device_pm.c 31.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * drivers/acpi/device_pm.c - ACPI device power management routines.
 *
 * Copyright (C) 2012, Intel Corp.
 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
 *
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License version 2 as published
 *  by the Free Software Foundation.
 *
 *  This program is distributed in the hope that it will be useful, but
 *  WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
 *
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 */

25
#include <linux/acpi.h>
26
#include <linux/export.h>
27
#include <linux/mutex.h>
28
#include <linux/pm_qos.h>
29
#include <linux/pm_runtime.h>
30

31 32 33 34
#include "internal.h"

#define _COMPONENT	ACPI_POWER_COMPONENT
ACPI_MODULE_NAME("device_pm");
35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
/**
 * acpi_power_state_string - String representation of ACPI device power state.
 * @state: ACPI device power state to return the string representation of.
 */
const char *acpi_power_state_string(int state)
{
	switch (state) {
	case ACPI_STATE_D0:
		return "D0";
	case ACPI_STATE_D1:
		return "D1";
	case ACPI_STATE_D2:
		return "D2";
	case ACPI_STATE_D3_HOT:
		return "D3hot";
	case ACPI_STATE_D3_COLD:
52
		return "D3cold";
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
	default:
		return "(unknown)";
	}
}

/**
 * acpi_device_get_power - Get power state of an ACPI device.
 * @device: Device to get the power state of.
 * @state: Place to store the power state of the device.
 *
 * This function does not update the device's power.state field, but it may
 * update its parent's power.state field (when the parent's power state is
 * unknown and the device's power state turns out to be D0).
 */
int acpi_device_get_power(struct acpi_device *device, int *state)
{
	int result = ACPI_STATE_UNKNOWN;

	if (!device || !state)
		return -EINVAL;

	if (!device->flags.power_manageable) {
		/* TBD: Non-recursive algorithm for walking up hierarchy. */
		*state = device->parent ?
			device->parent->power.state : ACPI_STATE_D0;
		goto out;
	}

	/*
82 83
	 * Get the device's power state from power resources settings and _PSC,
	 * if available.
84
	 */
85 86 87 88 89
	if (device->power.flags.power_resources) {
		int error = acpi_power_get_inferred_state(device, &result);
		if (error)
			return error;
	}
90
	if (device->power.flags.explicit_get) {
91
		acpi_handle handle = device->handle;
92
		unsigned long long psc;
93 94 95
		acpi_status status;

		status = acpi_evaluate_integer(handle, "_PSC", NULL, &psc);
96 97 98
		if (ACPI_FAILURE(status))
			return -ENODEV;

99 100 101 102 103 104 105 106 107 108 109 110 111
		/*
		 * The power resources settings may indicate a power state
		 * shallower than the actual power state of the device.
		 *
		 * Moreover, on systems predating ACPI 4.0, if the device
		 * doesn't depend on any power resources and _PSC returns 3,
		 * that means "power off".  We need to maintain compatibility
		 * with those systems.
		 */
		if (psc > result && psc < ACPI_STATE_D3_COLD)
			result = psc;
		else if (result == ACPI_STATE_UNKNOWN)
			result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_COLD : psc;
112 113 114 115 116
	}

	/*
	 * If we were unsure about the device parent's power state up to this
	 * point, the fact that the device is in D0 implies that the parent has
117
	 * to be in D0 too, except if ignore_parent is set.
118
	 */
119 120
	if (!device->power.flags.ignore_parent && device->parent
	    && device->parent->power.state == ACPI_STATE_UNKNOWN
121 122 123 124 125 126 127 128 129 130 131 132
	    && result == ACPI_STATE_D0)
		device->parent->power.state = ACPI_STATE_D0;

	*state = result;

 out:
	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] power state is %s\n",
			  device->pnp.bus_id, acpi_power_state_string(*state)));

	return 0;
}

133 134 135 136 137 138 139 140 141 142 143 144 145
static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state)
{
	if (adev->power.states[state].flags.explicit_set) {
		char method[5] = { '_', 'P', 'S', '0' + state, '\0' };
		acpi_status status;

		status = acpi_evaluate_object(adev->handle, method, NULL, NULL);
		if (ACPI_FAILURE(status))
			return -ENODEV;
	}
	return 0;
}

146 147 148 149 150 151 152 153 154 155 156 157 158
/**
 * acpi_device_set_power - Set power state of an ACPI device.
 * @device: Device to set the power state of.
 * @state: New power state to set.
 *
 * Callers must ensure that the device is power manageable before using this
 * function.
 */
int acpi_device_set_power(struct acpi_device *device, int state)
{
	int result = 0;
	bool cut_power = false;

159 160
	if (!device || !device->flags.power_manageable
	    || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
161 162 163 164 165
		return -EINVAL;

