ixgbe_ptp.c 28.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*******************************************************************************

  Intel 10 Gigabit PCI Express Linux driver
  Copyright(c) 1999 - 2012 Intel Corporation.

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/
#include "ixgbe.h"
#include <linux/export.h>
29
#include <linux/ptp_classify.h>
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

/*
 * The 82599 and the X540 do not have true 64bit nanosecond scale
 * counter registers. Instead, SYSTIME is defined by a fixed point
 * system which allows the user to define the scale counter increment
 * value at every level change of the oscillator driving the SYSTIME
 * value. For both devices the TIMINCA:IV field defines this
 * increment. On the X540 device, 31 bits are provided. However on the
 * 82599 only provides 24 bits. The time unit is determined by the
 * clock frequency of the oscillator in combination with the TIMINCA
 * register. When these devices link at 10Gb the oscillator has a
 * period of 6.4ns. In order to convert the scale counter into
 * nanoseconds the cyclecounter and timecounter structures are
 * used. The SYSTIME registers need to be converted to ns values by use
 * of only a right shift (division by power of 2). The following math
 * determines the largest incvalue that will fit into the available
 * bits in the TIMINCA register.
 *
 * PeriodWidth: Number of bits to store the clock period
 * MaxWidth: The maximum width value of the TIMINCA register
 * Period: The clock period for the oscillator
 * round(): discard the fractional portion of the calculation
 *
 * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
 *
 * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
 * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
 *
 * The period also changes based on the link speed:
 * At 10Gb link or no link, the period remains the same.
 * At 1Gb link, the period is multiplied by 10. (64ns)
 * At 100Mb link, the period is multiplied by 100. (640ns)
 *
 * The calculated value allows us to right shift the SYSTIME register
 * value in order to quickly convert it into a nanosecond clock,
 * while allowing for the maximum possible adjustment value.
 *
 * These diagrams are only for the 10Gb link period
 *
 *           SYSTIMEH            SYSTIMEL
 *       +--------------+  +--------------+
 * X540  |      32      |  | 1 | 3 |  28  |
 *       *--------------+  +--------------+
 *        \________ 36 bits ______/  fract
 *
 *       +--------------+  +--------------+
 * 82599 |      32      |  | 8 | 3 |  21  |
 *       *--------------+  +--------------+
 *        \________ 43 bits ______/  fract
 *
 * The 36 bit X540 SYSTIME overflows every
 *   2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
 *
 * The 43 bit 82599 SYSTIME overflows every
 *   2^43 * 10^-9 / 3600 = 2.4 hours
 */
#define IXGBE_INCVAL_10GB 0x66666666
#define IXGBE_INCVAL_1GB  0x40000000
#define IXGBE_INCVAL_100  0x50000000

#define IXGBE_INCVAL_SHIFT_10GB  28
#define IXGBE_INCVAL_SHIFT_1GB   24
#define IXGBE_INCVAL_SHIFT_100   21

#define IXGBE_INCVAL_SHIFT_82599 7
#define IXGBE_INCPER_SHIFT_82599 24
#define IXGBE_MAX_TIMEADJ_VALUE  0x7FFFFFFFFFFFFFFFULL

#define IXGBE_OVERFLOW_PERIOD    (HZ * 30)

100 101 102 103
#ifndef NSECS_PER_SEC
#define NSECS_PER_SEC 1000000000ULL
#endif

104 105 106 107
static struct sock_filter ptp_filter[] = {
	PTP_FILTER
};

108
/**
J
Jacob Keller 已提交
109
 * ixgbe_ptp_setup_sdp
110 111
 * @hw: the hardware private structure
 *
J
Jacob Keller 已提交
112 113 114
 * this function enables or disables the clock out feature on SDP0 for
 * the X540 device. It will create a 1second periodic output that can
 * be used as the PPS (via an interrupt).
115 116 117 118 119
 *
 * It calculates when the systime will be on an exact second, and then
 * aligns the start of the PPS signal to that value. The shift is
 * necessary because it can change based on the link speed.
 */
J
Jacob Keller 已提交
120
static void ixgbe_ptp_setup_sdp(struct ixgbe_adapter *adapter)
121 122 123 124 125 126
{
	struct ixgbe_hw *hw = &adapter->hw;
	int shift = adapter->cc.shift;
	u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
	u64 ns = 0, clock_edge = 0;

