword)
		bytesperword = KDB_WORD_SIZE;
	else if (bytesperword > KDB_WORD_SIZE)
		return KDB_BADWIDTH;
	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
	if (argc >= 3) {
		diag = kdbgetularg(argv[3], &whichcpu);
		if (diag)
			return diag;
		if (!cpu_online(whichcpu)) {
			kdb_printf("cpu %ld is not online\n", whichcpu);
			return KDB_BADCPUNUM;
		}
	}

	/* Most architectures use __per_cpu_offset[cpu], some use
	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
	 */
#ifdef	__per_cpu_offset
#define KDB_PCU(cpu) __per_cpu_offset(cpu)
#else
#ifdef	CONFIG_SMP
#define KDB_PCU(cpu) __per_cpu_offset[cpu]
#else
#define KDB_PCU(cpu) 0
#endif
#endif
	for_each_online_cpu(cpu) {
2650 2651 2652
		if (KDB_FLAG(CMD_INTERRUPT))
			return 0;

2653 2654
		if (whichcpu != ~0UL && whichcpu != cpu)
			continue;
2655
		addr = symaddr + KDB_PCU(cpu);
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
		diag = kdb_getword(&val, addr, bytesperword);
		if (diag) {
			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
				   "read, diag=%d\n", cpu, addr, diag);
			continue;
		}
		kdb_printf("%5d ", cpu);
		kdb_md_line(fmtstr, addr,
			bytesperword == KDB_WORD_SIZE,
			1, bytesperword, 1, 1, 0);
	}
#undef KDB_PCU
	return 0;
}

/*
 * display help for the use of cmd | grep pattern
 */
static int kdb_grep_help(int argc, const char **argv)
{
	kdb_printf("Usage of  cmd args | grep pattern:\n");
	kdb_printf("  Any command's output may be filtered through an ");
	kdb_printf("emulated 'pipe'.\n");
	kdb_printf("  'grep' is just a key word.\n");
	kdb_printf("  The pattern may include a very limited set of "
		   "metacharacters:\n");
	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
	kdb_printf("  And if there are spaces in the pattern, you may "
		   "quote it:\n");
	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
		   " or \"^pat tern$\"\n");
	return 0;
}

/*
 * kdb_register_repeat - This function is used to register a kernel
 * 	debugger command.
 * Inputs:
 *	cmd	Command name
 *	func	Function to execute the command
 *	usage	A simple usage string showing arguments
 *	help	A simple help string describing command
 *	repeat	Does the command auto repeat on enter?
 * Returns:
 *	zero for success, one if a duplicate command.
 */
#define kdb_command_extend 50	/* arbitrary */
int kdb_register_repeat(char *cmd,
			kdb_func_t func,
			char *usage,
			char *help,
			short minlen,
			kdb_repeat_t repeat)
{
	int i;
	kdbtab_t *kp;

	/*
	 *  Brute force method to determine duplicates
	 */
	for_each_kdbcmd(kp, i) {
		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
			kdb_printf("Duplicate kdb command registered: "
				"%s, func %p help %s\n", cmd, func, help);
			return 1;
		}
	}

	/*
	 * Insert command into first available location in table
	 */
	for_each_kdbcmd(kp, i) {
		if (kp->cmd_name == NULL)
			break;
	}

	if (i >= kdb_max_commands) {
		kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
			 kdb_command_extend) * sizeof(*new), GFP_KDB);
		if (!new) {
			kdb_printf("Could not allocate new kdb_command "
				   "table\n");
			return 1;
		}
		if (kdb_commands) {
			memcpy(new, kdb_commands,
			       kdb_max_commands * sizeof(*new));
			kfree(kdb_commands);
		}
		memset(new + kdb_max_commands, 0,
		       kdb_command_extend * sizeof(*new));
		kdb_commands = new;
		kp = kdb_commands + kdb_max_commands;
		kdb_max_commands += kdb_command_extend;
	}

	kp->cmd_name   = cmd;
	kp->cmd_func   = func;
	kp->cmd_usage  = usage;
	kp->cmd_help   = help;
	kp->cmd_flags  = 0;
	kp->cmd_minlen = minlen;
	kp->cmd_repeat = repeat;

	return 0;
}
2762 2763
EXPORT_SYMBOL_GPL(kdb_register_repeat);

2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785

/*
 * kdb_register - Compatibility register function for commands that do
 *	not need to specify a repeat state.  Equivalent to
 *	kdb_register_repeat with KDB_REPEAT_NONE.
 * Inputs:
 *	cmd	Command name
 *	func	Function to execute the command
 *	usage	A simple usage string showing arguments
 *	help	A simple help string describing command
 * Returns:
 *	zero for success, one if a duplicate command.
 */
int kdb_register(char *cmd,
	     kdb_func_t func,
	     char *usage,
	     char *help,
	     short minlen)
{
	return kdb_register_repeat(cmd, func, usage, help, minlen,
				   KDB_REPEAT_NONE);
}
2786
EXPORT_SYMBOL_GPL(kdb_register);
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804