	/* Make sure this is a valid target state */

	if (state == device->power.state) {
166 167
		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] already in %s\n",
				  device->pnp.bus_id,
168 169 170 171 172
				  acpi_power_state_string(state)));
		return 0;
	}

	if (!device->power.states[state].flags.valid) {
173 174
		dev_warn(&device->dev, "Power state %s not supported\n",
			 acpi_power_state_string(state));
175 176
		return -ENODEV;
	}
177 178
	if (!device->power.flags.ignore_parent &&
	    device->parent && (state < device->parent->power.state)) {
179
		dev_warn(&device->dev,
180 181 182
			 "Cannot transition to power state %s for parent in %s\n",
			 acpi_power_state_string(state),
			 acpi_power_state_string(device->parent->power.state));
183 184 185 186 187 188 189 190 191 192
		return -ENODEV;
	}

	/* For D3cold we should first transition into D3hot. */
	if (state == ACPI_STATE_D3_COLD
	    && device->power.states[ACPI_STATE_D3_COLD].flags.os_accessible) {
		state = ACPI_STATE_D3_HOT;
		cut_power = true;
	}

193 194
	if (state < device->power.state && state != ACPI_STATE_D0
	    && device->power.state >= ACPI_STATE_D3_HOT) {
195 196
		dev_warn(&device->dev,
			 "Cannot transition to non-D0 state from D3\n");
197 198 199
		return -ENODEV;
	}

200 201 202
	/*
	 * Transition Power
	 * ----------------
203 204
	 * In accordance with the ACPI specification first apply power (via
	 * power resources) and then evalute _PSx.
205
	 */
206 207
	if (device->power.flags.power_resources) {
		result = acpi_power_transition(device, state);
208 209
		if (result)
			goto end;
210
	}
211 212 213
	result = acpi_dev_pm_explicit_set(device, state);
	if (result)
		goto end;
214

215 216 217 218 219
	if (cut_power) {
		device->power.state = state;
		state = ACPI_STATE_D3_COLD;
		result = acpi_power_transition(device, state);
	}
220

221 222
 end:
	if (result) {
223 224
		dev_warn(&device->dev, "Failed to change power state to %s\n",
			 acpi_power_state_string(state));
225
	} else {
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
		device->power.state = state;
		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
				  "Device [%s] transitioned to %s\n",
				  device->pnp.bus_id,
				  acpi_power_state_string(state)));
	}

	return result;
}
EXPORT_SYMBOL(acpi_device_set_power);

int acpi_bus_set_power(acpi_handle handle, int state)
{
	struct acpi_device *device;
	int result;

	result = acpi_bus_get_device(handle, &device);
	if (result)
		return result;

	return acpi_device_set_power(device, state);
}
EXPORT_SYMBOL(acpi_bus_set_power);

int acpi_bus_init_power(struct acpi_device *device)
{
	int state;
	int result;

	if (!device)
		return -EINVAL;

	device->power.state = ACPI_STATE_UNKNOWN;
259 260
	if (!acpi_device_is_present(device))
		return 0;
261 262 263 264 265

	result = acpi_device_get_power(device, &state);
	if (result)
		return result;

266
	if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) {
267
		result = acpi_power_on_resources(device, state);
268 269
		if (result)
			return result;
270

271 272 273
		result = acpi_dev_pm_explicit_set(device, state);
		if (result)
			return result;
274
	} else if (state == ACPI_STATE_UNKNOWN) {
275 276 277 278 279 280
		/*
		 * No power resources and missing _PSC?  Cross fingers and make
		 * it D0 in hope that this is what the BIOS put the device into.
		 * [We tried to force D0 here by executing _PS0, but that broke
		 * Toshiba P870-303 in a nasty way.]
		 */
281
		state = ACPI_STATE_D0;
282 283 284
	}
	device->power.state = state;
	return 0;
285 286
}

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
/**
 * acpi_device_fix_up_power - Force device with missing _PSC into D0.
 * @device: Device object whose power state is to be fixed up.
 *
 * Devices without power resources and _PSC, but having _PS0 and _PS3 defined,
 * are assumed to be put into D0 by the BIOS.  However, in some cases that may
 * not be the case and this function should be used then.
 */
int acpi_device_fix_up_power(struct acpi_device *device)
{
	int ret = 0;

	if (!device->power.flags.power_resources
	    && !device->power.flags.explicit_get
	    && device->power.state == ACPI_STATE_D0)
		ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);

	return ret;
}

307
int acpi_device_update_power(struct acpi_device *device, int *state_p)
308 309 310 311
{
	int state;
	int result;

312 313 314 315 316
	if (device->power.state == ACPI_STATE_UNKNOWN) {
		result = acpi_bus_init_power(device);
		if (!result && state_p)
			*state_p = device->power.state;