J
Jacob Keller 已提交
127 128 129 130 131 132 133
	if ((adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED) &&
	    (hw->mac.type == ixgbe_mac_X540)) {

		/* disable the pin first */
		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
		IXGBE_WRITE_FLUSH(hw);

134 135 136
		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);

		/*
J
Jacob Keller 已提交
137 138
		 * enable the SDP0 pin as output, and connected to the
		 * native function for Timesync (ClockOut)
139 140 141 142 143
		 */
		esdp |= (IXGBE_ESDP_SDP0_DIR |
			 IXGBE_ESDP_SDP0_NATIVE);

		/*
J
Jacob Keller 已提交
144 145
		 * enable the Clock Out feature on SDP0, and allow
		 * interrupts to occur when the pin changes
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
		 */
		tsauxc = (IXGBE_TSAUXC_EN_CLK |
			  IXGBE_TSAUXC_SYNCLK |
			  IXGBE_TSAUXC_SDP0_INT);

		/* clock period (or pulse length) */
		clktiml = (u32)(NSECS_PER_SEC << shift);
		clktimh = (u32)((NSECS_PER_SEC << shift) >> 32);

		/*
		 * Account for the cyclecounter wrap-around value by
		 * using the converted ns value of the current time to
		 * check for when the next aligned second would occur.
		 */
		clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
		clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
		ns = timecounter_cyc2time(&adapter->tc, clock_edge);

		div_u64_rem(ns, NSECS_PER_SEC, &rem);
		clock_edge += ((NSECS_PER_SEC - (u64)rem) << shift);

		/* specify the initial clock start time */
		trgttiml = (u32)clock_edge;
		trgttimh = (u32)(clock_edge >> 32);

		IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
		IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
		IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
		IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);

		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
J
Jacob Keller 已提交
178 179
	} else {
		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
180 181 182 183 184
	}

	IXGBE_WRITE_FLUSH(hw);
}

185 186
/**
 * ixgbe_ptp_read - read raw cycle counter (to be used by time counter)
187
 * @cc: the cyclecounter structure
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
 *
 * this function reads the cyclecounter registers and is called by the
 * cyclecounter structure used to construct a ns counter from the
 * arbitrary fixed point registers
 */
static cycle_t ixgbe_ptp_read(const struct cyclecounter *cc)
{
	struct ixgbe_adapter *adapter =
		container_of(cc, struct ixgbe_adapter, cc);
	struct ixgbe_hw *hw = &adapter->hw;
	u64 stamp = 0;

	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;

	return stamp;
}

/**
 * ixgbe_ptp_adjfreq
208 209
 * @ptp: the ptp clock structure
 * @ppb: parts per billion adjustment from base
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
 *
 * adjust the frequency of the ptp cycle counter by the
 * indicated ppb from the base frequency.
 */
static int ixgbe_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
{
	struct ixgbe_adapter *adapter =
		container_of(ptp, struct ixgbe_adapter, ptp_caps);
	struct ixgbe_hw *hw = &adapter->hw;
	u64 freq;
	u32 diff, incval;
	int neg_adj = 0;

	if (ppb < 0) {
		neg_adj = 1;
		ppb = -ppb;
	}

	smp_mb();
	incval = ACCESS_ONCE(adapter->base_incval);

	freq = incval;
	freq *= ppb;
	diff = div_u64(freq, 1000000000ULL);

	incval = neg_adj ? (incval - diff) : (incval + diff);

	switch (hw->mac.type) {
	case ixgbe_mac_X540:
		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
		break;
	case ixgbe_mac_82599EB:
		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
				(1 << IXGBE_INCPER_SHIFT_82599) |
				incval);
		break;
	default:
		break;
	}

	return 0;
}

/**
 * ixgbe_ptp_adjtime
255 256
 * @ptp: the ptp clock structure
 * @delta: offset to adjust the cycle counter by
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
 *
 * adjust the timer by resetting the timecounter structure.
 */
static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
	struct ixgbe_adapter *adapter =
		container_of(ptp, struct ixgbe_adapter, ptp_caps);
	unsigned long flags;
	u64 now;

	spin_lock_irqsave(&adapter->tmreg_lock, flags);

	now = timecounter_read(&adapter->tc);
	now += delta;