/*
 * kdb_unregister - This function is used to unregister a kernel
 *	debugger command.  It is generally called when a module which
 *	implements kdb commands is unloaded.
 * Inputs:
 *	cmd	Command name
 * Returns:
 *	zero for success, one command not registered.
 */
int kdb_unregister(char *cmd)
{
	int i;
	kdbtab_t *kp;

	/*
	 *  find the command.
	 */
J
Jason Wessel 已提交
2805
	for_each_kdbcmd(kp, i) {
2806 2807 2808 2809 2810 2811 2812 2813 2814
		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
			kp->cmd_name = NULL;
			return 0;
		}
	}

	/* Couldn't find it.  */
	return 1;
}
2815
EXPORT_SYMBOL_GPL(kdb_unregister);
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936

/* Initialize the kdb command table. */
static void __init kdb_inittab(void)
{
	int i;
	kdbtab_t *kp;

	for_each_kdbcmd(kp, i)
		kp->cmd_name = NULL;

	kdb_register_repeat("md", kdb_md, "<vaddr>",
	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
			    KDB_REPEAT_NO_ARGS);
	kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
	  "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
	kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
	  "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
	kdb_register_repeat("mds", kdb_md, "<vaddr>",
	  "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
	kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
	  "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
	kdb_register_repeat("go", kdb_go, "[<vaddr>]",
	  "Continue Execution", 1, KDB_REPEAT_NONE);
	kdb_register_repeat("rd", kdb_rd, "",
	  "Display Registers", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
	  "Modify Registers", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("ef", kdb_ef, "<vaddr>",
	  "Display exception frame", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
	  "Stack traceback", 1, KDB_REPEAT_NONE);
	kdb_register_repeat("btp", kdb_bt, "<pid>",
	  "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
	  "Display stack all processes", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("btc", kdb_bt, "",
	  "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("btt", kdb_bt, "<vaddr>",
	  "Backtrace process given its struct task address", 0,
			    KDB_REPEAT_NONE);
	kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>",
	  "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("env", kdb_env, "",
	  "Show environment variables", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("set", kdb_set, "",
	  "Set environment variables", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("help", kdb_help, "",
	  "Display Help Message", 1, KDB_REPEAT_NONE);
	kdb_register_repeat("?", kdb_help, "",
	  "Display Help Message", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
	  "Switch to new cpu", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("kgdb", kdb_kgdb, "",
	  "Enter kgdb mode", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
	  "Display active task list", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("pid", kdb_pid, "<pidnum>",
	  "Switch to another task", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("reboot", kdb_reboot, "",
	  "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
#if defined(CONFIG_MODULES)
	kdb_register_repeat("lsmod", kdb_lsmod, "",
	  "List loaded kernel modules", 0, KDB_REPEAT_NONE);
#endif
#if defined(CONFIG_MAGIC_SYSRQ)
	kdb_register_repeat("sr", kdb_sr, "<key>",
	  "Magic SysRq key", 0, KDB_REPEAT_NONE);
#endif
#if defined(CONFIG_PRINTK)
	kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
	  "Display syslog buffer", 0, KDB_REPEAT_NONE);
#endif
	kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
	  "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
	  "Send a signal to a process", 0, KDB_REPEAT_NONE);
	kdb_register_repeat("summary", kdb_summary, "",
	  "Summarize the system", 4, KDB_REPEAT_NONE);
	kdb_register_repeat("per_cpu", kdb_per_cpu, "",
	  "Display per_cpu variables", 3, KDB_REPEAT_NONE);
	kdb_register_repeat("grephelp", kdb_grep_help, "",
	  "Display help on | grep", 0, KDB_REPEAT_NONE);
}

/* Execute any commands defined in kdb_cmds.  */
static void __init kdb_cmd_init(void)
{
	int i, diag;
	for (i = 0; kdb_cmds[i]; ++i) {
		diag = kdb_parse(kdb_cmds[i]);
		if (diag)
			kdb_printf("kdb command %s failed, kdb diag %d\n",
				kdb_cmds[i], diag);
	}
	if (defcmd_in_progress) {
		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
		kdb_parse("endefcmd");
	}
}

/* Intialize kdb_printf, breakpoint tables and kdb state */
void __init kdb_init(int lvl)
{
	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
	int i;

	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
		return;
	for (i = kdb_init_lvl; i < lvl; i++) {
		switch (i) {
		case KDB_NOT_INITIALIZED:
			kdb_inittab();		/* Initialize Command Table */
			kdb_initbptab();	/* Initialize Breakpoints */
			break;
		case KDB_INIT_EARLY:
			kdb_cmd_init();		/* Build kdb_cmds tables */
			break;
		}
	}
	kdb_init_lvl = lvl;
}