317
		return result;
318
	}
319 320 321 322 323

	result = acpi_device_get_power(device, &state);
	if (result)
		return result;

324
	if (state == ACPI_STATE_UNKNOWN) {
325
		state = ACPI_STATE_D0;
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
		result = acpi_device_set_power(device, state);
		if (result)
			return result;
	} else {
		if (device->power.flags.power_resources) {
			/*
			 * We don't need to really switch the state, bu we need
			 * to update the power resources' reference counters.
			 */
			result = acpi_power_transition(device, state);
			if (result)
				return result;
		}
		device->power.state = state;
	}
	if (state_p)
342 343
		*state_p = state;

344
	return 0;
345
}
346
EXPORT_SYMBOL_GPL(acpi_device_update_power);
347 348 349 350 351 352 353 354 355

int acpi_bus_update_power(acpi_handle handle, int *state_p)
{
	struct acpi_device *device;
	int result;

	result = acpi_bus_get_device(handle, &device);
	return result ? result : acpi_device_update_power(device, state_p);
}
356 357 358 359 360 361 362 363 364 365 366 367
EXPORT_SYMBOL_GPL(acpi_bus_update_power);

bool acpi_bus_power_manageable(acpi_handle handle)
{
	struct acpi_device *device;
	int result;

	result = acpi_bus_get_device(handle, &device);
	return result ? false : device->flags.power_manageable;
}
EXPORT_SYMBOL(acpi_bus_power_manageable);

368 369 370
#ifdef CONFIG_PM
static DEFINE_MUTEX(acpi_pm_notifier_lock);

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
static void acpi_pm_notify_handler(acpi_handle handle, u32 val, void *not_used)
{
	struct acpi_device *adev;

	if (val != ACPI_NOTIFY_DEVICE_WAKE)
		return;

	adev = acpi_bus_get_acpi_device(handle);
	if (!adev)
		return;

	mutex_lock(&acpi_pm_notifier_lock);

	if (adev->wakeup.flags.notifier_present) {
		__pm_wakeup_event(adev->wakeup.ws, 0);
		if (adev->wakeup.context.work.func)
			queue_pm_work(&adev->wakeup.context.work);
	}

	mutex_unlock(&acpi_pm_notifier_lock);

	acpi_bus_put_acpi_device(adev);
}

395
/**
396 397 398 399
 * acpi_add_pm_notifier - Register PM notify handler for given ACPI device.
 * @adev: ACPI device to add the notify handler for.
 * @dev: Device to generate a wakeup event for while handling the notification.
 * @work_func: Work function to execute when handling the notification.
400 401 402 403 404 405
 *
 * NOTE: @adev need not be a run-wake or wakeup device to be a valid source of
 * PM wakeup events.  For example, wakeup events may be generated for bridges
 * if one of the devices below the bridge is signaling wakeup, even if the
 * bridge itself doesn't have a wakeup GPE associated with it.
 */
406 407
acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev,
				 void (*work_func)(struct work_struct *work))
408 409 410
{
	acpi_status status = AE_ALREADY_EXISTS;

411 412 413
	if (!dev && !work_func)
		return AE_BAD_PARAMETER;

414 415 416 417 418
	mutex_lock(&acpi_pm_notifier_lock);

	if (adev->wakeup.flags.notifier_present)
		goto out;

419 420 421 422 423 424 425
	adev->wakeup.ws = wakeup_source_register(dev_name(&adev->dev));
	adev->wakeup.context.dev = dev;
	if (work_func)
		INIT_WORK(&adev->wakeup.context.work, work_func);

	status = acpi_install_notify_handler(adev->handle, ACPI_SYSTEM_NOTIFY,
					     acpi_pm_notify_handler, NULL);
426 427 428 429 430 431 432 433 434 435 436 437 438 439
	if (ACPI_FAILURE(status))
		goto out;

	adev->wakeup.flags.notifier_present = true;

 out:
	mutex_unlock(&acpi_pm_notifier_lock);
	return status;
}

/**
 * acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device.
 * @adev: ACPI device to remove the notifier from.
 */
440
acpi_status acpi_remove_pm_notifier(struct acpi_device *adev)
441 442 443 444 445 446 447 448 449 450
{
	acpi_status status = AE_BAD_PARAMETER;

	mutex_lock(&acpi_pm_notifier_lock);

	if (!adev->wakeup.flags.notifier_present)
		goto out;

	status = acpi_remove_notify_handler(adev->handle,
					    ACPI_SYSTEM_NOTIFY,
451
					    acpi_pm_notify_handler);
452 453 454
	if (ACPI_FAILURE(status))
		goto out;