	/* reset the timecounter */
	timecounter_init(&adapter->tc,
			 &adapter->cc,
			 now);

	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
J
Jacob Keller 已提交
278 279

	ixgbe_ptp_setup_sdp(adapter);
280

281 282 283 284 285
	return 0;
}

/**
 * ixgbe_ptp_gettime
286 287
 * @ptp: the ptp clock structure
 * @ts: timespec structure to hold the current time value
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
 *
 * read the timecounter and return the correct value on ns,
 * after converting it into a struct timespec.
 */
static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
{
	struct ixgbe_adapter *adapter =
		container_of(ptp, struct ixgbe_adapter, ptp_caps);
	u64 ns;
	u32 remainder;
	unsigned long flags;

	spin_lock_irqsave(&adapter->tmreg_lock, flags);
	ns = timecounter_read(&adapter->tc);
	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);

	ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
	ts->tv_nsec = remainder;

	return 0;
}

/**
 * ixgbe_ptp_settime
312 313
 * @ptp: the ptp clock structure
 * @ts: the timespec containing the new time for the cycle counter
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
 *
 * reset the timecounter to use a new base value instead of the kernel
 * wall timer value.
 */
static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
			     const struct timespec *ts)
{
	struct ixgbe_adapter *adapter =
		container_of(ptp, struct ixgbe_adapter, ptp_caps);
	u64 ns;
	unsigned long flags;

	ns = ts->tv_sec * 1000000000ULL;
	ns += ts->tv_nsec;

	/* reset the timecounter */
	spin_lock_irqsave(&adapter->tmreg_lock, flags);
	timecounter_init(&adapter->tc, &adapter->cc, ns);
	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);

J
Jacob Keller 已提交
334
	ixgbe_ptp_setup_sdp(adapter);
335 336 337 338 339
	return 0;
}

/**
 * ixgbe_ptp_enable
340 341 342
 * @ptp: the ptp clock structure
 * @rq: the requested feature to change
 * @on: whether to enable or disable the feature
343 344
 *
 * enable (or disable) ancillary features of the phc subsystem.
345
 * our driver only supports the PPS feature on the X540
346 347 348 349
 */
static int ixgbe_ptp_enable(struct ptp_clock_info *ptp,
			    struct ptp_clock_request *rq, int on)
{
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
	struct ixgbe_adapter *adapter =
		container_of(ptp, struct ixgbe_adapter, ptp_caps);

	/**
	 * When PPS is enabled, unmask the interrupt for the ClockOut
	 * feature, so that the interrupt handler can send the PPS
	 * event when the clock SDP triggers. Clear mask when PPS is
	 * disabled
	 */
	if (rq->type == PTP_CLK_REQ_PPS) {
		switch (adapter->hw.mac.type) {
		case ixgbe_mac_X540:
			if (on)
				adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
			else
J
Jacob Keller 已提交
365 366 367
				adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;

			ixgbe_ptp_setup_sdp(adapter);
368 369 370 371 372 373
			return 0;
		default:
			break;
		}
	}

374 375 376
	return -ENOTSUPP;
}

377 378
/**
 * ixgbe_ptp_check_pps_event
379 380
 * @adapter: the private adapter structure
 * @eicr: the interrupt cause register value
381 382 383 384 385 386 387 388 389
 *
 * This function is called by the interrupt routine when checking for
 * interrupts. It will check and handle a pps event.
 */
void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter, u32 eicr)
{
	struct ixgbe_hw *hw = &adapter->hw;
	struct ptp_clock_event event;

J
Jacob Keller 已提交
390 391 392 393 394 395
	switch (hw->mac.type) {
	case ixgbe_mac_X540:
		ptp_clock_event(adapter->ptp_clock, &event);
		break;
	default:
		break;
396 397 398 399
	}
}


400 401 402 403 404 405 406 407 408 409 410 411 412 413
/**
 * ixgbe_ptp_overflow_check - delayed work to detect SYSTIME overflow
 * @work: structure containing information about this work task
 *
 * this work function is scheduled to continue reading the timecounter
 * in order to prevent missing when the system time registers wrap
 * around. This needs to be run approximately twice a minute when no
 * PTP activity is occurring.
 */
void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
{
	unsigned long elapsed_jiffies = adapter->last_overflow_check - jiffies;
	struct timespec ts;

414
	if ((adapter->flags2 & IXGBE_FLAG2_PTP_ENABLED) &&
415 416 417 418 419 420
	    (elapsed_jiffies >= IXGBE_OVERFLOW_PERIOD)) {
		ixgbe_ptp_gettime(&adapter->ptp_caps, &ts);
		adapter->last_overflow_check = jiffies;
	}
}

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
/**
 * ixgbe_ptp_match - determine if this skb matches a ptp packet
 * @skb: pointer to the skb
 * @hwtstamp: pointer to the hwtstamp_config to check
 *
 * Determine whether the skb should have been timestamped, assuming the
 * hwtstamp was set via the hwtstamp ioctl. Returns non-zero when the packet
 * should have a timestamp waiting in the registers, and 0 otherwise.
 *
 * V1 packets have to check the version type to determine whether they are
 * correct. However, we can't directly access the data because it might be
 * fragmented in the SKB, in paged memory. In order to work around this, we
 * use skb_copy_bits which will properly copy the data whether it is in the
 * paged memory fragments or not. We have to copy the IP header as well as the
 * message type.
 */
static int ixgbe_ptp_match(struct sk_buff *skb, int rx_filter)
{
	struct iphdr iph;
	u8 msgtype;
	unsigned int type, offset;

	if (rx_filter == HWTSTAMP_FILTER_NONE)
		return 0;

	type = sk_run_filter(skb, ptp_filter);

	if (likely(rx_filter == HWTSTAMP_FILTER_PTP_V2_EVENT))
		return type & PTP_CLASS_V2;

	/* For the remaining cases actually check message type */
	switch (type) {
	case PTP_CLASS_V1_IPV4:
		skb_copy_bits(skb, OFF_IHL, &iph, sizeof(iph));
		offset = ETH_HLEN + (iph.ihl << 2) + UDP_HLEN + OFF_PTP_CONTROL;
		break;
	case PTP_CLASS_V1_IPV6:
		offset = OFF_PTP6 + OFF_PTP_CONTROL;
		break;
	default:
		/* other cases invalid or handled above */
		return 0;
	}

	/* Make sure our buffer is long enough */
	if (skb->len < offset)
		return 0;

	skb_copy_bits(skb, offset, &msgtype, sizeof(msgtype));

	switch (rx_filter) {
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
		return (msgtype == IXGBE_RXMTRL_V1_SYNC_MSG);
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
		return (msgtype == IXGBE_RXMTRL_V1_DELAY_REQ_MSG);
		break;
	default:
		return 0;
	}
}

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
/**
 * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
 * @q_vector: structure containing interrupt and ring information
 * @skb: particular skb to send timestamp with
 *
 * if the timestamp is valid, we convert it into the timecounter ns
 * value, then store that result into the shhwtstamps structure which
 * is passed up the network stack
 */
void ixgbe_ptp_tx_hwtstamp(struct ixgbe_q_vector *q_vector,
			   struct sk_buff *skb)
{
	struct ixgbe_adapter *adapter;
	struct ixgbe_hw *hw;
	struct skb_shared_hwtstamps shhwtstamps;
	u64 regval = 0, ns;
	u32 tsynctxctl;
	unsigned long flags;