455 456 457 458 459 460 461
	if (adev->wakeup.context.work.func) {
		cancel_work_sync(&adev->wakeup.context.work);
		adev->wakeup.context.work.func = NULL;
	}
	adev->wakeup.context.dev = NULL;
	wakeup_source_unregister(adev->wakeup.ws);

462 463 464 465 466 467 468
	adev->wakeup.flags.notifier_present = false;

 out:
	mutex_unlock(&acpi_pm_notifier_lock);
	return status;
}

469 470 471 472 473 474 475 476 477 478
bool acpi_bus_can_wakeup(acpi_handle handle)
{
	struct acpi_device *device;
	int result;

	result = acpi_bus_get_device(handle, &device);
	return result ? false : device->wakeup.flags.valid;
}
EXPORT_SYMBOL(acpi_bus_can_wakeup);

479
/**
480
 * acpi_dev_pm_get_state - Get preferred power state of ACPI device.
481 482 483
 * @dev: Device whose preferred target power state to return.
 * @adev: ACPI device node corresponding to @dev.
 * @target_state: System state to match the resultant device state.
484 485
 * @d_min_p: Location to store the highest power state available to the device.
 * @d_max_p: Location to store the lowest power state available to the device.
486
 *
487 488 489 490 491
 * Find the lowest power (highest number) and highest power (lowest number) ACPI
 * device power states that the device can be in while the system is in the
 * state represented by @target_state.  Store the integer numbers representing
 * those stats in the memory locations pointed to by @d_max_p and @d_min_p,
 * respectively.
492 493 494
 *
 * Callers must ensure that @dev and @adev are valid pointers and that @adev
 * actually corresponds to @dev before using this function.
495 496 497 498
 *
 * Returns 0 on success or -ENODATA when one of the ACPI methods fails or
 * returns a value that doesn't make sense.  The memory locations pointed to by
 * @d_max_p and @d_min_p are only modified on success.
499
 */
500
static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev,
501
				 u32 target_state, int *d_min_p, int *d_max_p)
502
{
503 504 505 506
	char method[] = { '_', 'S', '0' + target_state, 'D', '\0' };
	acpi_handle handle = adev->handle;
	unsigned long long ret;
	int d_min, d_max;
507
	bool wakeup = false;
508
	acpi_status status;
509 510

	/*
511 512 513 514
	 * If the system state is S0, the lowest power state the device can be
	 * in is D3cold, unless the device has _S0W and is supposed to signal
	 * wakeup, in which case the return value of _S0W has to be used as the
	 * lowest power state available to the device.
515 516
	 */
	d_min = ACPI_STATE_D0;
517
	d_max = ACPI_STATE_D3_COLD;
518 519 520 521 522 523 524

	/*
	 * If present, _SxD methods return the minimum D-state (highest power
	 * state) we can use for the corresponding S-states.  Otherwise, the
	 * minimum D-state is D0 (ACPI 3.x).
	 */
	if (target_state > ACPI_STATE_S0) {
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
		/*
		 * We rely on acpi_evaluate_integer() not clobbering the integer
		 * provided if AE_NOT_FOUND is returned.
		 */
		ret = d_min;
		status = acpi_evaluate_integer(handle, method, NULL, &ret);
		if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND)
		    || ret > ACPI_STATE_D3_COLD)
			return -ENODATA;

		/*
		 * We need to handle legacy systems where D3hot and D3cold are
		 * the same and 3 is returned in both cases, so fall back to
		 * D3cold if D3hot is not a valid state.
		 */
		if (!adev->power.states[ret].flags.valid) {
			if (ret == ACPI_STATE_D3_HOT)
				ret = ACPI_STATE_D3_COLD;
			else
				return -ENODATA;
		}
		d_min = ret;
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
		wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid
			&& adev->wakeup.sleep_state >= target_state;
	} else if (dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) !=
			PM_QOS_FLAGS_NONE) {
		wakeup = adev->wakeup.flags.valid;
	}

	/*
	 * If _PRW says we can wake up the system from the target sleep state,
	 * the D-state returned by _SxD is sufficient for that (we assume a
	 * wakeup-aware driver if wake is set).  Still, if _SxW exists
	 * (ACPI 3.x), it should return the maximum (lowest power) D-state that
	 * can wake the system.  _S0W may be valid, too.
	 */
	if (wakeup) {
562 563 564 565
		method[3] = 'W';
		status = acpi_evaluate_integer(handle, method, NULL, &ret);
		if (status == AE_NOT_FOUND) {
			if (target_state > ACPI_STATE_S0)
566
				d_max = d_min;
567 568 569 570 571 572 573 574
		} else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) {
			/* Fall back to D3cold if ret is not a valid state. */
			if (!adev->power.states[ret].flags.valid)
				ret = ACPI_STATE_D3_COLD;

			d_max = ret > d_min ? ret : d_min;
		} else {
			return -ENODATA;
575 576 577 578 579
		}
	}

	if (d_min_p)
		*d_min_p = d_min;
580 581 582 583 584

	if (d_max_p)
		*d_max_p = d_max;

	return 0;
585
}
586

587 588 589 590 591 592
/**
 * acpi_pm_device_sleep_state - Get preferred power state of ACPI device.
 * @dev: Device whose preferred target power state to return.
 * @d_min_p: Location to store the upper limit of the allowed states range.
 * @d_max_in: Deepest low-power state to take into consideration.
 * Return value: Preferred power state of the device on success, -ENODEV
593 594
 * if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is
 * incorrect, or -ENODATA on ACPI method failure.
595 596 597 598 599 600
 *
 * The caller must ensure that @dev is valid before using this function.
 */
int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in)
{
	struct acpi_device *adev;
601
	int ret, d_min, d_max;
602 603 604 605 606 607 608 609 610 611 612

	if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD)
		return -EINVAL;

	if (d_max_in > ACPI_STATE_D3_HOT) {
		enum pm_qos_flags_status stat;

		stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF);
		if (stat == PM_QOS_FLAGS_ALL)
			d_max_in = ACPI_STATE_D3_HOT;
	}
613

614 615 616
	adev = ACPI_COMPANION(dev);
	if (!adev) {
		dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
617 618 619
		return -ENODEV;
	}

620
	ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(),
621
				    &d_min, &d_max);
622 623 624
	if (ret)
		return ret;

625
	if (d_max_in < d_min)
626 627 628
		return -EINVAL;

	if (d_max > d_max_in) {
629
		for (d_max = d_max_in; d_max > d_min; d_max--) {
630 631 632 633
			if (adev->power.states[d_max].flags.valid)
				break;
		}
	}
634 635 636 637

	if (d_min_p)
		*d_min_p = d_min;

638
	return d_max;
639 640 641
}
EXPORT_SYMBOL(acpi_pm_device_sleep_state);

642
/**
643 644
 * acpi_pm_notify_work_func - ACPI devices wakeup notification work function.
 * @work: Work item to handle.
645
 */
646
static void acpi_pm_notify_work_func(struct work_struct *work)
647
{
648
	struct device *dev;
649

650 651
	dev = container_of(work, struct acpi_device_wakeup_context, work)->dev;
	if (dev) {
652 653 654 655 656
		pm_wakeup_event(dev, 0);
		pm_runtime_resume(dev);
	}
}

657
/**
658 659 660
 * acpi_device_wakeup - Enable/disable wakeup functionality for device.
 * @adev: ACPI device to enable/disable wakeup functionality for.
 * @target_state: State the system is transitioning into.
661 662
 * @enable: Whether to enable or disable the wakeup functionality.
 *
663 664 665 666 667 668 669
 * Enable/disable the GPE associated with @adev so that it can generate
 * wakeup signals for the device in response to external (remote) events and
 * enable/disable device wakeup power.
 *
 * Callers must ensure that @adev is a valid ACPI device node before executing
 * this function.
 */
670 671
static int acpi_device_wakeup(struct acpi_device *adev, u32 target_state,
			      bool enable)
672 673 674 675 676 677 678
{
	struct acpi_device_wakeup *wakeup = &adev->wakeup;

	if (enable) {
		acpi_status res;
		int error;

679
		error = acpi_enable_wakeup_device_power(adev, target_state);
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
		if (error)
			return error;

		res = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number);
		if (ACPI_FAILURE(res)) {
			acpi_disable_wakeup_device_power(adev);
			return -EIO;
		}
	} else {
		acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
		acpi_disable_wakeup_device_power(adev);
	}
	return 0;
}

695
#ifdef CONFIG_PM_RUNTIME
696 697 698 699
/**
 * acpi_pm_device_run_wake - Enable/disable remote wakeup for given device.
 * @dev: Device to enable/disable the platform to wake up.
 * @enable: Whether to enable or disable the wakeup functionality.
700 701 702
 */
int acpi_pm_device_run_wake(struct device *phys_dev, bool enable)
{
703
	struct acpi_device *adev;
704 705 706 707

	if (!device_run_wake(phys_dev))
		return -EINVAL;

708 709 710
	adev = ACPI_COMPANION(phys_dev);
	if (!adev) {
		dev_dbg(phys_dev, "ACPI companion missing in %s!\n", __func__);
711 712 713
		return -ENODEV;
	}

714
	return acpi_device_wakeup(adev, enable, ACPI_STATE_S0);
715 716 717
}
EXPORT_SYMBOL(acpi_pm_device_run_wake);
#endif /* CONFIG_PM_RUNTIME */
718