	/* we cannot process timestamps on a ring without a q_vector */
	if (!q_vector || !q_vector->adapter)
		return;

	adapter = q_vector->adapter;
	hw = &adapter->hw;

	tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;

	/*
	 * if TX timestamp is not valid, exit after clearing the
	 * timestamp registers
	 */
	if (!(tsynctxctl & IXGBE_TSYNCTXCTL_VALID))
		return;

	spin_lock_irqsave(&adapter->tmreg_lock, flags);
	ns = timecounter_cyc2time(&adapter->tc, regval);
	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);

	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
	shhwtstamps.hwtstamp = ns_to_ktime(ns);
	skb_tstamp_tx(skb, &shhwtstamps);
}

/**
 * ixgbe_ptp_rx_hwtstamp - utility function which checks for RX time stamp
 * @q_vector: structure containing interrupt and ring information
532
 * @rx_desc: the rx descriptor
533 534 535 536 537 538 539
 * @skb: particular skb to send timestamp with
 *
 * if the timestamp is valid, we convert it into the timecounter ns
 * value, then store that result into the shhwtstamps structure which
 * is passed up the network stack
 */
void ixgbe_ptp_rx_hwtstamp(struct ixgbe_q_vector *q_vector,
540
			   union ixgbe_adv_rx_desc *rx_desc,
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
			   struct sk_buff *skb)
{
	struct ixgbe_adapter *adapter;
	struct ixgbe_hw *hw;
	struct skb_shared_hwtstamps *shhwtstamps;
	u64 regval = 0, ns;
	u32 tsyncrxctl;
	unsigned long flags;

	/* we cannot process timestamps on a ring without a q_vector */
	if (!q_vector || !q_vector->adapter)
		return;

	adapter = q_vector->adapter;
	hw = &adapter->hw;

J
Jiri Benc 已提交
557 558 559
	if (likely(!ixgbe_ptp_match(skb, adapter->rx_hwtstamp_filter)))
		return;

560
	tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
561 562 563

	/* Check if we have a valid timestamp and make sure the skb should
	 * have been timestamped */
J
Jiri Benc 已提交
564
	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
565 566 567 568 569 570 571
		return;

	/*
	 * Always read the registers, in order to clear a possible fault
	 * because of stagnant RX timestamp values for a packet that never
	 * reached the queue.
	 */
572 573 574 575
	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;

	/*
576 577 578 579 580 581
	 * If the timestamp bit is set in the packet's descriptor, we know the
	 * timestamp belongs to this packet. No other packet can be
	 * timestamped until the registers for timestamping have been read.
	 * Therefor only one packet with this bit can be in the queue at a
	 * time, and the rx timestamp values that were in the registers belong
	 * to this packet.
582 583 584 585
	 *
	 * If nothing went wrong, then it should have a skb_shared_tx that we
	 * can turn into a skb_shared_hwtstamps.
	 */
586
	if (unlikely(!ixgbe_test_staterr(rx_desc, IXGBE_RXDADV_STAT_TS)))
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
		return;

	spin_lock_irqsave(&adapter->tmreg_lock, flags);
	ns = timecounter_cyc2time(&adapter->tc, regval);
	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);