719
#ifdef CONFIG_PM_SLEEP
720 721 722 723 724 725 726 727 728 729 730 731 732
/**
 * acpi_pm_device_sleep_wake - Enable or disable device to wake up the system.
 * @dev: Device to enable/desible to wake up the system from sleep states.
 * @enable: Whether to enable or disable @dev to wake up the system.
 */
int acpi_pm_device_sleep_wake(struct device *dev, bool enable)
{
	struct acpi_device *adev;
	int error;

	if (!device_can_wakeup(dev))
		return -EINVAL;

733 734 735
	adev = ACPI_COMPANION(dev);
	if (!adev) {
		dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
736 737 738
		return -ENODEV;
	}

739
	error = acpi_device_wakeup(adev, acpi_target_system_state(), enable);
740 741 742 743 744 745
	if (!error)
		dev_info(dev, "System wakeup %s by ACPI\n",
				enable ? "enabled" : "disabled");

	return error;
}
746
#endif /* CONFIG_PM_SLEEP */
747 748 749 750 751 752 753 754 755 756

/**
 * acpi_dev_pm_low_power - Put ACPI device into a low-power state.
 * @dev: Device to put into a low-power state.
 * @adev: ACPI device node corresponding to @dev.
 * @system_state: System state to choose the device state for.
 */
static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev,
				 u32 system_state)
{
757
	int ret, state;
758 759 760 761

	if (!acpi_device_power_manageable(adev))
		return 0;

762 763
	ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state);
	return ret ? ret : acpi_device_set_power(adev, state);
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
}

/**
 * acpi_dev_pm_full_power - Put ACPI device into the full-power state.
 * @adev: ACPI device node to put into the full-power state.
 */
static int acpi_dev_pm_full_power(struct acpi_device *adev)
{
	return acpi_device_power_manageable(adev) ?
		acpi_device_set_power(adev, ACPI_STATE_D0) : 0;
}

#ifdef CONFIG_PM_RUNTIME
/**
 * acpi_dev_runtime_suspend - Put device into a low-power state using ACPI.
 * @dev: Device to put into a low-power state.
 *
 * Put the given device into a runtime low-power state using the standard ACPI
 * mechanism.  Set up remote wakeup if desired, choose the state to put the
 * device into (this checks if remote wakeup is expected to work too), and set
 * the power state of the device.
 */
int acpi_dev_runtime_suspend(struct device *dev)
{
788
	struct acpi_device *adev = ACPI_COMPANION(dev);
789 790 791 792 793 794 795 796
	bool remote_wakeup;
	int error;

	if (!adev)
		return 0;

	remote_wakeup = dev_pm_qos_flags(dev, PM_QOS_FLAG_REMOTE_WAKEUP) >
				PM_QOS_FLAGS_NONE;
797
	error = acpi_device_wakeup(adev, ACPI_STATE_S0, remote_wakeup);
798 799 800 801 802
	if (remote_wakeup && error)
		return -EAGAIN;

	error = acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
	if (error)
803
		acpi_device_wakeup(adev, ACPI_STATE_S0, false);
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818

	return error;
}
EXPORT_SYMBOL_GPL(acpi_dev_runtime_suspend);

/**
 * acpi_dev_runtime_resume - Put device into the full-power state using ACPI.
 * @dev: Device to put into the full-power state.
 *
 * Put the given device into the full-power state using the standard ACPI
 * mechanism at run time.  Set the power state of the device to ACPI D0 and
 * disable remote wakeup.
 */
int acpi_dev_runtime_resume(struct device *dev)
{
819
	struct acpi_device *adev = ACPI_COMPANION(dev);
820 821 822 823 824 825
	int error;

	if (!adev)
		return 0;

	error = acpi_dev_pm_full_power(adev);
826
	acpi_device_wakeup(adev, ACPI_STATE_S0, false);
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
	return error;
}
EXPORT_SYMBOL_GPL(acpi_dev_runtime_resume);

/**
 * acpi_subsys_runtime_suspend - Suspend device using ACPI.
 * @dev: Device to suspend.
 *
 * Carry out the generic runtime suspend procedure for @dev and use ACPI to put
 * it into a runtime low-power state.
 */
int acpi_subsys_runtime_suspend(struct device *dev)
{
	int ret = pm_generic_runtime_suspend(dev);
	return ret ? ret : acpi_dev_runtime_suspend(dev);
}
EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend);

/**
 * acpi_subsys_runtime_resume - Resume device using ACPI.
 * @dev: Device to Resume.
 *
 * Use ACPI to put the given device into the full-power state and carry out the
 * generic runtime resume procedure for it.
 */
int acpi_subsys_runtime_resume(struct device *dev)
{
	int ret = acpi_dev_runtime_resume(dev);
	return ret ? ret : pm_generic_runtime_resume(dev);
}
EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume);
#endif /* CONFIG_PM_RUNTIME */

#ifdef CONFIG_PM_SLEEP
/**
 * acpi_dev_suspend_late - Put device into a low-power state using ACPI.
 * @dev: Device to put into a low-power state.
 *
 * Put the given device into a low-power state during system transition to a
 * sleep state using the standard ACPI mechanism.  Set up system wakeup if
 * desired, choose the state to put the device into (this checks if system
 * wakeup is expected to work too), and set the power state of the device.
 */
int acpi_dev_suspend_late(struct device *dev)
{
872
	struct acpi_device *adev = ACPI_COMPANION(dev);
873 874 875 876 877 878 879 880 881
	u32 target_state;
	bool wakeup;
	int error;

	if (!adev)
		return 0;

	target_state = acpi_target_system_state();
	wakeup = device_may_wakeup(dev);
882
	error = acpi_device_wakeup(adev, target_state, wakeup);
883 884 885 886 887
	if (wakeup && error)
		return error;

	error = acpi_dev_pm_low_power(dev, adev, target_state);
	if (error)
888
		acpi_device_wakeup(adev, ACPI_STATE_UNKNOWN, false);
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903

	return error;
}
EXPORT_SYMBOL_GPL(acpi_dev_suspend_late);

/**
 * acpi_dev_resume_early - Put device into the full-power state using ACPI.
 * @dev: Device to put into the full-power state.
 *
 * Put the given device into the full-power state using the standard ACPI
 * mechanism during system transition to the working state.  Set the power
 * state of the device to ACPI D0 and disable remote wakeup.
 */
int acpi_dev_resume_early(struct device *dev)
{
904
	struct acpi_device *adev = ACPI_COMPANION(dev);
905 906 907 908 909 910
	int error;

	if (!adev)
		return 0;

	error = acpi_dev_pm_full_power(adev);
911
	acpi_device_wakeup(adev, ACPI_STATE_UNKNOWN, false);
912 913 914 915 916 917 918 919 920 921
	return error;
}
EXPORT_SYMBOL_GPL(acpi_dev_resume_early);

/**
 * acpi_subsys_prepare - Prepare device for system transition to a sleep state.
 * @dev: Device to prepare.
 */
int acpi_subsys_prepare(struct device *dev)
{
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
	struct acpi_device *adev = ACPI_COMPANION(dev);
	u32 sys_target;
	int ret, state;

	ret = pm_generic_prepare(dev);
	if (ret < 0)
		return ret;

	if (!adev || !pm_runtime_suspended(dev)
	    || device_may_wakeup(dev) != !!adev->wakeup.prepare_count)
		return 0;

	sys_target = acpi_target_system_state();
	if (sys_target == ACPI_STATE_S0)
		return 1;
937

938 939 940 941 942
	if (adev->power.flags.dsw_present)
		return 0;

	ret = acpi_dev_pm_get_state(dev, adev, sys_target, NULL, &state);
	return !ret && state == adev->power.state;
943 944 945
}
EXPORT_SYMBOL_GPL(acpi_subsys_prepare);

946 947 948 949
/**
 * acpi_subsys_complete - Finalize device's resume during system resume.
 * @dev: Device to handle.
 */
950
void acpi_subsys_complete(struct device *dev)
951 952 953 954 955 956 957 958 959
{
	/*
	 * If the device had been runtime-suspended before the system went into
	 * the sleep state it is going out of and it has never been resumed till
	 * now, resume it in case the firmware powered it up.
	 */
	if (dev->power.direct_complete)
		pm_request_resume(dev);
}
960
EXPORT_SYMBOL_GPL(acpi_subsys_complete);
961

962 963 964 965 966 967 968 969 970 971 972 973
/**
 * acpi_subsys_suspend - Run the device driver's suspend callback.
 * @dev: Device to handle.
 *
 * Follow PCI and resume devices suspended at run time before running their
 * system suspend callbacks.
 */
int acpi_subsys_suspend(struct device *dev)
{
	pm_runtime_resume(dev);
	return pm_generic_suspend(dev);
}
974
EXPORT_SYMBOL_GPL(acpi_subsys_suspend);
975

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
/**
 * acpi_subsys_suspend_late - Suspend device using ACPI.
 * @dev: Device to suspend.
 *
 * Carry out the generic late suspend procedure for @dev and use ACPI to put
 * it into a low-power state during system transition into a sleep state.
 */
int acpi_subsys_suspend_late(struct device *dev)
{
	int ret = pm_generic_suspend_late(dev);
	return ret ? ret : acpi_dev_suspend_late(dev);
}
EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late);