	shhwtstamps = skb_hwtstamps(skb);
	shhwtstamps->hwtstamp = ns_to_ktime(ns);
}

/**
 * ixgbe_ptp_hwtstamp_ioctl - control hardware time stamping
 * @adapter: pointer to adapter struct
 * @ifreq: ioctl data
 * @cmd: particular ioctl requested
 *
 * Outgoing time stamping can be enabled and disabled. Play nice and
 * disable it when requested, although it shouldn't case any overhead
 * when no packet needs it. At most one packet in the queue may be
 * marked for time stamping, otherwise it would be impossible to tell
 * for sure to which packet the hardware time stamp belongs.
 *
 * Incoming time stamping has to be configured via the hardware
 * filters. Not all combinations are supported, in particular event
 * type has to be specified. Matching the kind of event packet is
 * not supported, with the exception of "all V2 events regardless of
 * level 2 or 4".
614 615 616 617 618
 *
 * Since hardware always timestamps Path delay packets when timestamping V2
 * packets, regardless of the type specified in the register, only use V2
 * Event mode. This more accurately tells the user what the hardware is going
 * to do anyways.
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
 */
int ixgbe_ptp_hwtstamp_ioctl(struct ixgbe_adapter *adapter,
			     struct ifreq *ifr, int cmd)
{
	struct ixgbe_hw *hw = &adapter->hw;
	struct hwtstamp_config config;
	u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
	u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
	u32 tsync_rx_mtrl = 0;
	bool is_l4 = false;
	bool is_l2 = false;
	u32 regval;

	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
		return -EFAULT;

	/* reserved for future extensions */
	if (config.flags)
		return -EINVAL;

	switch (config.tx_type) {
	case HWTSTAMP_TX_OFF:
		tsync_tx_ctl = 0;
	case HWTSTAMP_TX_ON:
		break;
	default:
		return -ERANGE;
	}

	switch (config.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		tsync_rx_ctl = 0;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_mtrl = IXGBE_RXMTRL_V1_SYNC_MSG;
		is_l4 = true;
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
		tsync_rx_mtrl = IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
		is_l4 = true;
		break;
662 663 664
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
665 666 667 668 669 670 671 672 673
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
		is_l2 = true;
		is_l4 = true;
674
		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
675 676 677 678 679
		break;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_ALL:
	default:
		/*
680 681 682 683
		 * register RXMTRL must be set in order to do V1 packets,
		 * therefore it is not possible to time stamp both V1 Sync and
		 * Delay_Req messages and hardware does not support
		 * timestamping all packets => return error
684
		 */
685
		config.rx_filter = HWTSTAMP_FILTER_NONE;
686 687 688 689 690 691 692 693 694
		return -ERANGE;
	}

	if (hw->mac.type == ixgbe_mac_82598EB) {
		if (tsync_rx_ctl | tsync_tx_ctl)
			return -ERANGE;
		return 0;
	}

695 696 697
	/* Store filter value for later use */
	adapter->rx_hwtstamp_filter = config.rx_filter;

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
	/* define ethertype filter for timestamped packets */
	if (is_l2)
		IXGBE_WRITE_REG(hw, IXGBE_ETQF(3),
				(IXGBE_ETQF_FILTER_EN | /* enable filter */
				 IXGBE_ETQF_1588 | /* enable timestamping */
				 ETH_P_1588));     /* 1588 eth protocol type */
	else
		IXGBE_WRITE_REG(hw, IXGBE_ETQF(3), 0);

#define PTP_PORT 319
	/* L4 Queue Filter[3]: filter by destination port and protocol */
	if (is_l4) {
		u32 ftqf = (IXGBE_FTQF_PROTOCOL_UDP /* UDP */
			    | IXGBE_FTQF_POOL_MASK_EN /* Pool not compared */
			    | IXGBE_FTQF_QUEUE_ENABLE);

		ftqf |= ((IXGBE_FTQF_PROTOCOL_COMP_MASK /* protocol check */
			  & IXGBE_FTQF_DEST_PORT_MASK /* dest check */
			  & IXGBE_FTQF_SOURCE_PORT_MASK) /* source check */
			 << IXGBE_FTQF_5TUPLE_MASK_SHIFT);

		IXGBE_WRITE_REG(hw, IXGBE_L34T_IMIR(3),
				(3 << IXGBE_IMIR_RX_QUEUE_SHIFT_82599 |
				 IXGBE_IMIR_SIZE_BP_82599));

		/* enable port check */
		IXGBE_WRITE_REG(hw, IXGBE_SDPQF(3),
				(htons(PTP_PORT) |
				 htons(PTP_PORT) << 16));

		IXGBE_WRITE_REG(hw, IXGBE_FTQF(3), ftqf);

		tsync_rx_mtrl |= PTP_PORT << 16;
	} else {
		IXGBE_WRITE_REG(hw, IXGBE_FTQF(3), 0);
	}

	/* enable/disable TX */
	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
	regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
	regval |= tsync_tx_ctl;
	IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);

	/* enable/disable RX */
	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
	regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
	regval |= tsync_rx_ctl;
	IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);

	/* define which PTP packets are time stamped */
	IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);

	IXGBE_WRITE_FLUSH(hw);

	/* clear TX/RX time stamp registers, just to be sure */
	regval = IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
	regval = IXGBE_READ_REG(hw, IXGBE_RXSTMPH);

	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
		-EFAULT : 0;
}

/**
 * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
762
 * @adapter: pointer to the adapter structure
763
 *
764 765 766 767 768
 * This function should be called to set the proper values for the TIMINCA
 * register and tell the cyclecounter structure what the tick rate of SYSTIME
 * is. It does not directly modify SYSTIME registers or the timecounter
 * structure. It should be called whenever a new TIMINCA value is necessary,
 * such as during initialization or when the link speed changes.
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
 */
void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
{
	struct ixgbe_hw *hw = &adapter->hw;
	u32 incval = 0;
	u32 shift = 0;
	unsigned long flags;

	/**
	 * Scale the NIC cycle counter by a large factor so that
	 * relatively small corrections to the frequency can be added
	 * or subtracted. The drawbacks of a large factor include
	 * (a) the clock register overflows more quickly, (b) the cycle
	 * counter structure must be able to convert the systime value
	 * to nanoseconds using only a multiplier and a right-shift,
	 * and (c) the value must fit within the timinca register space
	 * => math based on internal DMA clock rate and available bits
786 787 788 789
	 *
	 * Note that when there is no link, internal DMA clock is same as when
	 * link speed is 10Gb. Set the registers correctly even when link is
	 * down to preserve the clock setting
790
	 */
791
	switch (adapter->link_speed) {
792 793 794 795 796 797 798 799 800
	case IXGBE_LINK_SPEED_100_FULL:
		incval = IXGBE_INCVAL_100;
		shift = IXGBE_INCVAL_SHIFT_100;
		break;
	case IXGBE_LINK_SPEED_1GB_FULL:
		incval = IXGBE_INCVAL_1GB;
		shift = IXGBE_INCVAL_SHIFT_1GB;
		break;
	case IXGBE_LINK_SPEED_10GB_FULL:
801
	default:
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
		incval = IXGBE_INCVAL_10GB;
		shift = IXGBE_INCVAL_SHIFT_10GB;
		break;
	}

	/**
	 * Modify the calculated values to fit within the correct
	 * number of bits specified by the hardware. The 82599 doesn't
	 * have the same space as the X540, so bitshift the calculated
	 * values to fit.
	 */
	switch (hw->mac.type) {
	case ixgbe_mac_X540:
		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
		break;
	case ixgbe_mac_82599EB:
		incval >>= IXGBE_INCVAL_SHIFT_82599;
		shift -= IXGBE_INCVAL_SHIFT_82599;
		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
				(1 << IXGBE_INCPER_SHIFT_82599) |
				incval);
		break;
	default:
		/* other devices aren't supported */
		return;
	}

829
	/* update the base incval used to calculate frequency adjustment */
830 831 832
	ACCESS_ONCE(adapter->base_incval) = incval;
	smp_mb();

833
	/* need lock to prevent incorrect read while modifying cyclecounter */
834 835 836 837 838 839 840 841
	spin_lock_irqsave(&adapter->tmreg_lock, flags);

	memset(&adapter->cc, 0, sizeof(adapter->cc));
	adapter->cc.read = ixgbe_ptp_read;
	adapter->cc.mask = CLOCKSOURCE_MASK(64);
	adapter->cc.shift = shift;
	adapter->cc.mult = 1;

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
}

/**
 * ixgbe_ptp_reset
 * @adapter: the ixgbe private board structure
 *
 * When the MAC resets, all timesync features are reset. This function should be
 * called to re-enable the PTP clock structure. It will re-init the timecounter
 * structure based on the kernel time as well as setup the cycle counter data.
 */
void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
{
	struct ixgbe_hw *hw = &adapter->hw;
	unsigned long flags;