/**
 * acpi_subsys_resume_early - Resume device using ACPI.
 * @dev: Device to Resume.
 *
 * Use ACPI to put the given device into the full-power state and carry out the
 * generic early resume procedure for it during system transition into the
 * working state.
 */
int acpi_subsys_resume_early(struct device *dev)
{
	int ret = acpi_dev_resume_early(dev);
	return ret ? ret : pm_generic_resume_early(dev);
}
EXPORT_SYMBOL_GPL(acpi_subsys_resume_early);
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

/**
 * acpi_subsys_freeze - Run the device driver's freeze callback.
 * @dev: Device to handle.
 */
int acpi_subsys_freeze(struct device *dev)
{
	/*
	 * This used to be done in acpi_subsys_prepare() for all devices and
	 * some drivers may depend on it, so do it here.  Ideally, however,
	 * runtime-suspended devices should not be touched during freeze/thaw
	 * transitions.
	 */
	pm_runtime_resume(dev);
	return pm_generic_freeze(dev);
}
1020
EXPORT_SYMBOL_GPL(acpi_subsys_freeze);
1021

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
#endif /* CONFIG_PM_SLEEP */

static struct dev_pm_domain acpi_general_pm_domain = {
	.ops = {
#ifdef CONFIG_PM_RUNTIME
		.runtime_suspend = acpi_subsys_runtime_suspend,
		.runtime_resume = acpi_subsys_runtime_resume,
#endif
#ifdef CONFIG_PM_SLEEP
		.prepare = acpi_subsys_prepare,
1032
		.complete = acpi_subsys_complete,
1033
		.suspend = acpi_subsys_suspend,
1034 1035
		.suspend_late = acpi_subsys_suspend_late,
		.resume_early = acpi_subsys_resume_early,
1036 1037
		.freeze = acpi_subsys_freeze,
		.poweroff = acpi_subsys_suspend,
1038 1039 1040 1041 1042 1043
		.poweroff_late = acpi_subsys_suspend_late,
		.restore_early = acpi_subsys_resume_early,
#endif
	},
};

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
/**
 * acpi_dev_pm_detach - Remove ACPI power management from the device.
 * @dev: Device to take care of.
 * @power_off: Whether or not to try to remove power from the device.
 *
 * Remove the device from the general ACPI PM domain and remove its wakeup
 * notifier.  If @power_off is set, additionally remove power from the device if
 * possible.
 *
 * Callers must ensure proper synchronization of this function with power
 * management callbacks.
 */
static void acpi_dev_pm_detach(struct device *dev, bool power_off)
{
	struct acpi_device *adev = ACPI_COMPANION(dev);

	if (adev && dev->pm_domain == &acpi_general_pm_domain) {
		dev->pm_domain = NULL;
		acpi_remove_pm_notifier(adev);
		if (power_off) {
			/*
			 * If the device's PM QoS resume latency limit or flags
			 * have been exposed to user space, they have to be
			 * hidden at this point, so that they don't affect the
			 * choice of the low-power state to put the device into.
			 */
			dev_pm_qos_hide_latency_limit(dev);
			dev_pm_qos_hide_flags(dev);
			acpi_device_wakeup(adev, ACPI_STATE_S0, false);
			acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
		}
	}
}

1078 1079 1080
/**
 * acpi_dev_pm_attach - Prepare device for ACPI power management.
 * @dev: Device to prepare.
1081
 * @power_on: Whether or not to power on the device.
1082 1083 1084
 *
 * If @dev has a valid ACPI handle that has a valid struct acpi_device object
 * attached to it, install a wakeup notification handler for the device and
1085 1086
 * add it to the general ACPI PM domain.  If @power_on is set, the device will
 * be put into the ACPI D0 state before the function returns.
1087 1088 1089 1090 1091 1092 1093
 *
 * This assumes that the @dev's bus type uses generic power management callbacks
 * (or doesn't use any power management callbacks at all).
 *
 * Callers must ensure proper synchronization of this function with power
 * management callbacks.
 */
1094
int acpi_dev_pm_attach(struct device *dev, bool power_on)
1095
{
1096
	struct acpi_device *adev = ACPI_COMPANION(dev);
1097 1098 1099 1100 1101 1102 1103

	if (!adev)
		return -ENODEV;

	if (dev->pm_domain)
		return -EEXIST;

1104
	acpi_add_pm_notifier(adev, dev, acpi_pm_notify_work_func);
1105
	dev->pm_domain = &acpi_general_pm_domain;
1106 1107
	if (power_on) {
		acpi_dev_pm_full_power(adev);
1108
		acpi_device_wakeup(adev, ACPI_STATE_S0, false);
1109
	}
1110 1111

	dev->pm_domain->detach = acpi_dev_pm_detach;
1112 1113 1114
	return 0;
}
EXPORT_SYMBOL_GPL(acpi_dev_pm_attach);
1115
#endif /* CONFIG_PM */