	/* set SYSTIME registers to 0 just in case */
	IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0x00000000);
	IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0x00000000);
	IXGBE_WRITE_FLUSH(hw);

	ixgbe_ptp_start_cyclecounter(adapter);

	spin_lock_irqsave(&adapter->tmreg_lock, flags);

867 868 869 870 871
	/* reset the ns time counter */
	timecounter_init(&adapter->tc, &adapter->cc,
			 ktime_to_ns(ktime_get_real()));

	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
872

J
Jacob Keller 已提交
873 874
	/*
	 * Now that the shift has been calculated and the systime
875 876
	 * registers reset, (re-)enable the Clock out feature
	 */
J
Jacob Keller 已提交
877
	ixgbe_ptp_setup_sdp(adapter);
878 879 880 881
}

/**
 * ixgbe_ptp_init
882
 * @adapter: the ixgbe private adapter structure
883 884 885 886 887 888 889 890 891 892 893
 *
 * This function performs the required steps for enabling ptp
 * support. If ptp support has already been loaded it simply calls the
 * cyclecounter init routine and exits.
 */
void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;

	switch (adapter->hw.mac.type) {
	case ixgbe_mac_X540:
894
		snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
895 896 897 898 899 900 901 902 903 904 905 906
		adapter->ptp_caps.owner = THIS_MODULE;
		adapter->ptp_caps.max_adj = 250000000;
		adapter->ptp_caps.n_alarm = 0;
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.n_per_out = 0;
		adapter->ptp_caps.pps = 1;
		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
		adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
		adapter->ptp_caps.settime = ixgbe_ptp_settime;
		adapter->ptp_caps.enable = ixgbe_ptp_enable;
		break;
907
	case ixgbe_mac_82599EB:
908
		snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
		adapter->ptp_caps.owner = THIS_MODULE;
		adapter->ptp_caps.max_adj = 250000000;
		adapter->ptp_caps.n_alarm = 0;
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.n_per_out = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
		adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
		adapter->ptp_caps.settime = ixgbe_ptp_settime;
		adapter->ptp_caps.enable = ixgbe_ptp_enable;
		break;
	default:
		adapter->ptp_clock = NULL;
		return;
	}

926 927 928 929
	/* initialize the ptp filter */
	if (ptp_filter_init(ptp_filter, ARRAY_SIZE(ptp_filter)))
		e_dev_warn("ptp_filter_init failed\n");

930 931
	spin_lock_init(&adapter->tmreg_lock);

932 933
	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
						&adapter->pdev->dev);
934 935 936 937 938 939
	if (IS_ERR(adapter->ptp_clock)) {
		adapter->ptp_clock = NULL;
		e_dev_err("ptp_clock_register failed\n");
	} else
		e_dev_info("registered PHC device on %s\n", netdev->name);

940 941 942 943 944
	ixgbe_ptp_reset(adapter);

	/* set the flag that PTP has been enabled */
	adapter->flags2 |= IXGBE_FLAG2_PTP_ENABLED;

945 946 947 948 949 950 951 952 953 954 955 956
	return;
}

/**
 * ixgbe_ptp_stop - disable ptp device and stop the overflow check
 * @adapter: pointer to adapter struct
 *
 * this function stops the ptp support, and cancels the delayed work.
 */
void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
{
	/* stop the overflow check task */
957
	adapter->flags2 &= ~(IXGBE_FLAG2_PTP_ENABLED |
J
Jacob Keller 已提交
958 959 960
			     IXGBE_FLAG2_PTP_PPS_ENABLED);

	ixgbe_ptp_setup_sdp(adapter);
961 962 963 964 965 966 967 968

	if (adapter->ptp_clock) {
		ptp_clock_unregister(adapter->ptp_clock);
		adapter->ptp_clock = NULL;
		e_dev_info("removed PHC on %s\n",
			   adapter->netdev->name);
	}
}